

Introduction

- **1** Let L(G) denote the Laplacian matrix of a graph G.
- **2** By considering L(G) as a linear map $L(G): \mathbb{Z}^V \to \mathbb{Z}^V$, the cokernel of L(G) is the quotient module $\mathbb{Z}^V/\text{Im}L(G)$.
- **3** The torsion part of this module is the critical group *K*(*G*) of *G*.
- We compute the critical groups of outerplanar graphs.

Smith Normal Form

- **5** Two matrices *M* and *N* are said to be equivalent if there exist $P, Q \in GL_n(\mathbb{Z})$ such that N = PMQ.
- 6 Given a square integer matrix M, the Smith Normal Form (SNF) of *M* is the unique equivalent diagonal matrix diag(d_1, d_2, \ldots, d_n) whose non-zero entries are non-negative and satisfy d_i divides d_{i+1} .
- The diagonal elements of the SNF are known as invariant factors.
- **8** coker(M) $\cong \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_2} \oplus \cdots \oplus \mathbb{Z}_{d_r} \oplus \mathbb{Z}^{n-r}$, where r is the rank of $n \times n$ integer matrix M.
- **9** Let $\Delta_k(M)$ be the gcd of the k-minors of matrix M, with $\Delta_0(M) = 1$.

$$d_k = \frac{\Delta_k(M)}{\Delta_{k-1}(M)}.$$

- The reduced Laplacian matrix $L_k(G)$ is the matrix obtained by deleting the k-th row and k-th column from L(G).
- When G is connected, $K(G) \cong \operatorname{coker}(L_k(G))$

Critical ideals

The sandpile critical groups of outerplanar graphs

Carlos A. Alfaro

Banxico

- B Let A(G) denote the adjacency matrix of a graph G. • Let $A_X(G) = diag(x_1, \ldots, x_n) - A(G)$, where the variables of $X = (x_1, \ldots, x_n)$ are associated with the
- vertices v_1, \ldots, v_n of G.
- For $k \in [n]$, the k-th critical ideal $I_k(G)$ of G is the ideal in $\mathbb{Z}[X]$ generated by the k-minors of the matrix $A_X(G)$.
- Let deg(G) = (deg_G(ν_1), . . . , deg_G(ν_n)). To Note the evaluation of $I_k(G)$ at X = deg(G) will be an ideal in \mathbb{Z} generated by $\Delta_k(L(G))$.

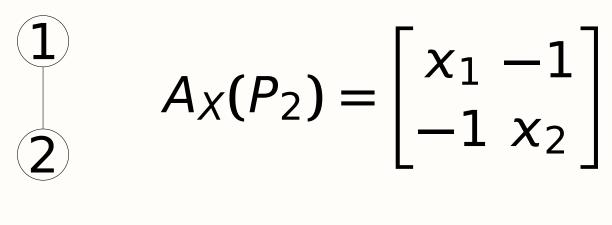


Figure 1: Path with 2 vertices

(G) can be also obtained from the critical ideals of $G \setminus v$.

Planar graphs

- 1 In the following G is a plane graph, i.e., a graph already embedded on the plane. **2** Let G^* denote the dual graph of G.
- 2 Let G_* denote weak dual graph, defined as G^* without placing the vertex associated with the outer face.
- 23 $K(G) \cong K(G^*)$
- 24 $K(G) \cong \operatorname{coker}(L_k(G^*))$
- **25** Let F_1, \ldots, F_s be the interior faces of G, and let $c(F_i)$ be the number of edges in the cycle bounding F_i . The cycle-intersection matrix $C(G) = (c_{ii})$ is the $s \times s$ matrix such that $c_{ii} = c(F_i)$, and c_{ij} is the negative of the number of common edges in the
- cycles bounding F_i and F_j , for $i \neq j$.

- $I_1(P_2) = \langle 1 \rangle$ $I_2(P_2) = \langle x_1 x_2 1 \rangle$

- $\bigcirc C(G)$ is a reduced Laplacian of $L(G^*)$.
- 28 $K(G) \cong \operatorname{coker}(C(G)).$

Outerplanar graphs

- weak dual G_* which is a forest.
- its weak dual G_* is a tree.
- loop added in each vertex.
- in \mathcal{M}
- denoted by $\ell(\mathcal{M})$
- and $c = \operatorname{diag}(c(F_1), \ldots, c(F_s))$.

- [1] and weak duals.
- [2]
- [3] outerplanar graphs.

 $2 C(G) = \operatorname{diag}(c(F_1), \ldots, c(F_s)) - A(G_*)$ \odot K(G) can be obtained from the critical ideals of G_* .

[1] A graph G is outerplanar if and only if it has a

 \odot A graph G is biconnected outerplane if and only if

Government of tree T were computed in [2] in terms of the 2-matchings of T^l , defined as T with a

A 2-matching is a set of edges $\mathcal{M} \subseteq E(G)$ such that every vertex of G is incident to at most two edges

If Given a 2-matching \mathcal{M} of T^l , the loops of \mathcal{M} are

36 Let $d_X(\mathcal{M}, T)$ denote the determinant of the submatrix of $A_X(T)$ formed by selecting the columns and rows associated with the loops of \mathcal{M} . $gcd(\{d_X(\mathcal{M})|_{X=c} : \mathcal{M} \text{ is minimal 2-matching of } T^l\})$

Bibliography

Fleischner, Geller and Harary (1974): Outerplanar graphs

Corrales and Valencia (2015): Critical ideals of trees.

A. and Villagrán (2020): The structure of sandpile groups of