A (Pandemic Friendly) Handshake with Multi-Vectored Jacobi Forms

Brandon Gill

University of Alberta

BIRS, Alberta Number Theory Days XIII, Nov 6, 2021

- 2 Vector-Valued Modular Forms (VVMFs)
- 3 Jacobi Forms (JFs)
- 4 Multi-Vectored Jacobi Forms (MVJFs)
- 5 Current Results
- 6 Future/Ongoing work

2/31

1 General Philosophy and Motivation

- 2 Vector-Valued Modular Forms (VVMFs)
- 3 Jacobi Forms (JFs)
- 4 Multi-Vectored Jacobi Forms (MVJFs)
- 5 Current Results
- 6 Future/Ongoing work

3/31

So what's the Goal?

Get to a definition of Multi-Vectored Jacobi Forms with some accompanying motivation for such a definition.

And how are we going to get there?

-Motivated definitions

And how are we going to get there?

- -Motivated definitions
- -Examples

And how are we going to get there?

- -Motivated definitions
- -Examples
- -Direct comparisons of these definitions

5/31

And how are we going to get there?

- -Motivated definitions
- -Examples
- -Direct comparisons of these definitions
- -Some early results

General Philosophy and Motivation Vector-Valued Modular Forms (VVMFs) Jacobi Forms (JFs)

Jacobi Forms (JFS) Multi-Vectored Jacobi Forms (MVJFs) Current Results Future/Ongoing work

Overarching motivation

Reconstruction!

Reconstruction is the process by which one rebuilds a VOA from a pre-determined category of representations.

Reconstruction is the process by which one rebuilds a VOA from a pre-determined category of representations.

This is conjectured to be possible in all cases i.e. for all modular tensor categories.

- General Philosophy and Motivation
- 2 Vector-Valued Modular Forms (VVMFs)
- Jacobi Forms (JFs)
- 4 Multi-Vectored Jacobi Forms (MVJFs)
- 5 Current Results
- 6 Future/Ongoing work

The first definition

Definition

A weakly holomorphic Vector-Valued Modular Form (VVMF) of weight k, multiplier ρ , and rank d is a map $\phi : \mathbb{H} \longrightarrow \mathbb{C}^d$ such that

$$\phi\left(rac{a au+b}{f au+g}
ight)=
ho(\gamma)(f au+g)^k\phi(au)$$

 $orall \gamma = egin{pmatrix} a & b \ f & g \end{pmatrix} \in SL_2(\mathbb{Z}) + ext{small technical assumptions}$

Note ρ is a representation of $SL_2(\mathbb{Z})$, and each component ϕ_i is meromorphic in \mathbb{H}

What might some examples be?

Example

The Jacobi theta functions $\Theta = (\theta_2, \theta_3, \theta_4)^t$ these obey all the necessary transformation laws including for example

$$\Theta\left(rac{-1}{ au}
ight) = \sqrt{rac{ au}{ au}} egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix} \Theta(au).$$

In this case we have weight $\frac{-1}{2}$, rank 3, and multiplier which is consistent with the above

- General Philosophy and Motivation
- 2 Vector-Valued Modular Forms (VVMFs)
- 3 Jacobi Forms (JFs)
- 4 Multi-Vectored Jacobi Forms (MVJFs)
- 5 Current Results
- 6 Future/Ongoing work

The Second definition

Definition

A weakly holomorphic Jacobi form (JF) of weight k and index m is a map $\varphi : \mathbb{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ such that

$$\varphi\left(\frac{a\tau+b}{f\tau+g},\frac{z}{f\tau+g}\right) = (f\tau+g)^{k} \exp\left(2\pi im\frac{fz^{2}}{f\tau+g}\right)\varphi(\tau,z)$$
$$\varphi(\tau,z+\lambda\tau+\mu) = \exp\left(-2\pi im(\lambda^{2}\tau+2\lambda z)\right)\varphi(\tau,z)$$
$$\forall \gamma \in SL_{2}(\mathbb{Z}), \ (\lambda,\mu) \in \mathbb{Z}^{2} + \text{ small technical assumptions}$$

Example again!

Example

The Wierstrass- \wp function of the lattice given by $L = \mathbb{Z} + \tau \mathbb{Z}$, that is,

$$\wp(\tau,z) = rac{1}{z^2} + \sum_{\substack{\omega \in \mathbb{Z} + \mathbb{Z} au \ \omega
eq 0}} \Big(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}\Big).$$

which turns out to be a JF of weight 2 and index 0.

- General Philosophy and Motivation
- 2 Vector-Valued Modular Forms (VVMFs)
- 3 Jacobi Forms (JFs)
- Multi-Vectored Jacobi Forms (MVJFs)
- 5 Current Results
- 6 Future/Ongoing work

a few preliminaries

Before we define a Multi-Vectored Jacobi Form (MVJF) we need to define a few smaller objects first. Let M be a positive definite lattice of rank r. Additionally let

$$\mathbb{V}:=\mathbb{C}\otimes_{\mathbb{Z}}M,\ Jac_{M}:=SL_{2}(\mathbb{Z})\ltimes M^{2}$$

Lastly let $R = (\rho, \rho')$ be a unitary representation of Jac_M on \mathbb{C}^D with T diagonal.

The third and final definition

Definition

A weakly holomorphic MVJF X of index M, weight k, rank r, multiplier R, and dimension D is a map $X : \mathbb{H} \times \mathbb{V} \longrightarrow \mathbb{C}^D$ such that

$$\mathbb{X}\Big(\frac{a\tau+b}{f\tau+g},\frac{1}{f\tau+g}\vec{z}\Big)(f\tau+g)^{-k}exp\Big(-\pi i\frac{f\vec{z}\bullet\vec{z}}{f\tau+g}\Big)=\rho(\gamma)\mathbb{X}(\tau,z)$$

$$\mathbb{X}(\tau, \vec{z} + \vec{\lambda}\tau + \vec{\mu}) exp\big(\pi i (\vec{\lambda} \bullet \vec{\lambda}\tau + 2\vec{\lambda} \bullet \vec{z})\big) = \rho'(X) \mathbb{X}(\tau, z)$$

 $\forall (\gamma, X) \in Jac_M + \text{small technical assumptions}$

Transformation law reminder

Recall

For VVMFs we have

$$\phiigg(rac{{\sf a} au+{\sf b}}{f au+{\sf g}}igg)=
ho(\gamma)(f au+{f g})^k\phi(au)$$

Recall

For JFs we have

$$\varphi\left(\frac{a\tau+b}{f\tau+g},\frac{z}{f\tau+g}\right) = (f\tau+g)^{k} \exp\left(2\pi i m \frac{fz^{2}}{f\tau+g}\right) \varphi(\tau,z)$$
$$\varphi(\tau,z+\lambda\tau+\mu) = \exp\left(-2\pi i m (\lambda^{2}\tau+2\lambda z)\right) \varphi(\tau,z)$$

Examples again again!

First off this is a generalization, thus importantly the following are examples

Examples again again!

First off this is a generalization, thus importantly the following are examples

Example

all VVMFs, are examples of MVJFs by taking $\mathbb{X}(\tau, \vec{0})$ where ρ is given by the multiplier of the VVMF.

Examples again again!

First off this is a generalization, thus importantly the following are examples

Example

all VVMFs, are examples of MVJFs by taking $\mathbb{X}(\tau, \vec{0})$ where ρ is given by the multiplier of the VVMF.

Example

All JFs are MVJFs with $D = \{1\}$, $\rho = \rho' = 1$, and $M = \sqrt{2m\mathbb{Z}}$.

Even more examples (interesting ones this time)

Example

For a positive definite lattice M of rank r then the collection of lattice theta functions $\vec{\Theta}(\tau, \vec{z})$ with components given by

$$\Theta_{[\vec{v}]} = \frac{1}{\left(\eta(\tau)\right)^r} \sum_{\vec{\lambda} \in [\vec{v}]} \exp\left(\pi i (\tau \vec{\lambda} \bullet \vec{\lambda} + 2\vec{\lambda} \bullet \vec{z})\right)$$

with a component for each $[\vec{v}] \in \stackrel{M^*}{/}_M$. Such a MVJF has index M weight 0, rank r, multiplier R (given next), and dimension $\stackrel{M^*}{/}_M$.

19/31

The representation R

The representation $R = (\rho, \rho')$ is given by

$$\rho'(\vec{\lambda}, 0) = \sigma_{\vec{\lambda}}, \ \rho'(0, \vec{\mu}) = \left[exp(2\pi i \vec{v} \bullet \vec{\mu}) \right]_{[\vec{v}], [\vec{v}]}$$
$$\rho(T) = \left[e^{\frac{-2\pi i r}{24}} exp(\pi i \vec{v} \bullet \vec{v}) \right]_{[\vec{v}], [\vec{v}]}$$
$$\rho(S) = \left[|\overset{M^{\star}}{\swarrow}_{\mathcal{M}}|^{\frac{-1}{2}} exp(-2\pi i \vec{\beta} \bullet \vec{\gamma}) \right]_{[\beta], [\gamma]}$$

- General Philosophy and Motivation
- 2 Vector-Valued Modular Forms (VVMFs)
- 3 Jacobi Forms (JFs)
- 4 Multi-Vectored Jacobi Forms (MVJFs)

5 Current Results

6 Future/Ongoing work

Currently proven results relating to MVJFs include:

Currently proven results relating to MVJFs include:

-VOA characters are examples

22/31

Currently proven results relating to MVJFs include:

- -VOA characters are examples
- -Existence of appropriate notions of $\bigoplus,$ and \bigotimes for MVJFs

22/31

Currently proven results relating to MVJFs include:

- -VOA characters are examples
- -Existence of appropriate notions of $\bigoplus,$ and \bigotimes for MVJFs
- -Existence of appropriate notions of restriction (sub lattice) and subform (sub representation)

Currently proven results relating to MVJFs include:

- -VOA characters are examples
- -Existence of appropriate notions of \bigoplus , and \bigotimes for MVJFs
- -Existence of appropriate notions of restriction (sub lattice) and subform (sub representation)
- -The "Bridging Theorem"

The inspiration

Theorem (Eichler, Zagier '85)

 \exists an isomorphism between the space of JFs of index m, and weight k and the space of VVMFs satisfying certain properties (outlined in their book on page 57-59)

The analogue

Theorem (The "Bridging Theorem" Gannon,G. 2021)

 \exists an isomorphism between the space of weakly holomorphic MVJFs of index M, and weight k and the space of VVMFs of weight k satisfying certain technical properties.

- General Philosophy and Motivation
- 2 Vector-Valued Modular Forms (VVMFs)
- 3 Jacobi Forms (JFs)
- 4 Multi-Vectored Jacobi Forms (MVJFs)
- 5 Current Results
- 6 Future/Ongoing work

25/31

Future and ongoing research pertaining to MVJFs includes:

-Finding differential operators on the space of MVJFs

26/31

- -Finding differential operators on the space of MVJFs
- -Establishing and proving corollaries to the results mentioned above

- -Finding differential operators on the space of MVJFs
- -Establishing and proving corollaries to the results mentioned above
- -Working out complete non-trivial examples especially for the characters of VOAs

- -Finding differential operators on the space of MVJFs
- -Establishing and proving corollaries to the results mentioned above
- -Working out complete non-trivial examples especially for the characters of VOAs
- -Establishing a module structure (or even structures) for these MVJFs

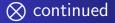
- -Finding differential operators on the space of MVJFs
- -Establishing and proving corollaries to the results mentioned above
- -Working out complete non-trivial examples especially for the characters of VOAs
- -Establishing a module structure (or even structures) for these MVJFs
- -And more!

For a pair of MVJFs with corresponding weight, rank, index, multiplier, and dimension then we can define

$$\mathbb{X}_1 \otimes \mathbb{X}_2 : \mathbb{H} \times (\mathbb{V}_1 \otimes \mathbb{V}_2) \longrightarrow \mathbb{C}^{D_1 \times D_2}$$

which are defined component wise for $[\vec{v}] = [\vec{\alpha}] \oplus [\vec{\beta}]$, which are given by

$$\mathbb{X}_{[\vec{v}]} = \mathbb{X}_{[\alpha,\beta]} := \mathbb{X}_{[\alpha]} \mathbb{X}_{[\beta]}$$



$$\mathbb{X}_{[lpha,eta]}(au,ec{z}):=\mathbb{X}_{[lpha]}(au,ec{z_1})\mathbb{X}_{[eta]}(au,ec{z_2}), \ egin{bmatrix} ec{z_1} \ ec{z_2} \end{bmatrix}=ec{z}$$

where the fact that $M_1 \oplus M_2$ is an orthogonal direct sum allows the whole process to work. Finally resulting in the concrete description...

I promise this is it

$$\mathbb{X}_{1} \bigotimes \mathbb{X}_{2} := \begin{bmatrix} \mathbb{X}_{[\alpha_{1}]} \mathbb{X}_{2} \\ \vdots \\ \mathbb{X}_{[\alpha_{s}]} \mathbb{X}_{2} \end{bmatrix} = \begin{bmatrix} \mathbb{X}_{[\alpha_{1}]} \mathbb{X}_{[\beta_{1}]} \\ \vdots \\ \mathbb{X}_{[\alpha_{2}]} \mathbb{X}_{[\beta_{1}]} \\ \vdots \\ \mathbb{X}_{[\alpha_{s}]} \mathbb{X}_{[\beta_{t}]} \end{bmatrix} = \begin{bmatrix} \mathbb{X}_{[\alpha_{1},\beta_{1}]} \\ \vdots \\ \mathbb{X}_{[\alpha_{2},\beta_{1}]} \\ \vdots \\ \mathbb{X}_{[\alpha_{s},\beta_{t}]} \end{bmatrix}$$

where $ho_1 \otimes
ho_2$ and $ho_1' \otimes
ho_2'$ act on $\mathbb{X}_1 \bigotimes \mathbb{X}_2$

Questions?

Thanks for listening!