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Motivation.

In 1911, Otto Toeplitz posed the following question:

Problem 1 (The Square Peg Problem)

Does every continuous Jordan curve in the Euclidean plane
contain four points at the vertices of a square?

It posits a striking connection between the topology and the
geometry of the Euclidean plane. It remains open to this day.
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Jordan curves.
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Inscribed squares.
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Why squares / quadrilaterals?

I Three points are ubiquitous: ∀ triangle T and ∀ Jordan
curve γ, γ inscribes a triangle similar to T . (Exercise.)

I Five points are not: dissimilar ellipses inscribe dissimilar
pentagons. (Distinct ellipses meet in at most four points.)

I Four is where things get interesting: a recurring theme in
low-dimensional topology / geometry.
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Early progress.

I Emch (1913) solved the problem for smooth convex curves.
(Ideas involving configuration spaces, homology)

I Schnirelman (1929) solved it for smooth Jordan curves. In
fact, a generic smooth Jordan curve contains an odd
number of “inscribed” squares. (Bordism argument)

Tempting approach to original problem: a limiting argument.

Any continuous Jordan curve is a limit of smooth ones, so take
a limiting sequence of squares.

Problem: the squares may shrink to points.
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Variations.

I Varying regularity condition on curve (e.g. recent work of
Feller-Golla, Schwartz, Tao).

I Higher dimensional analogues (e.g. inscribed octahedra in
S2 ↪→ R3.)

I Fenn’s table theorem.

I Kronheimer and son (Peter) on the tripos problem.

I Other inscribed features in Jordan curves.

See, e.g. Matschke, Notices of the AMS, 2014.
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Step 1. Vaughan.

Theorem 1 (Vaughan 1977)

Every continuous Jordan curve contains four vertices of a
rectangle.

(Reference: Meyerson, Balancing Acts, 1981.)
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Proof:

Sym2(γ) = {{z, w} : z, w ∈ γ}: unordered pairs of points on γ

It is a Möbius band:

• send {z, w} ∈ Sym2(S1) to the
parallelism class of (tangent) line ←→zw

• obtain Sym2(S1)→ RP 1 as an I-bundle over RP 1

• connected boundary ∂ = {{z, z} : z ∈ γ}
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Define a continuous map v : Sym2(γ)→ R2 × R≥0:

v({z, w}) =

(
z + w

2
, |z − w|

)
.

The “midpoint, distance” map.

• im(v) hits R2 × {0} in v(∂) = γ × {0}
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v({z, w}) = v({x, y}) ⇐⇒

⇐⇒ {z, w} and {x, y} span diagonals of a rectangle

Principle:

{inscribed rectangles in γ} ↔ {self-intersections of v}
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reflect im(v) across R2 × {0} ⊂ R3:

get continuous map v ∪ v of the Klein bottle to R3, 1-to-1 at
γ × {0}.
v contains a point of self-intersection =⇒ γ inscribes a
rectangle. <=
Any map of the Klein bottle to R3 must contain “a lot” of
self-intersection, so there should exist many inscribed rectangles
in γ.
How to quantify?
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Problem 2 (The rectangular peg problem)

For every (smooth) Jordan curve and every rectangle in the
Euclidean plane, do there exist four points on the curve at the
vertices of a rectangle similar to the one given?
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Step −1.

Published “solution” in 1991.
Idea: intersection theory / bordism argument.
Each inscribed rectangle in γ gets a sign; signed count of
inscribed rectangles in γ similar to a given one is 2; hence there
exist at least two.
In 2008, Matschke found a mistake: the signed count is 0.

+1-1

It suggests a limit to the efficacy of intersection theory /
bordism arguments.
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Step 2. Hugelmeyer.

In 2018, Cole Hugelmeyer recovered some new cases of the
rectangular peg problem:

Theorem 2 (Hugelmeyer 2018)

Every smooth Jordan curve contains four points at the vertices
of a rectangle with aspect angle equal to an integer multiple of
π/n, for all n ≥ 3.
In particular, every smooth Jordan curve inscribes a rectangle
of aspect ratio

√
3.

θ

a

b aspect ratio: a/b

aspect angle: θ
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Resolve v into a 4D version:

hn : Sym2(γ)→ C× C,

hn({z, w}) =

(
z + w

2
, (z − w)2n

)

{
inscribed rectangles in γ

with aspect angle kπ/n, k ∈ Z

}
↔ {self-intersections of hn}
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Blow up: h̃n : Sym2(γ)→ X = C× R≥0 × S1,

h̃n(z, w) =

(
z + w

2
, |z − w|2n, (z − w)2n

|z − w|2n

)
, z 6= w

h̃n(z, z) =
(
z, 0, u(z)2n

)
, u(z) unit tangent to γ at z.

M = im(h̃n) hits ∂X = C× {0} × S1 in a (1, 2n)-curve.

insert X into S3 × R≥0, matching ∂X with an open solid torus
in S3 × {0} by an axial twist.

∂M maps onto the torus knot T (2n, 2n− 1).

Batson (2014): T (2n, 2n− 1) does not bound a smoothly
embedded Möbius band in S3 × R≥0 for any n ≥ 3.

Hence M self-intersects =⇒ ∃ asserted inscribed rectangle. <=

(The case of a square does not follow: e.g. T (4, 3) bounds a
Möbius band in B4.)
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Feller and Golla (2020): recovered Hugelmeyer’s result, and the
case of a square, for curves obeying a weaker regularity
condition than smoothness.
Proof based on branched covering / intersection form
arguments (free of gauge theory / symplectic geometry).
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Step 3. Hugelmeyer v2.0.

In 2019, Hugelmeyer recovered 1/3 of the rectangular peg
problem:

Theorem 3 (Hugelmeyer 2019)

For every smooth Jordan curve γ, the set of angles φ ∈ (0, π/2]
such that γ contains an inscribed rectangle of aspect angle φ has
Lebesgue measure ≥ (1/3)(π/2).

Josh Greene

The rectangular peg problem



Proof:
Reconsider h = h2 : Sym2(γ)→ C× C,

h({z, w}) =

(
z + w

2
, (z − w)2

)
It is a smooth embedding. Write M = im(h).
For φ ∈ R, let Rφ : C× C→ C× C denote rotation by φ in the
second coordinate:

Rφ(z, w) = (z, eiφ · w).

{
inscribed rectangles in γ

with aspect angle φ

}
↔ M̊ ∩R2φ(M̊)

Goal: show non-empty for ≥ 1/3 of angles φ ∈ (0, π/2].
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Blow up as before (γ is smooth).
M1,M2 - rotations of M with disjoint interiors.
Define a comparison M1 ≺M2 based on linking number.
Fact 1. ≺ is antisymmetric.
(Linking number argument.)
M1,M2,M3 - rotations of M with pairwise disjoint interiors.
Fact 2. ≺ is transitive on M1,M2,M3.
(Milnor triple linking number.)
≺ + additive combinatorics (Kemperman / Cauchy-Davenport)
delivers the result. <=

In fact ∃M (not derived from any γ) s.t. M̊ ∩Rφ(M̊) 6= ∅ for
1/3 of angles φ.
How to ensure that M̊ ∩Rφ(M̊) 6= ∅ for all φ, M = im(h)?
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Step 4. Shift in perspective: symplectic geometry.

Idea: place a symplectic form on C×C so that M is Lagrangian
and Rφ form a family of Hamiltonian symplectomorphisms.
“Optimistic” Arnold-Givental:

|M̊ ∩Rφ(M̊)| ≥ dimH∗(M ;Z/2Z) = 2.

Technicality: M is nonorientable and has boundary.
Shortcut: nonembeddability of the Klein bottle.
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The rectangular peg problem.

Theorem 4 (G-Lobb 2020)

For every smooth Jordan curve and rectangle in the Euclidean
plane, there exist four points on the curve that form the vertices
of a rectangle similar to the one given.
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Proof, minus details:

Define f : Sym2(γ)→ C× C,

f({z, w}) =

(
z + w

2
,

(z − w)2

2
√

2|z − w|

)
(z 6= w)

Möbius band M = im(f).

M hits C× {0} in ∂M = γ × {0}.
Away from ∂, M is smooth and Lagrangian w.r.t. symplectic

form ωstd = i
2(dz ∧ dz + dw ∧ dw) on C2.

Let φ ∈ (0, π/2].{
inscribed rectangles in γ

with aspect angle φ

}
↔ M̊ ∩R2φ(M̊)
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Rφ is a symplectomorphism.
It fixes ∂M .
Hence M and R2φ(M) are Möbius bands, smooth and
Lagrangian away from their common boundary γ × {0}, where
they meet in a controlled way.

We can smooth M ∪R2φ(M) nearby γ × {0} to get a smoothly
mapped, Lagrangian Klein bottle.

Theorem 5 (Shevchishin, Nemirovski 2007)

There does not exist a smooth, Lagrangian embedding of the
Klein bottle in (C2, ω).

Hence M̊ ∩R2φ(M̊) 6= ∅ =⇒ ∃ inscribed rectangle in γ of
aspect angle φ. <=
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Details.

1. Why is M Lagrangian?

γ ⊂ C is Lagrangian
=⇒ γ × γ ⊂ C× C is
=⇒ Sym2(γ)−∆ ⊂ Sym2(C)−∆ is.

The map f is just C×C π→ Sym2(C)
∼→ C×C written explicitly:

f = g ◦ l, where g, l : C× C→ C× C,

l(z, w) =

(
z + w

2
,
z − w

2

)
, g(z, r, θ) = (z, r/

√
2, 2θ).

l is a diffeomorphism and l∗(ω) = ω/2.
g is smooth and g∗(ω) = ω away from C× {0}.
M = f(γ × γ) is Lagrangian (away from C× {0}).
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Details.

2. Why is the smoothing possible?

Work with Lagrangian tori L = l(γ × γ) and Rφ(L).
They intersect cleanly at γ × {0} ⊂ C× {0}.
They are invariant under Rπ.
Apply equivariant Weinstein theorem à la Poźniak:
∃ Z/2-equivariant symplectomorphism of neighborhood of
intersection to S1 × R× R× R with
• coordinates: x1, x2, y1, y2
• symplectic form: dx1 ∧ dy1 + dx2 ∧ dy2
• Z/2 action: (x1, x2, y1, y2)↔ (x1,−x2, y1,−y2)
• Lagrangians: S1 × R× {0} × {0} and S1 × {0} × {0} × R.
smooth the intersection Z/2-equivariantly, then project via g
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Details.

3. Nonexistence of Lagrangian Klein bottles in C2.

This had been a question of Givental.

Nemirovski’s proof:

Given smoothly embedded Lagrangian Klein bottle K ⊂ (X,ω),
[K] = 0 ∈ H2(X;Z/2), do Luttinger surgery.

Get dual Klein bottle K ′ ⊂ (X ′, ω′), [K ′] 6= 0 ∈ H2(X
′;Z/2).

(X −N(K), ω) ≈ (X ′ −N(K ′), ω′).

Gromov: any symplectic 4-manifold asymptotic to (C2, ωstd) at
∞ with π2 = 0 is actually (C2, ωstd).

So could not have been in (C2, ωstd) in the first place (else get
C2 = X = X ′ and [K ′] 6= 0 ∈ H2(C2;Z/2)  ).
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Beyond.

1. Does every smooth Jordan curve inscribe a rectangle of
each aspect ratio whose vertices appear in the same cyclic
order around both the curve and the rectangle? (“Yes” for
the square: Schwartz.)

2. Does every smooth Jordan curve inscribe every cyclic
quadrilateral?

3. Is there an “algorithm” to locate an inscribed square in a
smooth Jordan curve? Compare: finding a fixed point of a
continuous map from the disk to itself.

<=
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