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The compressible Euler equations

In their standard form, the compressible Euler equations are given by

B%+ % divv = 0,

%Bv +∇p = 0,

Bs = 0,

(EE-stand)

where v = v(t, x) = (v1, v2, v3) is the fluid’s velocity, % = %(t, x) is the
fluid’s density, and s = s(t, x) is the fluid’s entropy, (t, x) ∈ [0, T )× R3;

B := ∂t + va∂a is the material derivative vectorfield; p = p(%, s) is the
fluid’s pressure (equation of state). We are given initial conditions

v0 = v(0, ·), %0 = %(0, ·), s0 = s(0, ·).

For (%0 − %, v0, s0) ∈ HN (Σ0), Σ0 = {t = 0}, the system (EE-stand) is
locally well-posed if N > 5/2 (% > 0 is a constant background density).
On the other hand, (EE-stand) is ill-posed if one assumes only
(%0 − %, v0, s0) ∈ H2(Σ0). What about 2 < N ≤ 5/2?
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Background

For irrotational (curl v = 0) and isentropic (s = constant) fluids, the Euler
system can be written as a system of quasilinear wave equations of the form

hµν(Φ)∂µ∂νΦ = N (Φ, ∂Φ), (QLW)

with Φ = (%, v).

From (QLW), LWP for irrotational-isentropic Euler:

Bahouri-Chemin (’99): (%0 − %̄, v0) ∈ H(9/4)+ = H(2.25)+ .

Tataru (’02): (%0 − %̄, v0) ∈ H(13/6)+ = H(2.1666...)+ ; optimal within
“linear theory” (Smith-Tataru, ’02).

Klainerman-Rodnianski (’03): (%0− %̄, v0) ∈ H(2+ 2−
√

3
2

)+ = H(2.13...)+ .

Smith-Tataru (’05): (%0 − %̄, v0) ∈ H2+ . (Wang, ’17).

Lindblad (’98): Ill-posedness for (%0 − %̄, v0) ∈ H2. Ill-posedness
mechanism: instantaneous formation of shocks.

Q: Without assuming curl v = 0 and s = constant, what is minimum N∗
to close estimates in HN∗ (rule out shocks). ⇒ time of classical existence
depends only on low-regularity norm of the data.
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Theorem (D–, Luo, Mazzone, Speck, 2019)

Consider a smooth solution to the compressible Euler equations, whose
initial data obey the following assumptions for some real numbers
2 < N := 2 + ε ≤ 5/2, 0 < α < 1, 0 < Dε,α <∞, 0 < c1 < c2, 0 < c3:

1. ‖(%− %̄, v, curl v)‖H2+ε(Σ0) + ‖s‖H3+ε(Σ0) ≤ Dε,α.

2. The variables C ∼ (curlcurlv)/% and D ∼ ∂2s verify the Hölder-norm
bound ‖(C,D)‖C0,α(Σ0) ≤ Dε;α.

3. Along Σ0, the data functions are contained in the interior of a
compact subset K of state-space in which % ≥ c3 and the speed of
sound is bounded from below by c1 and above by c2.

Then the solution’s time of classical existence T depends only on Dε;α and
K, i.e., T = T (Dε;α,K) > 0. Moreover, the Sobolev and Hölder regularity
of the data is propagated by the solution for t ∈ [0, T ] (norms that we can
control are uniformly bounded by functions of (Dε;α,K) for t ∈ [0, T ]).

Results of independent interest: sharp estimates for the characteristic
(acoustic) geometry; Strichartz estimates for waves coupled to vorticity;
Schauder estimates for transport-div-curl part.

4/22



Theorem (D–, Luo, Mazzone, Speck, 2019)

Consider a smooth solution to the compressible Euler equations, whose
initial data obey the following assumptions for some real numbers
2 < N := 2 + ε ≤ 5/2, 0 < α < 1, 0 < Dε,α <∞, 0 < c1 < c2, 0 < c3:

1. ‖(%− %̄, v, curl v)‖H2+ε(Σ0) + ‖s‖H3+ε(Σ0) ≤ Dε,α.

2. The variables C ∼ (curlcurlv)/% and D ∼ ∂2s verify the Hölder-norm
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bound ‖(C,D)‖C0,α(Σ0) ≤ Dε;α.

3. Along Σ0, the data functions are contained in the interior of a
compact subset K of state-space in which % ≥ c3 and the speed of
sound is bounded from below by c1 and above by c2.

Then the solution’s time of classical existence T depends only on Dε;α and
K, i.e., T = T (Dε;α,K) > 0. Moreover, the Sobolev and Hölder regularity
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Remarks on the assumptions and the result

Main challenge: Euler equations form a system with multiple characteristic
speeds.

Two propagation phenomena associated with the Euler equations:
(i) transport of entropy and vorticity (transport phenomena), and (ii)
propagation of sound (wave phenomena) → (sound) wave-part and a
transport-part.

Low-regularity: Strichartz estimates adapted to the wave-part (based on
dispersion). No Strichartz estimates for the transport part (no dispersion).
Also have to handle the interactions of wave- and transport-part.

Despite the presence of a wave-part, the Euler system cannot be viewed as
“wave equations perturbed by smoother transported terms:” the presence
of the tiniest amount of vorticity is a “game changer.”
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Remarks on the assumptions and the result (cont.)

We have (%− %̄, v) ∈ H2+ε(Σ0) but also the “extra” regularity
assumptions curlv ∈ H2+ε(Σ0), s ∈ H3+ε(Σ0) and C ∼ curlcurlv/%,
D ∼ ∂2s ∈ C0,α(Σ0).

However, we are able to propagate the extra
regularity of the vorticity and entropy, even though they are deeply coupled
with the rougher wave-part of the system.

More recently, Wang considered the isentropic (s = constant) case with
vorticity (curl v 6= 0) and further lowered the regularity to
(%− %̄, v) ∈ H2+ε, curl v ∈ H2+ε′ , 0 < ε′ < ε, and no Hölder assumption
on the data.
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Characteristics of Euler’s equations: wave and transport

Characteristics of the Euler system: (i) integral curves (flow lines) of B
(transport-part),

(ii) null-hypersurfaces with respect to the acoustical
(Lorentzian) metric (wave-part)

g := −dt⊗ dt+ c−2
3∑

a=1

(dxa − vadt)⊗ (dxa − vadt),

where c = c(t, x) is the fluid’s sound speed defined as c2 := ∂p(%, s)/∂%
(equation of state; c > 0).

t

Integral curve
of B

characteristic hypersurfaces
of g (sound cones)

Figure: The characteristics of Euler’s equations.

Quasilinear: our regu-
larity assumptions are
tied to the charac-
teristics of the Euler
system: transport-part
and wave-part.
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Limitations of the standard formulation

(EE-stand) treat the different characteristics (wave and transporting) on
the same footing and hide the role of g (no good structure).

Need to
untangle the different characteristics and make the role of g explicit.

We introduce: logarithmic density ρ := ln(%/%), specific vorticity
Ω := e−ρcurlv ($ := curlv is the vorticity), entropy gradient S := ∇s,
modified curl of the vorticity:

Ci := exp(−ρ)(curlΩ)i + exp(−3ρ)
c−2

%

∂p

∂s
Sa∂av

i

− exp(−3ρ)
c−2

%

∂p

∂s
(∂av

a)Si,

and modified divergence of the entropy gradient:

D := exp(−2ρ)divS − exp(−2ρ)Sa∂aρ.
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New formulation of Euler’s equations (Speck, Speck-Luk)

With Ψ ∈ {ρ, v1, v2, v3, s}, solutions to (EE-stand) also satisfy:

�g(~Ψ)Ψ = L (~Ψ)[~C,D] + Q(~Ψ)[∂∂∂~Ψ, ∂∂∂~Ψ]

BΩi = L (~Ψ, ~Ω, ~S)[∂∂∂~Ψ]

BSi = L (~Ψ, ~S)[∂∂∂~Ψ].

divΩ = L (~Ω)[∂∂∂~Ψ],

BCi = Q(~Ψ)[∂∂∂~Ψ, ∂~Ω] + Q(~Ψ)[∂∂∂~Ψ, ∂ ~S]

+ Q(~Ψ, ~S)[∂∂∂~Ψ, ∂∂∂~Ψ] + L (~Ψ, ~Ω, ~S)[∂∂∂~Ψ],

BD = Q(~Ψ)[∂∂∂~Ψ, ∂ ~S] + Q(~Ψ, ~S)[∂∂∂~Ψ, ∂∂∂~Ψ]

+ L (~Ψ, ~S)[∂~Ω],

(curlS)i = 0,

wave equations

transport equations

transport-div-curl
equations for
the vorticity

transport-div-curl
equations for
the entropy gradient

where �g(~Ψ)= wave operator w.r.t. g, ∂∂∂ = (∂t, ∂i), L (A)[B] is linear in B

with coefficients depending on A, and Q(A)[B,C] is quadratic in B and C
with coefficients depending on A.
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The wave and transport parts and main steps

From the above formulation of the Euler equations, we identify the wave
variables (whose dynamics is tied to the sound cones) as
Ψ ∈ {ρ, v1, v2, v3, s}, and the transport variables (whose dynamics is tied
to the flow lines of B) as {Ω, S, C,D}.

The basic outline is:

1. Known techniques from wave equations (energy estimates +
Strichartz estimates) to control the wave variables. This requires, in
particular, control of the acoustic geometry (the g-null geometry):
complementary estimates for several geometric quantities associated
with the sound cones.

2. Need control of the transport variables at a consistent amount of
regularity. Energy estimates for transport equations are not enough
and no Strichartz estimates for transport equations. Combine
transport-type energy estimates with elliptic estimates.

3. Transport variables appear as source terms in the acoustic geometry
estimates. Need to handle the interaction of the acoustic geometry
with the transport-part (different speeds).
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Energy estimates (s = const.⇒ C = e−ρcurlΩ ∼ curlΩ)

�g(~Ψ)Ψ = L (~Ψ)[curlΩ] + Q(~Ψ)[∂∂∂~Ψ, ∂∂∂~Ψ] (1a)

BΩi = L (~Ψ, ~Ω)[∂∂∂~Ψ] (1b)

B(curlΩ) = Q(~Ψ)[∂∂∂~Ψ, ∂~Ω] (1c)

divΩ = L (~Ω)[∂∂∂~Ψ] (1d)

Control ‖Ψ‖H2+ε(Σt): take ∂1+ε of (1a). Need control of ∂1+εcurlΩ.
Cannot use (1b) which gives B∂1+εcurlΩ ∼ ∂3+εΨ. But available from
(1c) if ‖∂2+εΩ‖L2(Σt) is controlled; latter follows from (1c)-(1d) and
‖∂Ω‖L2(Σt) . ‖divΩ‖L2(Σt) + ‖curlΩ‖L2(Σt). Conclusion:

‖∂∂∂Ψ‖H1+ε(Σt) + ‖∂Ω‖H1+ε(Σt) . exp

(∫ t

0
(‖∂∂∂Ψ‖L∞(Στ ) + ‖∂Ω‖L∞(Στ )) dτ

)
.

Hypothesis: curl v0,Ω ∈ H2+ε; (1c) 6= curl (1b): better structure
(introduction of C and D).
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Key ingredient (control of mixed spacetime norm)

From

‖∂∂∂Ψ‖H1+ε(Σt) + ‖∂Ω‖H1+ε(Σt) . exp

(∫ t

0
(‖∂∂∂Ψ‖L∞(Στ ) + ‖∂Ω‖L∞(Στ )) dτ

)
.

we can close the estimate (and thus prove the Theorem) if we control

‖∂∂∂Ψ‖L1
tL
∞
x

:=

∫ t

0
‖∂∂∂Ψ‖L∞(Στ ) dτ, ‖∂Ω‖L1

tL
∞
x

:=

∫ t

0
‖∂Ω‖L∞(Στ ) dτ,

in terms of the initial data.

For ‖∂∂∂Ψ‖L1
tL
∞
x

, we use Strichartz estimates.
For ‖∂Ω‖L1

tL
∞
x

there are no Strichartz estimates (no dispersion for
transport). We would like to use instead elliptic estimates, but
Calderón-Zygmund operators are not bounded in L∞. However, they are
bounded in C0,α, and we control ‖∂Ω‖L1

tL
∞
x

by the stronger norm
‖∂Ω‖

L1
tC

0,α
x

, which explains the Hölder assumption on the data (which is

propagated).
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Bootstrap assumptions

The proof is carried out by assuming the following bootstrap assumptions:

‖∂∂∂~Ψ‖2L2
t ([0,T∗])L

∞
x

+
∑
ν≥2

ν2δ0‖Pν∂∂∂~Ψ‖2L2
t ([0,T∗])L

∞
x
≤ 1,

‖∂(~Ω, ~S)‖2L2
t ([0,T∗])L

∞
x

+
∑
ν≥2

ν2δ0‖Pν∂(~Ω, ~S)‖2L2
t ([0,T∗])L

∞
x
≤ 1,

and showing that they can be improved to

‖∂∂∂~Ψ‖2L2([0,T∗])L∞x
+
∑
ν≥2

ν2δ1‖Pν∂∂∂~Ψ‖2L2([0,T∗])L∞x
. T 2δ

∗ ,

‖∂(~Ω, ~S)‖2
L2([0,T∗])C

0,δ1
x

+
∑
ν≥1

νδ1‖Pν∂(~Ω, ~S)‖2L2([0,T∗])L∞x
. T 2δ

∗ ,

where Pν = LP projection, 0 < δ0 < 8δ1 depend on the parameters of the
problem, T∗ > 0 and δ > 0 are sufficiently small.
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Reductions: control of ‖∂∂∂Ψ‖L1
tL

∞
x

Enough to control ‖∂∂∂Ψ‖L2
tL
∞
x

.

After suitable rescaling, use energy estimates + Duhamel to reduce control
of ‖∂∂∂Ψ‖L2

tL
∞
x

to the frequency-localized Strichartz estimate for linear-in-ϕ
equation �g(~Ψ)ϕ = 0:

‖Pλ∂∂∂ϕ‖LqtL∞x . λ
3
2
− 1
q ‖∂∂∂ϕ‖L2(Σ0) , (4)

q & 2, Pλ = Littlewood-Paley projection onto dyadic frequency λ.

Estimate (4) follows from the fixed-frequency Strichartz estimate

‖P∂∂∂ϕ‖LqtL∞x . ‖∂∂∂ϕ‖L2(Σ0), (5)

where P = Littlewood-Paley projection onto frequencies {1/2 ≤ |ξ| ≤ 2}.

Estimate (5) follows from a dispersive estimate that we state next.
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The dispersive estimate

By duality, the estimate ‖P∂∂∂ϕ‖LqtL∞x . ‖∂∂∂ϕ‖L2(Σ0) follows from:

‖PBϕ‖L∞(Σt) .

{
1

(1 + |t− 1|)
2
q

+ d(t)

}{
‖∂∂∂ϕ‖L2(Σ1) + ‖ϕ‖L2(Σ1)

}
,

where the function d(t) satisfies ‖d‖
L
q
2
t

. 1.

The term d(t) in is quasilinear in nature. I.e., although we reduced the
problem to an estimate for the linear-in-ϕ equation �g(~Ψ)ϕ = 0, the
coefficients depend on Ψ. Control of the coefficients is established by
controlling the acoustic geometry.

Establishing the existence and integrability properties of d(t) lies at the
core of our result.

Unit frequency: can replace ‖PBϕ‖L2(Σt)
on the LHS (energy estimates).
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Decay properties and the acoustic geometry

Decay properties of solutions to �g(Ψ)ϕ = 0, are directionally dependent:
derivatives of ϕ in directions tangent vs. transversal to characteristics.

Relevant characteristics: sound cones, given as level sets Hu of a solution
u to the eikonal equation

(g−1(Ψ))αβ∂αu∂βu = 0 (with suitable initial conditions).

M(Int)M(Ext)

Sτ,u

t

Σ1

B

Hu

N

L

τ

L

eA

Decay: weighted energy.

Interior: multiplier f(r̃)N ,
r̃ := t− u (Morawetz adapted
to the acoustic geometry, inte-
grated energy-decay).

Exterior: multiplier r̃mL.

“Error terms:” ∂∂∂N and ∂∂∂L ex-
pressible as connection coeffi-
cients of a null-frame.

Decay estimate can be obtained only in conjunction with appropriate
estimates for the connection coefficients.
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Control of the acoustic geometry and the transport-part

Acoustic geometry: estimates along Σt , Hu, and St,u by studying delicate
evolution-elliptic systems satisfied by the connection coefficients
(null-structure equations).

Transport part: transport-div-curl estimates.

Issue: transport variables C ∼ curl Ω and D enter as source in the
null-structure equations. Need to estimate C and D in L2(Hu).

St,u

of B

sound

Σt

Integral curves

conesof L
Integral curves

Σ0

L2 estimate for C and D alongHu:
g(B,B) = −1.

C0,α estimates for Ω along Σt:
control of integral curves of B.

C0,α estimates along St,u and Hu:
control of integral curves of L.
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– Thank you for your attention! –
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Appendix: Conformal (weighted) energy

W (t, u) =

{
1 if u

t ∈ [0, 1/2],

0 if u
t ∈ (−∞,−1/4] ∪ [3/4, 1],

W (t, u) =

{
1 if u

t ∈ [0, 1],

0 if u
t ∈ (−∞,−1/4],

W (t, u) = W (t, u)if t ∈ [1, T∗;(λ)] and
u

t
∈ (−∞, 1/2].

t = 1

r̃

t

t = T∗,(λ)

u
t ∈ [34, 1]

u
t ∈ [0, 12]

u
t ∈ [−∞, 14]

u
t ∈ [0, 1]
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Appendix: Conformal (weighted) energy

C [ϕ](t) :=

∫
Σ̃

(Int)
t

(W −W )t2
{
|Dϕ|2 + |r̃−1ϕ|2

}
d$g

+

∫
Σ̃

(Int)
t

W
{
|r̃DLϕ|2 + |r̃∇/ϕ|2g/ + |ϕ|2

}
d$g.

C [ϕ](t) ≤ Cε(1 + t)2ε
{
‖∂∂∂ϕ‖2L2(Σ1) + ‖ϕ‖2L2(Σ1)

}
.
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Appendix: Null-structure equations

Lυ = υtrg/χ,

Lb = b {−kNN + g(DBB, L)} ,

Ltrg/χ +
1

2
(trg/χ)2 = −|χ̂|2g/ − kNN trg/χ−RicLL,

D/ Lχ̂AB + (trg/χ)χ̂AB = −kNN χ̂AB −
{
RiemLALB −

1

2
RicLLδAB

}
,

D/ LζA +
1

2
(trg/χ)ζA = −{kBN + ζB} χ̂AB −

1

2
trg/χkAN −

1

2
RiemALLL,

Ltrg/χ +
1

2
(trg/χ)trg/χ = 2div/ ζ + kNN trg/χ− χ̂ABχ̂AB + 2|ζ|2g/

+ RiemALLA,
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Appendix: Null-structure equations

D/ Lχ̂AB +
1

2
(trg/χ)χ̂AB = −1

2
(trg/χ)χ̂

AB
+ 2∇/AζB − div/ ζδAB + kNN χ̂AB

+
{

2ζAζB − |ζ|2g/δAB
}

−
{
χ̂
AC

χ̂CB −
1

2
χ̂
CD

χ̂CDδAB

}
+ RiemALLB

− 1

2
RiemCLLCδAB,

div/ χ̂A + χ̂ABkBN =
1

2

{
∇/Atrg/χ + kAN trg/χ

}
+ RiemBLBA,

div/ ζ =
1

2

{
µ− kNN trg/χ− 2|ζ|2g/ − |χ̂|

2
g/ − 2kABχ̂AB

}
− 1

2
RiemALLA,

curl/ ζ =
1

2
εABχ̂

AC
χ̂BC −

1

2
εABRiemALLB.
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