Representation problem by Quadratic Forms

Yash Totani

Alberta Number Theory Days XIII

November 6, 2021

Outline

Introduction and History

Outline

- Introduction and History
- Binary Quadratic Forms

Outline

- Introduction and History
- Binary Quadratic Forms
- Triangular Numbers

Quadratic forms

Definition

A Quadratic form in n variables is a homogenous polynomial of degree 2 in x_1, x_2, \cdots, x_n .

An integral binary quadratic form is given by

$$ax^2 + bxy + cy^2$$

for integers a, b an c.

- The form is called primitive if a, b and c are relatively prime.
- The discriminant of the above form is defined to be $b^2 4ac$.
- Two binary quadratic forms $Q_1(x,y)$ and $Q_2(x,y)$ are said to be equivalent if

$$Q_1(x,y) = Q_2(px + qy, rx + sy)$$

for some p, q, r, s such that ps - qr = 1.

Binary quadratic forms

• For a negative discriminant, a primitive form $Q(x, y) = ax^2 + bxy + cy^2$ is said to be a reduced form if

$$|b| \le a \le c$$
, and $b \ge 0$ if either $|b| = a$ or $a = c$.

• For $D \equiv 3 \pmod{4}$, we define the principal form to be

$$Q = x^2 + xy + \frac{(1+D)}{4}y^2.$$

Class number

Definition

For a negative discriminant D, the class number h(D) is defined to be the number of equivalence classes of binary quadratic forms of discriminant D.

- The class number h(D) is equal to the number of reduced forms of discriminant D.
- The class number h(D) is finite. For example, h(-23) = 3.

Triangular numbers

Definition

The n^{th} triangular number T_n is defined as $T_n = \frac{n(n+1)}{2}$. The first few triangular numbers are $0, 1, 3, 6, \cdots$.

Suppose

$$n = \frac{x_1(x_1+1)}{2} + \frac{x_2(x_2+1)}{2} + \cdots + \frac{x_k(x_k+1)}{2}.$$

Then,

$$8n + k = (2x_1 + 1)^2 + (2x_2 + 1)^2 + \cdots + (2x_k + 1)^2.$$

Representation problem

Theorem (Fermat)

An odd prime can be p can be expressed as:

$$p = x^2 + y^2$$

for integers x and y iff $p \equiv 1 \pmod{4}$.

Theorem (Jacobi)

The number of representations $r_4(n)$ of an integer n as a sum of 4 squares is given by

$$r_4(n) = 8\sigma_1(n) - 32\sigma_1(n/4),$$

where $\sigma_1(n)$ is the sum of divisors of n.

Theta function of a quadratic form

• Let a(n, Q) be the number of representations of n by the quadratic form Q.

Definition

For $q=e^{2\pi iz}$, the theta function associated to Q is defined to be

$$heta_{Q}(z) = \sum_{m,n \in \mathbb{Z}} q^{Q(m,n)} = \sum_{n=0}^{\infty} a(n,Q)q^{n}.$$

Modular forms

Definition

A function f on the upper half plane \mathbb{H} is said to be a modular form of weight k, level N, and character χ if

(I) f is holomorphic on \mathbb{H} .

(II)
$$f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^k f(z)$$
 for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$ and for any $z \in \mathbb{H}$, where

$$\Gamma_0(N) = \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in \Gamma : c \equiv 0 \pmod{N}
ight\}.$$

(III) f is holomorphic at each cusp of $\Gamma_0(N)$.

- $M_k(\Gamma_0(N), \chi)$ denotes the space of weight k modular forms on $\Gamma_0(N)$ with character χ .
- A modular form $f \in M_k(\Gamma_0(N), \chi)$ is said to be a *cusp form* if f vanishes at every cusp of $\Gamma_0(N)$.
- The space of cusp forms in $M_k(\Gamma_0(N),\chi)$ is denoted by $S_k(\Gamma_0(N),\chi)$.

Eisenstein space

• The space $M_k(\Gamma_0(N), \chi)$ can be written as a direct sum. Thus,

$$M_k(\Gamma_0(N),\chi) = E_k(\Gamma_0(N),\chi) \oplus S_k(\Gamma_0(N),\chi),$$

where $E_k(\Gamma_0(N), \chi)$ is called the Eisenstein space of level N and character χ .

• Let $f \in M_k(\Gamma_0(N), \chi)$. Then, f can be written as a sum

$$f = e + s$$
,

where, $e \in E_k(\Gamma_0(N), \chi)$ and $s \in S_k(\Gamma_0(N), \chi)$.

Eta products

Definition

The Dedekind eta function is defined as

$$\eta(z) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n), \quad q = e^{2\pi i z}.$$

• An Eta product is given by

$$f(z) = \prod_{m} \eta(mz)^{a_m}, m \in \mathbb{Z}^+, a_m \in \mathbb{Z}.$$

• The least common multiple N of all the m's is called the level of f. We may also write,

$$f(z) = \prod_{m \mid N} \eta(mz)^{a_m}.$$

A criterion of Gordon, Hughes and Newman

Theorem

Let $f(z) = \prod_{m|N} \eta(mz)^{a_m}$ be an eta product with $k = \frac{1}{2} \sum_{m|N} a_m \in \mathbb{Z}$, with the additional properties that

$$\sum_{m|N} m a_m \equiv 0 \pmod{24}$$

and

$$\sum_{m|N} \frac{N}{m} a_m \equiv 0 \pmod{24},$$

Then

$$f(z) \in M_k(\Gamma_0(N), \chi),$$

where, the character χ is defined by $\chi(d) = \left(\frac{(-1)^k \prod_{m|N} m^{a_m}}{d}\right)$.

Binary quadratic forms

Fred van der Blij's theorem

Theorem (Fred van der Blij, 1952)

Let a(n, Q) be the number of representations of n by a quadratic form Q. Then

$$a(n, Q_1) = \frac{2}{3} \sum_{d|n} \left(\frac{d}{23}\right) + \frac{4}{3}t(n)$$

and

$$a(n, Q_2) = a(n, Q_3) = \frac{2}{3} \sum_{d|n} \left(\frac{d}{23}\right) - \frac{2}{3} t(n),$$

where $\left(\frac{\cdot}{23}\right)$ is the Legendre symbol mod 23, the quadratic forms $Q_i's$ of discriminant -23 are

$$Q_1 = x^2 + xy + 6y^2,$$

 $Q_2 = 2x^2 + xy + 3y^2,$
 $Q_3 = 2x^2 + xy - 3y^2,$

and

$$\sum_{n=1}^{\infty} t(n)q^n = q \prod_{n=1}^{\infty} (1-q^n)(1-q^{23n}).$$

Class number 3

There are 16 values of D > 0 such that h(-D) = 3.

D	Q_1	Q_2	Q_3	d_1	d_2
23	$x^2 + xy + 6y^2$	$2x^2 + xy + 3y^2$	$2x^2 - xy + 3y^2$	2	1
31	$x^2 + xy + 8y^2$	$2x^2 + xy + 4y^2$	$2x^2 - xy + 4y^2$	2	1
59	$x^2 + xy + 15y^2$	$3x^2 + xy + 5y^2$	$3x^2 - xy + 5y^2$	2	1
83	$x^2 + xy + 21y^2$	$3x^2 + xy + 7y^2$	$3x^2 - xy + 7y^2$	2	1
107	$x^2 + xy + 27y^2$	$3x^2 + xy + 9y^2$	$3x^2 - xy + 9y^2$	2	1
139	$x^2 + xy + 35y^2$	$5x^2 + xy + 7y^2$	$5x^2 - xy + 7y^2$	2	1
211	$x^2 + xy + 53y^2$	$5x^2 + 3xy + 11y^2$	$5x^2 - 3xy + 11y^2$	2	1
283	$x^2 + xy + 71y^2$	$7x^2 + 5xy + 11y^2$	$7x^2 - 5xy + 11y^2$	4	3
307	$x^2 + xy + 77y^2$	$7x^2 + xy + 11y^2$	$7x^2 - xy + 11y^2$	2	1
331	$x^2 + xy + 83y^2$	$5x^2 + 3xy + 17y^2$	$5x^2 - 3xy + 17y^2$	4	3
379	$x^2 + xy + 95y^2$	$5x^2 + xy + 19y^2$	$5x^2 - xy + 19y^2$	2	1
499	$x^2 + xy + 125y^2$	$5x^2 + xy + 25y^2$	$5x^2 - xy + 25y^2$	2	1
547	$x^2 + xy + 137y^2$	$11x^2 + 5xy + 13y^2$	$11x^2 - 5xy + 13y^2$	2	1
643	$x^2 + xy + 161y^2$	$7x^2 + xy + 23y^2$	$7x^2 - xy + 23y^2$	4	3
883	$x^2 + xy + 221y^2$	$13x^2 + xy + 17y^2$	$13x^2 - xy + 17y^2$	2	1
907	$x^2 + xy + 227y^2$	$13x^2 + 9xy + 19y^2$	$13x^2 - 9xy + 19y^2$	2	1

Table: Values of D with h(-D)=3 and reduced forms Q_1 , Q_2 , Q_3 . Here, $d_1=\dim(M_1(\Gamma_0(D),\chi))$ and $d_2=\dim(S_1(\Gamma_0(D),\chi))$.

Generalisation of Fred van der Blij's result

Theorem (T.)

Let D>0 be such that h(-D)=3. Let Q_1,Q_2,Q_3 be the reduced binary quadratic forms, where Q_1 represents the principle form. Let a(n,Q) be the number of representations of n by the quadratic form Q. For $q=e^{2\pi iz}$ with $z\in \mathbb{H}$, let

$$F_D(z) = \frac{1}{2} \left(\sum_{a,b \in \mathbb{Z}} q^{Q_1(a,b)} - \sum_{a,b \in \mathbb{Z}} q^{Q_2(a,b)} \right) = \sum_{n=0}^{\infty} t(n)q^n.$$

Then F_D is a cusp form of weight 1, level D, character $\chi = \left(\frac{-D}{\cdot}\right)$ and t(1) = 1. Moreover,

$$a(n,Q_1) = \frac{2}{3} \sum_{d|n} \left(\frac{d}{D}\right) + \frac{4}{3}t(n)$$

and

$$a(n, Q_2) = a(n, Q_3) = \frac{2}{3} \sum_{d|n} \left(\frac{d}{D}\right) - \frac{2}{3} t(n).$$

The cusp part

• Using a result of Eholzer and Skoruppa, we have

$$F_D(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}, \quad q = e^{2\pi i z},$$

for some integers c(n) and for sufficiently small q.

• For D = 23, F. van der Blij proved that

$$F_{23}(z) = q \prod_{n=1}^{\infty} (1 - q^n)(1 - q^{23n}).$$

• Note that for $F_{23}(z)$, the coefficients c(n)'s are bounded.

The cusp part

Theorem (T.)

Let $D \neq 23$ be such that h(-D) = 3. Let Q_1, Q_2, Q_3 be the three reduced forms of discriminant -D, where Q_1 is the principal form. Let

$$F_D(z) = rac{1}{2} \left(\sum_{a,b \in \mathbb{Z}} q^{Q_1(a,b)} - \sum_{a,b \in \mathbb{Z}} q^{Q_2(a,b)}
ight).$$

Then the integers c(n) in the expansion

$$F_D(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}$$

are unbounded.

An analytic result

Lemma

Let $f(q) = \sum_{n=1}^{\infty} a_f(n)q^n$ be a holomorphic function on the upper half plane and $a_f(1) = 1$. Then the complex numbers c(n) in the expansion

$$f(q) = \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}$$

are unbounded if f has a zero on the upper half plane.

An analytic result

Lemma

Let $f(q) = \sum_{n=1}^{\infty} a_f(n)q^n$ be a holomorphic function on the upper half plane and $a_f(1) = 1$. Then the complex numbers c(n) in the expansion

$$f(q) = \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}$$

are unbounded if f has a zero on the upper half plane.

• This lemma is inspired by an exercise in Section 2.1.3 of Serre's monograph "Lectures on $N_X(p)$ ".

Triangular numbers

The Psi function

The Psi function is given by

$$\Psi(q) = \sum_{n=0}^{\infty} q^{T_n} = 1 + q + q^3 + q^6 + \cdots$$

• It is connected to $\delta_k(n)$ by

$$\Psi^k(q) = \sum_{n=0}^{\infty} \delta_k(n) q^n.$$

It has the product expression

$$\Psi(q)=q^{\frac{-1}{8}}\frac{\eta^2(q^2)}{\eta(q)},$$

where

$$\eta(q) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n).$$

Known results

- In a 1995 article, Ono, Robins, and Wahl describe formulas for $\delta_k(n)$ for k = 2, 3, 4, 6, 8, 10, 12, 24.
- For k = 4, they note that

$$q\Psi^4(q^2) = \sum_{n=0}^{\infty} \delta_4(n) q^{2n+1} \in M_2(\Gamma_0(4))$$

and observe that it is the Eisenstein series given by

$$\sum_{n=0}^{\infty} \sigma_1(2n+1)q^{2n+1}.$$

• In 2008, Atanasov et al. obtained formulas for $\delta_{4k}(n)$ in terms of a divisor function and the coefficients of a cusp form.

Generalised divisor function

Definition

The generalised divisor function is defined as

$$\sigma_{t,\chi,\psi}(n) = \sum_{d|n} \chi(d)\psi(n/d)d^t,$$

where χ and ψ are two Dirichlet characters and t is a non-negative integer.

- When χ_1 and χ_2 are both *trivial*, i.e., $\chi_1(n) = \chi_2(n) = 1$ for all integers n, this reduces to $\sigma_t(n) = \sum_{d|n} d^t$.
- The two generalised divisor functions we use are $\sigma_{t,\chi_1,\chi_0}(n)$ and $\sigma_{t,\chi_{-4},\chi_1}(n)$, where χ_0 principal Dirichlet character mod 4.
 - χ_1 principal Dirichlet character mod 1.
 - χ_{-4} Dirichlet character mod 4 taking the values $\chi_{-4}(1)=1$ and $\chi_{-4}(3)=-1$.

$\delta_{4k}(n)$

 We give a new proof of Atanasov et al.'s result, by employing a method due to Zafer Selcuk Aygin.

Theorem

For any positive k > 1, we have

$$\delta_{4k}(n) = \frac{1}{d_k} \sigma_{2k-1,\chi_1,\chi_0}(2n+k) + c(2n+k),$$

where

$$\sum_{n=1}^{\infty} c(n)q^n \in \mathrm{S}_{2k}(\Gamma_0(4))$$

is a cusp form and

$$d_k = -\frac{(-16)^k (4^k - 1) B_{2k}}{8k}$$

in which B_{2k} is the $2k^{th}$ Bernoulli number.

$$\delta_{4k+2}(n)$$

Theorem (T.)

For any positive k, we have

$$\delta_{4k+2}(n) = \frac{-(2k+1)}{2^{4k}B_{2k+1,\chi_{-4}}}\sigma_{2k,\chi_{-4},\chi_{1}}(4n+2k+1) + t(4n+2k+1),$$

where

$$\sum_{n=1}^{\infty} t(n)q^n \in \mathcal{S}_{2k+1}(\Gamma_0(8), \chi_{-4})$$

is a cusp form and $B_{n,\chi_{-4}}$ is the n^{th} generalised Bernoulli number associated to χ_{-4} .

Cusp part for $\delta_{4k}(n)$

Theorem (T.)

The collection

$$\{C(2k, v, 4, z) : 1 \le v \le k - 2\}$$

forms a basis of $S_{2k}(\Gamma_0(4))$, where

$$C(2k, v, 4, z) = \left(\frac{\eta^{10}(2z)}{\eta^4(z)\eta^4(4z)}\right)^{2k} \left(\frac{\eta^8(z)\eta^{16}(4z)}{\eta^{24}(2z)}\right)^{v} \left(\frac{\eta^{16}(z)\eta^8(4z)}{\eta^{24}(2z)}\right).$$

Cusp part for $\delta_{4k+2}(n)$

Theorem (T.)

The collection

$$\{C(2k+1, v, 8, z) : 1 \le v \le 2k-2\}$$

forms a basis of $S_{2k+1}(\Gamma_0(8), \chi_{-4})$, where

$$C(2k+1,v,8,z) = \left(\frac{\eta^4(z)}{\eta^2(2z)}\right)^{2k+1} \left(\frac{\eta^2(2z)\eta^4(8z)}{\eta^4(z)\eta^2(4z)}\right)^{v} \left(\frac{\eta^{10}(2z)\eta^6(4z)}{\eta^{12}(z)\eta^4(8z)}\right).$$

New explicit formulas for $\delta_k(n)$

Theorem (T.)

We have

$$\begin{split} \delta_{14}(n) &= -\frac{1}{124928} \left(\sigma_{6,\chi_{-4},\chi_{1}}(4n+7) - c(4n+7) \right), \\ \delta_{16}(n) &= \frac{1}{17408} \left(\sigma_{7,\chi_{1},\chi_{0}}(2n+4) - d(2n+4) \right), \\ \delta_{18}(n) &= \frac{1}{45383680} \left(\sigma_{8,\chi_{-4},\chi_{1}}(4n+9) - e(4n+9) \right), \end{split}$$

where

$$\begin{split} \sum_{n=1}^{\infty} c(n)q^n &= 728 \left(\eta^4(z) \eta^2(2z) \eta^8(8z) + 4 \frac{\eta^4(2z) \eta^{12}(8z)}{\eta^2(4z)} \right), \\ \sum_{n=1}^{\infty} d(n)q^n &= 128 \eta^8(2z) \eta^8(4z), \\ \sum_{n=1}^{\infty} e(n)q^n &= \frac{\eta^{20}(z) \eta^4(4z)}{\eta^6(2z)} + 20 \frac{\eta^{16}(z) \eta^2(4z) \eta^4(8z)}{\eta^4(2z)} + 144 \frac{\eta^{12}(z) \eta^8(8z)}{\eta^2(2z)} \\ &+ 448 \frac{\eta^8(z) \eta^{12}(8z)}{\eta^2(4z)} + 391168 \frac{\eta^4(z) \eta^2(2z) \eta^{16}(8z)}{\eta^4(4z)} + 1562624 \frac{\eta^4(2z) \eta^{12}(20z)}{\eta^6(4z)}. \end{split}$$

Borwein and Choi

Let $r_N(n)$ be the number of representations of n as a sum of N squares and let

$$L_N(s) = \sum_{n=1}^{\infty} \frac{r_N(n)}{n^s} \ \text{and} \ R_N(s) = \sum_{n=1}^{\infty} \frac{r_N^2(n)}{n^s}$$

Theorem

The Dirichlet series associated to $r_N(n)$ for N=2,4,6,8 are

$$L_{2}(s) = 4\zeta(s)L(s, \chi_{-4}),$$

$$L_{4}(s) = 8(1 - 4^{1-s})\zeta(s)\zeta(s - 1),$$

$$L_{6}(s) = 16\zeta(s - 2)L(s, \chi_{-4}) - 4\zeta(s)L(s - 2, \chi_{-4}),$$

$$L_{8}(s) = 16(1 - 2^{1-s} + 4^{2-s})\zeta(s)\zeta(s - 3).$$

Borwein and Choi

Theorem

The Dirichlet series associated to $r_N^2(n)$ for N = 2, 4, 6, 8 are

$$\begin{split} R_2(s) &= \frac{(4\zeta(s)L(s,\chi_{-4}))^2}{(1+2^{-s})\zeta(2s)}, \\ R_4(s) &= 64 \frac{(8.2^{3-3s}-10.2^{2-2s}+2^{1-s}+1)\zeta(s-2)\zeta^2(s-1)\zeta(s)}{(1+2^{1-s})\zeta(2s-2)}, \\ R_6(s) &= 16 \frac{(17-32.2^{-s})\zeta(s-4)L^2(s-2,\chi_{-4})\zeta(s)}{(1-16.2^{-2s})\zeta(2s-4)} \\ &\qquad \qquad - \frac{128L(s-4,\chi_{-4})\zeta^2(s-2)L(s,\chi_{-4})}{(1+4.2^{-s})\zeta(2s-4)}, \\ R_8(s) &= 256 \frac{(32\cdot2^{6-2s}-3\cdot2^{3-s}+1)\zeta(s-6)\zeta^2(s-3)\zeta(s)}{(1+2^{3-s})\zeta(2s-6)}. \end{split}$$

Wagon's conjecture for sums of squares

Wagon's conjecture states that

$$\sum_{n\leq x} r_N^2(n) \sim W_N x^{N-1}, \text{ as } x\to\infty, N\geq 3,$$

where

$$W_N = \frac{\pi^N}{(1-2^{-N})(N-1)\Gamma^2\left(\frac{N}{2}\right)} \frac{\zeta(N-1)}{\zeta(N)}.$$

 $\zeta(.)$ - Riemann zeta function, $\Gamma(.)$ - gamma function.

First moment of $\delta_N(n)$

Theorem (T.)

For an even value of N > 2 and any $\epsilon > 0$, we have

$$\sum_{n \le x} \delta_N(n) = \frac{\pi^{N/2}}{2^{N/2} \Gamma(N/2+1)} x^{N/2} + O\left(x^{(N-1)/2+\epsilon}\right).$$

Second moment of $\delta_N(n)$

Theorem (T.)

For an even value of N > 2 and any ϵ > 0, we have

$$\sum_{n \le x} \delta_N^2(n) = Y_N x^{N-1} + O\left(x^{N-1/2+\epsilon}\right),\,$$

where

$$Y_N = \frac{\pi^N}{2^N(N-1)\Gamma^2\left(\frac{N}{2}\right)} \frac{L(N-1,\chi_0)}{L(N,\chi_0)}.$$

Thank You