The Correction Factors in Artin Type Problems

Milad Fakhari
Alberta Number Theory Days XIII

November 6, 2021

History

- Gauss; The largest period of the decimal expansion of $1 / p$.

Example

$1 / 7$ has period length $6: \frac{1}{7}=0.142857142857 \ldots$
$1 / 11$ has period length of only 2 : $\frac{1}{11}=0.0909 \ldots$

- The largest period occurs if and only if 10 has order $p-1 \bmod p$.
- We may study primes p such that a given integer a is a primitive root $\bmod p$ i.e., $\langle\operatorname{amod} p\rangle=\mathbb{F}_{p}^{\times}$.

History

- In 1927, Emil Artin conjectured that for a non-zero integer $a \neq \pm 1$, the density of primes p such that a is a primitive root modulo p is

$$
A_{a}=\prod_{q \text { prime }}\left(1-\frac{1}{\left[K_{q}: \mathbb{Q}\right]}\right)
$$

Here $K_{q}=\mathbb{Q}\left(\zeta_{q}, \sqrt[q]{a}\right)$.

- Unexpected results appeared in calculations done by D. H. Lehmer and E. Lehmer in 1957.

History

- To deal with the discrepancies, Artin introduced a correction factor.

Conjecture (Emil Artin)

The conjectured density is $\delta_{a}=E(D) \cdot A_{a}$ with

$$
E(D)=1-\mu(|D|) \prod_{q \mid 2 D} \frac{1}{\left[K_{q}: \mathbb{Q}\right]-1}
$$

when $D=\operatorname{disc}\left(K_{2} / \mathbb{Q}\right) \equiv 1(\bmod 4)$. Otherwise $E(D)=1$.

History

Lemma

The integer a is a primitive root modulo p if and only if p does not split completely in K_{q} for all primes $q \mid p-1$.

- In 1967, by the Chebotarev density theorem, Hooley proved under GRH

$$
\delta_{a}=\sum_{n=1}^{\infty} \frac{\mu(n)}{\left[K_{n}: \mathbb{Q}\right]} .
$$

- We call a problem an Artin type problem if we can tackle it by Hooley's method.

Artin Type Problems

Cyclicity Problem (Serre)

Find an asymptotic formula for the number of primes $p \leq x$ for which the group of rational points modulo p of a given elliptic curve is cyclic.

- In 1976, J. P. Serre proved, under GRH,

$$
\delta_{E}=\sum_{n=1}^{\infty} \frac{\mu(n)}{[\mathbb{Q}(E[n]): \mathbb{Q}]} .
$$

Artin Type Problems

Titchmarsh Divisor Problem attached to a family of Kummer fields:

- $\tau_{a}(p):=\#\left\{n \in \mathbb{N} ; p\right.$ splits completely in $\left.K_{n}=\mathbb{Q}\left(\zeta_{n}, a^{1 / n}\right)\right\}$.

Theorem (A. Felix and R. Murty, 2012)
Under GRH, we have

$$
\sum_{p \leq x} \tau_{a}(p) \sim\left(\sum_{n \geq 1} \frac{1}{\left[K_{n}: \mathbb{Q}\right]}\right) \cdot \operatorname{li}(x)
$$

as $x \rightarrow \infty$.

- We can consider primes p lie in a given arithmetic progression.

Goals

- The goal of this talk is to construct a method to find the product formula for the summations appear in the Artin type problems.
- We first study the character sums method introduced by Lenstra, Moree, Stevenhagen.
- Modify this method in an effective way to cover more Artin type problems such as Titchmarsh Divisor problem and Titchmarsh Divisor problem for primes in a given arithmetic progression.

Character Sums Method

Lenstra, Moree, Stevenhagen (2014).

- Let $G=\lim _{\leftrightarrows} G(n)$ and $A=\lim _{\leftrightarrows} A(n)$ with the exact sequence

$$
1 \longrightarrow G \xrightarrow{r} A \xrightarrow{\chi} \mu_{2} \longrightarrow 1 .
$$

- Let $A=\prod_{p} A_{p}$, where $A_{p}=\underset{\leftarrow}{\lim } A\left(p^{i}\right)$.
- A is equipped with a normalized Haar measure $\nu_{A}=\prod_{p} \nu_{A_{p}}$.
- Suppose S_{p} has positive measure in A_{p} and $S=\prod_{p} S_{p} \subset A$.

Theorem (Lenstra-Moree-Stevenhagen, 2014)

$$
\frac{\nu_{A}(G \cap S)}{\nu_{A}(G)}=\left(1+\frac{1}{\nu_{A}(S)} \int_{S} \chi d \nu_{A}\right) \frac{\nu_{A}(S)}{\nu_{A}(A)}
$$

Modified Character Sums Method

- Let $G=\underset{\swarrow}{\lim } G(n)$ and $A=\underset{\leftrightarrows}{\lim } A(n)$ with the exact sequence

$$
1 \longrightarrow G \xrightarrow{r} A \xrightarrow{\chi} \mu_{m} \longrightarrow 1 .
$$

- Finding the product form of an absolutely convergence summation

$$
\sum_{n \geq 1} \frac{g(n)}{\# G(n)}
$$

where $g(n)$ is a real multiplicative function.
Theorem (F.)

$$
\sum_{n \geq 1} \frac{g(n)}{\# G(n)}=\sum_{i=0}^{m-1} \int_{A} \tilde{g} \chi^{i} d \nu_{A}
$$

where $\tilde{g}=\sum_{n \geq 1} g(n) 1_{\operatorname{ker} \varphi_{A, n}}$ with $\varphi_{A, n}: A \rightarrow A(n)$.

Modified Character Sums Method

Corollary (F.)

Let g be multiplicative, $A \cong \prod_{p} A_{p}$, where $A_{p}=\lim A\left(p^{i}\right)$. Assume $\chi=\prod_{p} \chi_{p}$, where $\chi_{p}: A_{p} \rightarrow \mu_{m}$. Let

$$
\tilde{g}_{p}=\sum_{k \geq 0} g\left(p^{k}\right) 1_{\mathrm{ker} \varphi_{p^{k}}}
$$

where $\varphi_{p^{k}}: A_{p} \rightarrow A\left(p^{k}\right)$, such that $\tilde{g}=\prod_{p} \tilde{g}_{p}$. If $\int_{A} \tilde{g} d \nu_{A} \neq 0$, then

$$
\sum_{n=1}^{\infty} \frac{g(n)}{\# G(n)}=\left(1+\sum_{i=1}^{m-1} \prod_{p} \frac{\int_{A_{p}} \tilde{g}_{p} \chi_{p}^{i} d \nu_{A_{p}}}{\int_{A_{p}} \tilde{g}_{p} d \nu_{A_{p}}}\right) \prod_{p} \int_{A_{p}} \tilde{g}_{p} d \nu_{A_{p}}
$$

Modified Character Sums Method

Next, we set some conditions on G and A such that as a result we get an explicit character χ.

- Let $G=\underset{\leftarrow}{\lim } \operatorname{Gal}\left(K_{n} / \mathbb{Q}\right)$.
- Let $\zeta_{n} \in K_{n}$ and $K_{2} \supset K$, where K is a quadratic field.
- Let

$$
A \xrightarrow{\gamma} \hat{\mathbb{Z}}^{\times} \quad \text { and } \quad A \xrightarrow{\psi} \mu_{2}
$$

with commutative diagrams:

Modified Character Sums Method

Theorem (F.)

There exists a non-trivial quadratic character $\chi: A \rightarrow \mu_{2}$ such that: (i) $r(G) \subset \operatorname{ker} \chi$.
(ii) $\chi=\prod_{p} \chi_{p}$, where χ_{p} is a certain quadratic character of A_{p}. Let $\varphi_{p^{k}}: A_{p} \rightarrow A\left(p^{k}\right)$ and $D=\operatorname{disc}_{\mathbb{Q}}(K)$. Then,
(iii) For odd primes $p \nmid D, \chi_{p}=1_{A_{p}}$.
(iv) If $p \mid D$ and p is odd, then $\chi_{p} \neq 1_{A_{p}}$ and $\left.\chi_{p}\right|_{\operatorname{ker} \varphi_{p^{k}}}=1_{\operatorname{ker} \varphi_{p^{k}}}$ for all $k \geq 1$.
(v) If D is odd, then $\chi_{2} \neq 1_{A_{2}}$ and $\left.\chi_{2}\right|_{\operatorname{ker} \varphi_{2^{k}}}=1_{\operatorname{ker} \varphi_{2^{k}}}$ for all $k \geq 1$. (vi) If $4 \| D$ and $\zeta_{4}=i \notin K_{2}$, then $\chi_{2} \neq 1_{A_{2}},\left.\chi_{2}\right|_{\text {ker } \varphi_{2}} \neq 1_{\operatorname{ker} \varphi_{2}}$, and $\left.\chi_{2}\right|_{\operatorname{ker} \varphi_{2^{k}}}=1_{\operatorname{ker} \varphi_{2^{k}}}$ for all $k \geq 2$.
(vii) If $8 \| D$ and $\zeta_{8} \notin K_{4}$, then $\chi_{2} \neq 1_{A_{2}},\left.\chi_{2}\right|_{\operatorname{ker} \varphi_{2^{k}}} \neq 1_{\operatorname{ker} \varphi_{2^{k}}}$ for $k=1,2$, and $\left.\chi_{2}\right|_{\operatorname{ker} \varphi_{2^{k}}}=1_{\operatorname{ker} \varphi_{2^{k}}}$ for all $k \geq 3$.

Modified Character Sums Method

Recall:

Corollary (F.)

Let g be multiplicative, $A \cong \prod_{p} A_{p}$, where $A_{p}=\lim A\left(p^{i}\right)$. Assume $\chi=\prod_{p} \chi_{p}$, where $\chi_{p}: A_{p} \rightarrow \mu_{m}$. Let

$$
\tilde{g}_{p}=\sum_{k \geq 0} g\left(p^{k}\right) 1_{\mathrm{ker} \varphi_{p^{k}}}
$$

where $\varphi_{p^{k}}: A_{p} \rightarrow A\left(p^{k}\right)$, such that $\tilde{g}=\prod_{p} \tilde{g}_{p}$. If $\int_{A} \tilde{g} d \nu_{A} \neq 0$, then

$$
\sum_{n=1}^{\infty} \frac{g(n)}{\# G(n)}=\left(1+\sum_{i=1}^{m-1} \prod_{p} \frac{\int_{A_{p}} \tilde{g}_{p} \chi_{p}^{i} d \nu_{A_{p}}}{\int_{A_{p}} \tilde{g}_{p} d \nu_{A_{p}}}\right) \prod_{p} \int_{A_{p}} \tilde{g}_{p} d \nu_{A_{p}} .
$$

Modified Character Sums Method

Corollary (F.)

With assumptions of the above corollary, let G and A be as described above. If $m=2, \zeta_{4} \notin K_{2}, \zeta_{8} \notin K_{4}$, and $\int_{A} \tilde{g} d \nu_{A} \neq 0$, then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{g(n)}{\# G(n)}= \\
& \left(1+\prod_{p \mid 2 D} \frac{\sum_{k \geq \ell} g\left(p^{k}\right) / \# A\left(p^{k}\right)}{1+\sum_{k \geq 1} g\left(p^{k}\right) / \# A\left(p^{k}\right)}\right) \prod_{p}\left(1+\sum_{k \geq 1} \frac{g\left(p^{k}\right)}{\# A\left(p^{k}\right)}\right)
\end{aligned}
$$

where in the product on primes dividing $2 D$, we have $\ell=1$ for odd primes and for prime 2 we have $\ell=1$ if D is odd, $\ell=2$ if $4 \| D$, and $\ell=3$ if $8|\mid D$.

Kummer Family

- Let $K_{n}=\mathbb{Q}\left(\sqrt[n]{a}, \zeta_{n}\right)$, where $|a|$ is not a perfect power.
- Let

$$
r: G \rightarrow A=\left\{\left(\begin{array}{ll}
1 & 0 \\
b & d
\end{array}\right) ; b \in \hat{\mathbb{Z}} \text { and } d \in \hat{\mathbb{Z}}^{\times}\right\} .
$$

Thus,

$$
\sum_{n=1}^{\infty} \frac{g(n)}{\# G(n)}=
$$

$$
\left(1+\prod_{p \mid 2 D} \frac{\sum_{k \geq \ell} g\left(p^{k}\right) / p^{2 k-1}(p-1)}{1+\sum_{k \geq 1} g\left(p^{k}\right) / p^{2 k-1}(p-1)}\right) \prod_{p}\left(1+\sum_{k \geq 1} \frac{g\left(p^{k}\right)}{p^{2 k-1}(p-1)}\right)
$$

where $\ell=1$ for odd primes and for prime 2 we have $\ell=1$ if D is odd, $\ell=2$ if $4 \| D$, and $\ell=3$ if $8 \| D$.

Serre Family

- Let $K_{n}=\mathbb{Q}(E[n])$ be the n-division field of an elliptic curve E.
- Let

$$
\rho_{E}: \operatorname{Gal}\left(\mathbb{Q}^{\text {tor }} / \mathbb{Q}\right) \rightarrow \mathrm{GL}_{2}(\hat{\mathbb{Z}})=\underset{\longleftarrow}{\lim } \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})
$$

- We name an elliptic curve a Serre curve if $\left[\mathrm{GL}_{2}(\hat{\mathbb{Z}}): \operatorname{Img} \rho_{E}\right]=2$.

Therefore, for a Serre curve, we have

$$
\begin{array}{r}
\sum_{n=1}^{\infty} \frac{g(n)}{\# G(n)}=\left(1+\prod_{p \mid 2 D} \frac{\sum_{k \geq \ell} g\left(p^{k}\right) / p^{4 k-3}\left(p^{2}-1\right)(p-1)}{1+\sum_{k \geq 1} g\left(p^{k}\right) / p^{4 k-3}\left(p^{2}-1\right)(p-1)}\right) \\
\prod_{p}\left(1+\sum_{k \geq 1} \frac{g\left(p^{k}\right)}{p^{4 k-3}\left(p^{2}-1\right)(p-1)}\right)
\end{array}
$$

where $\ell=1$ for odd primes and for prime 2 we have $\ell=1$ if D is odd, $\ell=2$ if $4 \| D$, and $\ell=3$ if $8 \| D$.

Generalization

- $B=\underset{\varliminf}{\lim } B(n) \cong \prod_{p} B_{p}$ with a surjective homomorphism from A to B.

Theorem (F.)

Let $\chi: A \rightarrow \mu_{2}$ be a surjective continuous homomorphism. Let $H \subset B$ and $H(n)$ be the projection of H in $B(n)$. Let $\tilde{g}=\sum_{n \geq 1} g(n) 1_{\varphi_{A, n}^{-1}(H(n))}$ where $\varphi_{A, n}: A \rightarrow B(n)$. If g is real multiplicative, $A \cong \prod_{p} A_{p}$, $\chi=\prod_{p} \chi_{p}, \tilde{g}=\prod_{p} \tilde{g}_{p}$, and $\int_{A} \tilde{g} d \nu_{A} \neq 0$, then

$$
\frac{1}{\nu_{A}(\operatorname{ker} \chi)} \sum_{n \geq 1} g(n) \nu_{A}\left(\varphi_{A, n}^{-1}(H(n)) \cap \operatorname{ker} \chi\right)=
$$

$$
\left(\prod_{p} \int_{A_{p}} \tilde{g}_{p} d \nu_{A_{p}}\right)\left(1+\prod_{p} \frac{\int_{A_{p}} \tilde{g}_{p} \chi_{p} d \nu_{A_{p}}}{\int_{A_{p}} \tilde{g}_{p} d \nu_{A_{p}}}\right)
$$

where $\tilde{g}_{p}=\sum_{k \geq 0} g\left(p^{k}\right) 1_{\varphi_{p^{k}}^{-1}\left(H\left(p^{k}\right)\right)}$.

Application

- In the Titchmarsh Divisor Problem attached to a Kummer family for primes in a given arithmetic progression $(p \equiv \ell(\bmod f))$, we have

$$
\sum_{p \leq x} \tau_{a, f, \ell}(p) \sim \sum_{n \geq 1} \frac{c_{\ell}(n)}{\left[K_{n}\left(\zeta_{f}\right): \mathbb{Q}\right]} \cdot \operatorname{li}(x)
$$

as $x \rightarrow \infty$, where

$$
c_{\ell}(n)= \begin{cases}1 & \left.\sigma_{\ell}\right|_{K_{n} \cap \mathbb{Q}\left(\zeta_{f}\right)}=\operatorname{ld}_{K_{n} \cap \mathbb{Q}\left(\zeta_{f}\right)} \\ 0 & \text { otherwise }\end{cases}
$$

- To apply the generalization, define the homomorphisms

$$
\varphi_{A, n}: A \rightarrow A(n) \times(\hat{\mathbb{Z}} / f \hat{\mathbb{Z}})^{\times},
$$

and let

$$
H(n)=\left\{\left(\mathcal{I}_{2 \times 2}(\mathbb{Z} / n \mathbb{Z}), \bar{\ell}\right)\right\} \subset A(n) \times(\hat{\mathbb{Z}} / f \hat{\mathbb{Z}})^{\times}
$$

Thank You

Reducing the Restriction Appeared on a

The Galois elements in $G(n)$ are identified by their actions on the multiplicative group $R_{n}=\left\{\alpha \in \overline{\mathbb{Q}}^{\times} ; \alpha^{n} \in\langle a\rangle\right\}$. This yields the injective homomorphisms

$$
r_{n}: G(n) \rightarrow A(n):=\operatorname{Aut}_{\mathbb{Q}^{\times} \cap R_{n}}\left(R_{n}\right)
$$

Thus, we have the injective homomorphism

$$
r: G=\lim _{\leftrightarrows} G(n) \rightarrow A=\lim A(n) .
$$

