Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels

Ana Kontrec

joint work with D. Adamović
Department of Mathematics, University of Zagreb, Croatia
Supported by ZCI QuantiXlie
akontrec@gmail.com

Zajedno do fondova EU

Vertex algebra is a triple (V, Y, 1), where V is a vector space over \mathbb{C} , $1 \in V$ is the vacuum vector and Y is an operator

$$Y: V \longrightarrow (End V)[[z, z^{-1}]], \quad Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$$

satisfying following axioms:

1. $Y(a, z)b = \sum_{n \in \mathbb{Z}} a_n b z^{-n-1}$ has finitely many negative powers,

2. Y(1, z) = Id,

3. $Y(a, z)1 \in V[[z]]$ and $\lim_{z\to 0} Y(a, z)1 = a$,

4. $[D, Y(a, z)] = \frac{d}{dz}Y(a, z)$, where $D \in End V$ is given by $Da = a_{-2}\mathbb{1}$,

5. $\forall a, b \in V$, $\exists N$ such that

 $(z_1-z_2)^N[Y(a,z_1),Y(b,z_2)]=0.$

Zhu algebra

Let $V = \bigoplus_{n=0}^{\infty} V(n)$ be a \mathbb{Z} -graded VOA, and let deg a = n, for $a \in V(n)$. Define bilinear mappings $*: V \times V \longrightarrow V$, $\circ: V \times V \longrightarrow V$:

$$a*b = Res_Z\left(Y(a,z)\frac{(1+z)^{\deg a}}{z}b\right),$$

$$a \circ b = Res_{Z}\left(Y(a,z)\frac{(1+z)^{\deg a}}{z^{2}}b\right),$$

for $a \in V(n)$, $b \in V$.

Let $O(V) \subset V$ be the linear span of the elements $a \circ b$. The quotient space

$$A(V) = \frac{V}{O(V)}$$

is an associative algebra called the ${f Zhu}$ algebra of the VOA V.

Let $A(\mathcal{W}^k)$ denote the Zhu algebra of \mathcal{W}^k . Let [v] be the image of $v \in \mathcal{W}^k$ under the mapping $\mathcal{W}^k \mapsto A(\mathcal{W}^k)$.

• $A(\mathcal{W}^k)$ is generated by $[G^+]$, $[G^-]$, [J], $[\omega]$

• Zhu algebra $A(\mathcal{W}^k)$ is actually a quotient of another associative algebra, called Smith algebra

Classification of irreducible $W_{-5/3}$ -modules

Define functions

$$h_i(x,y) = \frac{1}{i}(g(x,y) + g(x+1,y) + \dots + g(x+i-1,y))$$

• (Ar2013) If the top level L(x, y)(0) is *n*-dimensional, then $h_n(x, y) = 0$.

ullet We will need the following Δ -operator

$$\Delta(-J,z) = z^{-J(0)} exp\left(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{-J(k)}{kz^k}\right),$$

such that

$$\sum_{n\in\mathbb{Z}} \Psi(a_n) z^{-n-1} = Y(\Delta(-J, z)a, z).$$

• (Ar2013) Let dim (L(x, y)(0)) = i. Then

$$\Psi(L(x,y)) \cong L(x+i-1-\frac{2k+3}{3}, y-x-i+1+\frac{2k+3}{3}).$$

Theorem

Define

$$\mathcal{R}_{k} = \{(-\frac{1}{9}, 0), (0, 0), (\frac{1}{3}, \frac{1}{3}), (-\frac{1}{3}, \frac{2}{3}), (-\frac{4}{9}, \frac{1}{3}), (-\frac{7}{9}, \frac{2}{3})\}.$$

$$\widetilde{\mathcal{R}_{k}} = \{(\frac{1}{9}, -\frac{1}{9}), (\frac{4}{9}, -\frac{1}{9}), (\frac{7}{9}, -\frac{1}{9})\}.$$

Let k = -5/3. The set

$$\{L(x,y) \mid (x,y) \in \mathcal{R}_k \cup \widetilde{\mathcal{R}_k}\},\$$

gives a complete list of irreducible \mathcal{W}_k -modules from the category \mathcal{O} .

Sketch of proof:

- ullet first we compute an explicit formula for the singular vector in $\mathcal{W}_{-5/3}$ at level 4
- from this formula, we obtain a relation in the Zhu algebra $A(W_k)$:

$$[G^+]^2([\omega] + \frac{1}{9}) = 0$$

- ullet using this relation (and applying the above Δ -operator), we get candidates for highest weight \mathcal{W}_k -modules
- in order to obtain a realization of those modules, we show that W_k can be realized as a \mathbb{Z}_3 -orbifold (fixed points subalgebra) of the Weyl vertex algebra W.

Bershadsky-Polyakov vertex algebra

Minimal affine W-algebra $W^k(\mathfrak{g}, f_\theta)$, where f_θ is a minimal nilpotent element, is the vertex algebra obtained by quantum Drinfeld-Sokolov reduction from the affine vertex algebra $V^k(\mathfrak{g})$.

Vertex algebra $\mathcal{W}^k(\mathfrak{g}, f_{\theta})$ is strongly generated by vectors

- $G^{\{u\}}$, $u \in \mathfrak{g}_{-\frac{1}{2}}$, of conformal weight $\frac{3}{2}$
- $J^{\{a\}}$, $a \in \mathfrak{g}^{
 abla}$, of conformal weight 1
- ω is the conformal vector of central charge

$$c(\mathfrak{g},k) = \frac{k \operatorname{dim}\mathfrak{g}}{k+h^{\vee}} - 6k + h^{\vee} - 4.$$

For $k \neq -h^{\vee}$, $\mathcal{W}^{k}(\mathfrak{g}, f_{\theta})$ has a unique simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f_{\theta})$.

Bershadsky-Polyakov vertex algebra $\mathcal{W}^k := \mathcal{W}^k(sl_3, f_\theta)$ is the minimal affine \mathcal{W} -algebra obtained by quantum Drinfeld-Sokolov reduction from $V^k(sl_3)$.

- \mathcal{W}^k is generated by the fields T, J, G^+ , G^-
- we choose a new Virasoro vector

$$L(z) = T(z) + \frac{1}{2}DJ(z)$$

• the fields L, J, G^+ , G^- satisfy commutation relations:

$$[J(m), J(n)] = \frac{2k+3}{3}m\delta_{m+n,0}, \quad [J(m), G^{\pm}(n)] = \pm G^{\pm}(m+n),$$

 $[L(m), J(n)] = -nJ(m+n) - \frac{(2k+3)(m+1)m}{6}\delta_{m+n,0},$

 $[L(m), G^{+}(n)] = -nG^{+}(m+n), \quad [L(m), G^{-}(n)] = (m-n)G^{-}(m+n),$ $[G^{+}(m), G^{-}(n)] = 3(J^{2})(m+n) + (3(k+1)m - (2k+3)(m+n+1))J(m+n) - (k+3)L(m+n) + \frac{(k+1)(2k+3)(m-1)m}{2}\delta_{m+n,0}.$

Smith-type algebra

Let $g(x, y) \in \mathbb{C}[x, y]$ be an arbitrary polynomial. Associative algebra R(g) of **Smith type** is generated by $\{E, F, X, Y\}$ such that Y is a central element and the following relations hold:

$$XE - EX = E$$
, $XF - FX = -F$, $EF - FE = g(X, Y)$.

• R(g) is a certain generalization of $U(sl_2)!$

Structure of the Zhu algebra $A(W^k)$

Denote $E = [G^+]$, $F = [G^-]$, X = [J], $Y = [\omega]$. Let R(g) be the Smith-type algebra generated by $\{E, F, X, Y\}$, with

$$g(x,y) = -(3x^2 - (2k+3)x - (k+3)y).$$

Then the Zhu algebra $A(\mathcal{W}^k)$ associated to the Bershadsky-Polyakov algebra \mathcal{W}^k is isomorphic to a certain quotient of the Smith algebra R(g).

Irreducible W_k -modules for integer levels k

Let L(x, y) be the irreducible highest weight W_k -module of weight $(x, y) \in \mathbb{C}^2$.

vectors

$$(G^{+}(-1))^{n}\mathbb{1}, (G^{-}(-2))^{n}\mathbb{1}$$

are singular in \mathcal{W}^k for n = k + 2, where $k \in \mathbb{Z}$.

Necessary condition for W_k -modules

Let $k \in \mathbb{Z}$, $k \ge -1$, $(x, y) \in \mathbb{C}^2$. Then we have:

(i) The set of equivalency classes of irreducible ordinary \mathcal{W}_k –modules is contained in the set

$$S_k = \{ L(x, y) \mid h_i(x, y) = 0, \ 1 \le i \le k+2 \}.$$

(ii) Every irreducible \mathcal{W}_k –module in the category $\mathcal O$ is an ordinary module.

• question: are modules from the set \mathcal{S}_k indeed \mathcal{W}_k -modules?

Conjecture

The set $\{L(x,y) \mid (x,y) \in \mathcal{S}_k\}$ is the set of all irreducible ordinary \mathcal{W}_k —modules.

We prove this conjecture for k=-1 and k=0, and classify all modules in the category \mathcal{O} .

References

- 1. D. Adamović and A. Kontrec, *Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels*, J. Algebra Appl., 20:2150102, 2021.
- 2. T. Arakawa, *Rationality of Bershadsky-Polyakov vertex algebras*, Comm. Math. Phys., 323:627-633, 2013