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Motivation.

In 1911, Otto Toeplitz posed the following question:

Problem 1 (The Square Peg Problem)

Does every continuous Jordan curve in the Fuclidean plane
contain four points at the vertices of a square?

It posits a striking connection between the topology and the
geometry of the Euclidean plane. It remains open to this day.
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Jordan curves.
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Inscribed squares.




Why squares / quadrilaterals?

» Three points are ubiquitous: V triangle T and V Jordan
curve 7, v inscribes a triangle similar to 7T'. (Exercise.)

» Five points are not: dissimilar ellipses inscribe dissimilar
pentagons. (Distinct ellipses meet in at most four points.)

» Four is where things get interesting: a recurring theme in
low-dimensional topology / geometry.
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Early progress.

» Emch (1913) solved the problem for smooth convex curves.
(Ideas involving configuration spaces, homology)

» Schnirelman (1929) solved it for smooth Jordan curves. In
fact, a generic smooth Jordan curve contains an odd
number of “inscribed” squares. (Bordism argument)

Tempting approach to original problem: a limiting argument.

Any continuous Jordan curve is a limit of smooth ones, so take
a limiting sequence of squares.

Problem: the squares may shrink to points.




Variations.

Varying regularity condition on curve (e.g. recent work of
Feller-Golla, Schwartz, Tao).

Higher dimensional analogues (e.g. inscribed octahedra in
S% < R3)

Fenn’s table theorem.

Kronheimer and son (Peter) on the tripos problem.

Other inscribed features in Jordan curves.

e.g. Matschke, Notices of the AMS, 2014.
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Step 1. Vaughan.

Theorem 1 (Vaughan 1977)

Every continuous Jordan curve contains four vertices of a
rectangle.

(Reference: Meyerson, Balancing Acts, 1981.)
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Proof:

Sym?(v) = {{z,w} : z,w € v}: unordered pairs of points on
It is a Mobius band:

e send {z,w} € Sym?(S?t) to the
parallelism class of (tangent) line ¥

e obtain Sym?(S') — RP! as an I-bundle over RP!
e connected boundary 9 = {{z,2} : z € v}




The “midpoint, distance” map.

™

e im(v) hits R? x {0} in v(9) = v x {0}
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v({zw}) =v({z,y}) =

<= {z,w} and {x,y} span diagonals of a rectangle

Principle:

‘ {inscribed rectangles in v} <+ {self-intersections of v} ‘




reflect im(v) across R? x {0} C R3:

get continuous map v U ¥ of the Klein bottle to R3, 1-to-1 at

v x {0}.

v contains a point of self-intersection = ~ inscribes a
rectangle. O

Any map of the Klein bottle to R? must contain “a lot” of
self-intersection, so there should exist many inscribed rectangles
in 7.

How to quantify?
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Problem 2 (The rectangular peg problem)

For every (smooth) Jordan curve and every rectangle in the
Euclidean plane, do there exist four points on the curve at the
vertices of a rectangle similar to the one given?
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Step —1.

Published “solution” in 1991.

Idea: intersection theory / bordism argument.
Each inscribed rectangle in ~ gets a sign; signed count of
inscribed rectangles in « similar to a given one is 2; hence there

exist at least two.

In 2008, Matschke found a mistake: the signed count is 0.

(

-1

+1

)

It suggests a limit to the efficacy of intersection theory /

bordism arguments.
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Step 2. Hugelmeyer.

In 2018, Cole Hugelmeyer recovered some new cases of the
rectangular peg problem:

Theorem 2 (Hugelmeyer 2018)

Every smooth Jordan curve contains four points at the vertices
of a rectangle with aspect angle equal to an integer multiple of
w/n, for all n > 3.

In particular, every smooth Jordan curve inscribes a rectangle
of aspect ratio V3.

b 9 aspect ratio: a/b

aspect angle: 6

a




Resolve v into a 4D version:

By, : Sym?(y) — C x C,

hal{zw}) = ( (e w)zn)

with aspect angle km/n, k € Z

{ inscribed rectangles in ~

} +> {self-intersections of h,, }




Blow up: hy, : Sym?(y) = X = C x Rxg x S,

~ Z+w (z —w)?"
hn(z,w):< 9 ,]z—w|2”,m , ZFW

hn(2,2) = (2,0,u(2)*") ,u(z) unit tangent to 7 at 2.

M = im(hy,) hits X = C x {0} x S' in a (1,2n)-curve.

insert X into S3 x R>(, matching X with an open solid torus
in S3 x {0} by an axial twist.

OM maps onto the torus knot 7'(2n,2n — 1).

Batson (2014): T'(2n,2n — 1) does not bound a smoothly
embedded Mé&bius band in S x R for any n > 3.

Hence M self-intersects = 7 asserted inscribed rectangle. O

(The case of a square does not follow: e.g. T7'(4,3) bounds a
Mébius band in B*.)
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Feller and Golla (2020): recovered Hugelmeyer’s result, and the
case of a square, for curves obeying a weaker regularity
condition than smoothness.

Proof based on branched covering / intersection form
arguments (free of gauge theory / symplectic geometry).
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Step 3. Hugelmeyer v2.0.

In 2019, Hugelmeyer recovered 1/3 of the rectangular peg
problem:

Theorem 3 (Hugelmeyer 2019)

For every smooth Jordan curve vy, the set of angles ¢ € (0,7/2]
such that v contains an inscribed rectangle of aspect angle ¢ has
Lebesgue measure > (1/3)(m/2).




Proof:
Reconsider h = hy : Sym?(y) — C x C,

o)) = (5 - wp?)

It is a smooth embedding. Write M = im(h).
For ¢ € R, let Ry : C x C — C x C denote rotation by ¢ in the
second coordinate:

Ry(z,w) = (2, - w).

with aspect angle ¢

inscribed rectangles in o .
{ s 7} & M N Ryp(M)

Goal: show non-empty for > 1/3 of angles ¢ € (0, 7/2].
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Blow up as before (v is smooth).

My, M> - rotations of M with disjoint interiors.

Define a comparison M; < M based on linking number.

Fact 1. < is antisymmetric.

(Linking number argument.)

My, Mo, M3 - rotations of M with pairwise disjoint interiors.
Fact 2. < is transitive on My, Ma, M3.

(Milnor triple linking number.)

< + additive combinatorics (Kemperman / Cauchy-Davenport)
delivers the result. O

In fact 3M (not derived from any ) s.t. M N Ry(M) # () for
1/3 of angles ¢. ) )
How to ensure that M N Ry(M) # 0 for all ¢, M = im(h)?
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Step 4. Shift in perspective: symplectic geometry.

Idea: place a symplectic form on C x C so that M is Lagrangian
and Ry form a family of Hamiltonian symplectomorphisms.
“Optimistic” Arnold-Givental:

|M N Ry(M)| > dim H,(M;Z/2Z) = 2.

Technicality: M is nonorientable and has boundary.
Shortcut: nonembeddability of the Klein bottle.




The rectangular peg problem.

Theorem 4 (G-Lobb 2020)

For every smooth Jordan curve and rectangle in the Fuclidean

plane, there exist four points on the curve that form the vertices
of a rectangle similar to the one given.
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Proof, minus details:
Define f : Sym?(y) — C x C,

z+w (z—w)?

) = (5 S

) Grw

Mébius band M = im(f).

M hits C x {0} in OM =~ x {0}.

Away from 0, M is smooth and Lagrangian w.r.t. symplectic
form wgg = %(dz A dZ + dw A dw) on C2.

Let ¢ € (0,7/2].

with aspect angle ¢

inscribed rectangles in o .
{ & /Y} ~ MnN R2¢(M)
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Ry is a symplectomorphism.

It fixes OM.

Hence M and Ra4(M) are Mobius bands, smooth and
Lagrangian away from their common boundary v x {0}, where
they meet in a controlled way.

We can smooth M U Ray(M) nearby v x {0} to get a smoothly
mapped, Lagrangian Klein bottle.

Theorem 5 (Shevchishin, Nemirovski 2007)

There does not exist a smooth, Lagrangian embedding of the
Klein bottle in (C?,w).

Hence M N R2¢(]\04) # () = 3 inscribed rectangle in « of
aspect angle ¢. ™
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Details.

1. Why is M Lagrangian?

~v C C is Lagrangian

— 7xvy7CCxCis

= Sym?(y) — A C Sym?(C) — A is.

The map f is just C x C 5 Sym?(C) = C x C written explicitly:
f=gol, where g, : CxC— C xC,

z24+w z—w

l(z,w):< 3 >,g(z,r,9)=(z,r/f2,29).

[ is a diffeomorphism and [*(w) = w/2.
g is smooth and ¢*(w) = w away from C x {0}.
M = f(y x ) is Lagrangian (away from C x {0}).
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Details.

2. Why is the smoothing possible?

Work with Lagrangian tori L = I(y x ) and Rg(L).

They intersect cleanly at v x {0} C C x {0}.

They are invariant under R.

Apply equivariant Weinstein theorem a la PoZniak:

3 Z/2-equivariant symplectomorphism of neighborhood of
intersection to S x R x R x R with

e coordinates: x1,x2,y1, Yo

e symplectic form: dxi A dy; + daxs A dyo

e 7./2 action: (x1,x2,y1,Y2) <> (T1, —T2, Y1, —Y2)

e Lagrangians: S' x R x {0} x {0} and S! x {0} x {0} x R.
smooth the intersection Z/2-equivariantly, then project via g
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Details.

3. Nonexistence of Lagrangian Klein bottles in C2.

This had been a question of Givental.

Nemirovski’s proof:

Given smoothly embedded Lagrangian Klein bottle K C (X, w),
[K] =0 € Hy(X;Z/2), do Luttinger surgery.

Get dual Klein bottle K’ C (X', '), [K'] # 0 € Ho(X';Z/2).
(X — N(K),w) ~ (X' — N(K'),u).

Gromov: any symplectic 4-manifold asymptotic to (C2?,wsy) at
oo with mp = 0 is actually (C?,wq).

So could not have been in (C2,wgyq) in the first place (else get
C? =X =X and [K'] #0 € Hy(C%*7Z/2) 4).
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Beyond.

1. Does every smooth Jordan curve inscribe a rectangle of
each aspect ratio whose vertices appear in the same cyclic
order around both the curve and the rectangle? (“Yes” for
the square: Schwartz.)

2. Does every smooth Jordan curve inscribe every cyclic
quadrilateral?

3. Is there an “algorithm” to locate an inscribed square in a
smooth Jordan curve? Compare: finding a fixed point of a
continuous map from the disk to itself.
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