Dimension reduction in nonlinear Bayesian inverse problems

Youssef Marzouk
joint work with Daniele Bigoni, Michael Brennan, Tiangang Cui, Kody Law, Alessio Spantini, Olivier Zahm
Department of Aeronautics and Astronautics
Center for Computational Science and Engineering
Statistics and Data Science Center
Massachusetts Institute of Technology
http://uqgroup.mit.edu
Support from AFOSR, DOE, NSF, ONR

2 November 2021

Motivation: inverse problems in the Bayesian setting

Observations y
Parameters x

$$
\pi_{\mathrm{pos}}(x):=\underbrace{\pi(x \mid y) \propto \mathcal{L}_{y}(x) \pi_{\mathrm{pr}}(x)}_{\text {Bayes' rule }}
$$

- Characterize the posterior distribution (density $\pi_{\text {pos }}$)
- This is a challenging task since:
- $x \in \mathbb{R}^{d}$ is typically high-dimensional (e.g., a discretized function)
- $\pi_{\text {pos }}$ is non-Gaussian
- evaluations of the likelihood (hence $\pi_{\text {pos }}$) may be expensive
- $\pi_{\text {pos }}$ can be evaluated up to a normalizing constant

A conjecture

In many situations, the data are "informative" only on a low-dimensional subspace

$$
\mathbb{R}^{d}=\underbrace{X_{r}}_{\pi_{\mathrm{pos}} \neq \pi_{\mathrm{pr}}}+\underbrace{X_{\perp}}_{\pi_{\mathrm{pos}} \approx \pi_{\mathrm{pr}}}
$$

A conjecture

In many situations, the data are "informative" only on a low-dimensional subspace

This structure is now well understood in the linear-Gaussian case, $x \sim N\left(0, \Sigma_{\text {pr }}\right), y \mid x \sim N\left(G x, \Sigma_{\text {obs }}\right)$ [Spantini et al. 2015]:

- Optimal approximations of the posterior covariance as a low-rank update of the prior, $\widetilde{\Sigma}_{\text {pos }}=\Sigma_{\text {pr }}-K_{r} K_{r}^{\top}$, for any $r \leq d$
- Optimal posterior mean approximations, $\widetilde{\mu}_{\text {pos }}=A_{r} y$
- Central role of generalized eigenproblems, e.g., $\left(G^{T} \Sigma_{\mathrm{obs}}^{-1} G, \Sigma_{\mathrm{pr}}^{-1}\right)$

Low effective dimensionality of Bayesian inverse problems

More general idea: the posterior distribution can be well approximated by

$$
\widetilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}$ and rank r linear projector $P_{r} \in \mathbb{R}^{d \times d}$

Low effective dimensionality of Bayesian inverse problems

More general idea: the posterior distribution can be well approximated by

$$
\widetilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}$ and rank r linear projector $P_{r} \in \mathbb{R}^{d \times d}$

induces a decomposition of the space

$$
x=x_{r}+x_{\perp} \quad \begin{cases}x_{r} & \in \operatorname{Im}\left(P_{r}\right) \\ x_{\perp} & \in \operatorname{Ker}\left(P_{r}\right)\end{cases}
$$

By construction, $x \mapsto \widetilde{\mathcal{L}}\left(P_{r} x\right)=\widetilde{\mathcal{L}}\left(x_{r}\right)$ is only a function of $x_{r} \in \operatorname{Im}\left(P_{r}\right) \equiv \mathbb{R}^{r}$.

Low effective dimensionality of Bayesian inverse problems

More general idea: the posterior distribution can be well approximated by

$$
\widetilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}$ and rank r linear projector $P_{r} \in \mathbb{R}^{d \times d}$

induces a decomposition of the space

$$
x=x_{r}+x_{\perp} \quad \begin{cases}x_{r} & \in \operatorname{Im}\left(P_{r}\right) \\ x_{\perp} & \in \operatorname{Ker}\left(P_{r}\right)\end{cases}
$$

By construction, $x \mapsto \widetilde{\mathcal{L}}\left(P_{r} x\right)=\widetilde{\mathcal{L}}\left(x_{r}\right)$ is only a function of $x_{r} \in \operatorname{Im}\left(P_{r}\right) \equiv \mathbb{R}^{r}$. If $r \ll d$, we can:

- Design structure-exploiting MCMC algorithms to sample from $\pi_{\text {pos }}$ (e.g., DILI samplers [Cui, Law, M 2016])
- More easily build surrogates (i.e., fast approximations) of $x_{r} \mapsto \widetilde{\mathcal{L}}\left(x_{r}\right)$
- Develop tractable variational characterizations of the posterior (second part of this talk)

Many previous proposals

- P_{r} can be defined as a projector onto the dominant eigenspace of a matrix
$\mathbf{H} \in \mathbb{R}^{d \times d}$ which contains "relevant information"

Many previous proposals

- P_{r} can be defined as a projector onto the dominant eigenspace of a matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ which contains "relevant information"
- Likelihood-informed subspace (LIS) [Cui et al. 2014]

$$
\mathbf{H}_{\mathrm{LIS}}=\int(\nabla G)^{T} \Sigma_{\mathrm{obS}}^{-1}(\nabla G) \mathrm{d} \pi_{\mathrm{pos}}
$$

where \mathcal{L}_{y} follows from $y \sim \mathcal{N}\left(G(x), \Sigma_{\text {obs }}\right)$

- Active subspace (AS) [Constantine et al. 2015]

$$
\mathbf{H}_{\mathrm{AS}}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pr}}
$$

Many previous proposals

- P_{r} can be defined as a projector onto the dominant eigenspace of a matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ which contains "relevant information"
- Likelihood-informed subspace (LIS) [Cui et al. 2014]

$$
\mathbf{H}_{\mathrm{LIS}}=\int(\nabla G)^{T} \Sigma_{\mathrm{obS}}^{-1}(\nabla G) \mathrm{d} \pi_{\mathrm{pos}}
$$

where \mathcal{L}_{y} follows from $y \sim \mathcal{N}\left(G(x), \Sigma_{\text {obs }}\right)$

- Active subspace (AS) [Constantine et al. 2015]

$$
\mathbf{H}_{\mathrm{AS}}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pr}}
$$

- Similarly, various definitions of $\widetilde{\mathcal{L}}$:
- (LIS) Fix complementary parameters $\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathcal{L}_{y}\left(P_{r} x+\left(I-P_{r}\right) m_{0}\right)$
- (AS) Take conditional expectation of the log-likelihood

$$
\widetilde{\mathcal{L}}\left(P_{r} x\right)=\exp \mathbb{E}_{\pi_{\mathrm{rr}}}\left(\log \mathcal{L}_{y} \mid P_{r} x\right)
$$

Broad objective

Build an approximation of $\pi_{\text {pos }}$ of the form

$$
\widetilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x) \quad \text { with }\left\{\begin{array}{l}
\widetilde{\mathcal{L}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+} \\
P_{r} \in \mathbb{R}^{d \times d} \text { rank- } r \text { projector }
\end{array}\right.
$$

such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \widetilde{\pi}_{\mathrm{pos}}\right) \leq \varepsilon
$$

with $r=r(\varepsilon)$ much smaller than d.
See full details in [ZCLSM 21].

Decomposition of the error

A "Pythagorean" theorem

For any P_{r} and $\widetilde{\mathcal{L}}$ we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \widetilde{\pi}_{\mathrm{pos}}\right)=\underbrace{D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right)}_{=\text {function }\left(P_{r}\right)}+\underbrace{D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*} \| \widetilde{\pi}_{\mathrm{pos}}\right)}_{=\text {function }\left(P_{r}, \tilde{\mathcal{L}}\right)}
$$

where

$$
\pi_{\mathrm{pos}}^{*}(x) \propto \mathbb{E}_{\pi_{\mathrm{pr}}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

Decomposition of the error

A "Pythagorean" theorem

For any P_{r} and $\widetilde{\mathcal{L}}$ we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \tilde{\pi}_{\mathrm{pos}}\right)=\underbrace{D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right)}_{=\text {function }\left(P_{r}\right)}+\underbrace{D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*}| | \tilde{\pi}_{\mathrm{pos}}\right)}_{=\text {function }\left(P_{r}, \widetilde{\mathcal{L}}\right)}
$$

where

$$
\pi_{\mathrm{pos}}^{*}(x) \propto \mathbb{E}_{\pi_{\mathrm{pr}}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

This allows decoupling the construction of $\widetilde{\mathcal{L}}$ and P_{r}.

- Given P_{r}, the function $\widetilde{\mathcal{L}}$ such that $\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathbb{E}_{\pi_{\mathrm{pr}}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ yields

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*} \| \widetilde{\pi}_{\mathrm{pos}}\right)=0
$$

- How to construct P_{r} such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \varepsilon
$$

with a rank $r \ll d$?

Constructing the projector P_{r}

Assumption on the prior distribution

There exist functions V and Ψ such that

$$
\pi_{\mathrm{pr}}(x) \propto \exp (-V(x)-\Psi(x)) \quad \text { with } \quad\left\{\begin{array}{l}
\nabla^{2} V \succeq \Gamma \\
\exp (\sup \Psi-\inf \Psi) \leq \kappa
\end{array}\right.
$$

for some SPD matrix $\Gamma \in \mathbb{R}^{d \times d}$ and some $\kappa \geq 1$.

Constructing the projector P_{r}

Assumption on the prior distribution

There exist functions V and Ψ such that

$$
\pi_{\mathrm{pr}}(x) \propto \exp (-V(x)-\Psi(x)) \quad \text { with } \quad\left\{\begin{array}{l}
\nabla^{2} V \succeq \Gamma \\
\exp (\sup \Psi-\inf \Psi) \leq \kappa
\end{array}\right.
$$

for some SPD matrix $\Gamma \in \mathbb{R}^{d \times d}$ and some $\kappa \geq 1$.

- Gaussian prior satisfies this assumption with $\Gamma=\Sigma_{\text {pr }}^{-1}$ and $\kappa=1$
- Gaussian mixture $\pi_{\mathrm{pr}} \propto \sum_{i} \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$ also satisfies this assumption
- Uniform prior on convex bounded domain also allowed [ZCLSM21]

Constructing the projector P_{r}

Based on this assumption, π_{pr} satisfies the logarithmic Sobolev inequality

$$
\int h^{2} \log \frac{h^{2}}{\int h^{2} \mathrm{~d} \pi_{\mathrm{pr}}} \mathrm{~d} \pi_{\mathrm{pr}} \leq 2 \kappa \int\|\nabla h\|_{\Gamma_{-1}^{2}}^{2} \mathrm{~d} \pi_{\mathrm{pr}}
$$

for any function h with sufficient regularity.

- Putting $h^{2}=\mathcal{L}_{y} / \int \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pr}}$ bounds the KL divergence from prior to posterior:

$$
\mathcal{D}_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pr}}\right) \leq \frac{\kappa}{2} \int\left\|\nabla \log \mathcal{L}_{y}\right\|_{\Gamma^{-1}}^{2} \mathrm{~d} \pi_{\mathrm{pos}}
$$

Constructing the projector P_{r}

Proposition: subspace logarithmic Sobolev inequality

π_{pr} also satisfies

$$
\int h^{2} \log \frac{h^{2}}{\mathbb{E}\left(h^{2} \mid P_{r} x\right)} \mathrm{d} \pi_{\mathrm{pr}} \leq 2 \kappa \int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla h\right\|_{\Gamma^{-1}}^{2} \mathrm{~d} \pi_{\mathrm{pr}}
$$

for any function h with sufficient regularity and any projector P_{r}.

Constructing the projector P_{r}

Proposition: subspace logarithmic Sobolev inequality

$\pi_{\text {pr }}$ also satisfies

$$
\int h^{2} \log \frac{h^{2}}{\mathbb{E}\left(h^{2} \mid P_{r} x\right)} \mathrm{d} \pi_{\mathrm{pr}} \leq 2 \kappa \int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla h\right\|_{r^{-1}}^{2} \mathrm{~d} \pi_{\mathrm{pr}}
$$

for any function h with sufficient regularity and any projector P_{r}.

Corollary

For any projector P_{r} we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)
$$

where

$$
\mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\mathrm{pos}}
$$

Constructing the projector P_{r}

Corollary

For any projector P_{r} we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)
$$

where

$$
\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\text {pos }}
$$

Constructing the projector P_{r}

Corollary

For any projector P_{r} we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)
$$

where

$$
\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma_{-1}}^{2} \mathrm{~d} \pi_{\mathrm{pos}}
$$

Finding P_{r} that minimizes this bound corresponds to PCA of $\nabla \log \mathcal{L}_{y}(X)$.

- For a fixed r, the minimizer P_{r}^{*} of the reconstruction error $\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}\right)$ is the Γ-orthogonal projector onto the dominant generalized eigenspace of

$$
\mathbf{H}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pos}}
$$

- Furthermore, we have $\mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}^{*}\right)=\sum_{i>r} \lambda_{i}$, where λ_{i} is the i-th generalized eigenvalue of (\mathbf{H}, Γ)

An idealized algorithm

1 Compute

$$
\mathbf{H}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pos}}
$$

2 Define P_{r} as the projector on the dominant eigenspace of \mathbf{H}
3 Compute the conditional expectation

$$
\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)
$$

Then $\pi_{\text {pos }}^{*}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\text {pr }}(x)$ satisfies

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \sum_{i>r} \lambda_{i}
$$

- At step 2, we can choose the rank $r=r(\varepsilon)$ of P_{r} such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \varepsilon
$$

- A strong decay in λ_{i} implies $r(\varepsilon) \ll d$

An idealized algorithm

1 Compute

$$
\mathbf{H}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pos}}
$$

2 Define P_{r} as the projector on the dominant eigenspace of \mathbf{H}
3 Compute the conditional expectation

$$
\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)
$$

Practical issues

- Evaluating \mathbf{H} requires computing an integral over the posterior
- Computing the conditional expectation requires some effort

Sample approximations

(1) Monte Carlo approximation of \mathbf{H} :

$$
\mathbf{H} \approx \widehat{\mathbf{H}}_{K}:=\frac{1}{K} \sum_{i=1}^{K} \nabla \log \mathcal{L}_{y}\left(X_{i}\right) \otimes \nabla \log \mathcal{L}_{y}\left(X_{i}\right) \quad \text { with } \quad X_{i} \stackrel{\mathrm{iid}}{\sim} \pi_{\text {pos }}
$$

Proposition

Under some assumptions, quasi-optimal projectors are obtained with high probability $1-\delta$ if

$$
K \geq \mathcal{O}\left(\sqrt{\operatorname{rank}(H)}+\sqrt{\log \left(2 \delta^{-1}\right)}\right)^{2}
$$

- Key assumption: $\nabla \log \mathcal{L}_{y}(X)$ is sub-Gaussian, for $X \sim \pi_{\text {pos }}$
(2) Sample approximations of the conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$
- Error controlled by same factors; details in [ZCLSM21]

Example: GOMOS atmospheric remote sensing [Tamminen 2004]

- Estimate gas densities $x=\varrho^{\text {gas }}(z)$ from transmission spectra $y_{\omega}(z)$
- Beer's law:

$$
y_{\omega}(z)=\exp \left(-\int_{\text {light path }} \sum_{\text {gas }} \alpha_{\omega}^{\text {gas }}(z(\zeta)) \varrho^{\text {gas }}(z(\zeta)) \mathrm{d} \zeta\right)+\xi
$$

Signals:

- Gaussian prior $\mathcal{N}\left(\mu_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ (hence $\Gamma=\Sigma_{\mathrm{pr}}^{-1}$ and $\kappa=1$)
- After discretization of the atmosphere, $\operatorname{dim}(x)=200$

GOMOS: results

GOMOS: results

GOMOS: results

$$
\begin{aligned}
& D_{\mathrm{KL}}\left(\pi_{\text {pos }} \| \widetilde{\pi}_{\text {pos }}\right)=\text { function }(r) \\
& \mathbf{H}^{(\rho)}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \rho \\
& \mathbf{H}_{\mathrm{LIS}}^{(\rho)}=\int(\nabla G)^{T} \Gamma_{\text {obs }}^{-1}(\nabla G) \mathrm{d} \rho
\end{aligned}
$$

GOMOS: results

An iterative algorithm

In practice, to avoid drawing samples from $\pi_{\text {pos }}$, we can iterate directly towards a low-dimensional approximation $\widetilde{\pi}_{\text {pos }}$:

Conceptually:

$$
\left(\rho^{\ell} \equiv \widetilde{\pi}_{\mathrm{pos}}^{r, \ell}\right) \xrightarrow{\text { sampling }} H^{\left(\rho^{\ell+1}\right)} \xrightarrow{\text { eigenprob }} P_{r}^{\ell+1} \longrightarrow\left(\rho^{\ell+1} \equiv \widetilde{\pi}_{\mathrm{pos}}^{r, \ell+1}\right) \rightarrow \cdots
$$

Iterative algorithm: results

(left) fixed threshold; (right) fixed rank

Questions about these low-dimensional approximations

Some open or interesting questions:

- Many MCMC algorithms use the subspace $\operatorname{Im}\left(P_{r}\right)$ to derive proposals and/or splitting (Metropolis-within-Gibbs) schemes (e.g., DILI [Cui et al. 2016])
- Impact of subspace quality on computational performance of MCMC algorithms? Some inital results in [Cui \& Tong 2021]
- Understanding the convergence of iterative algorithms for identifying the projector P_{r}, and the associated computational tradeoffs
- Extension to the infinite-dimensional setting
- Possibility of handling heavier-tailed priors?

Questions about these low-dimensional approximations

Some open or interesting questions:

- Many MCMC algorithms use the subspace $\operatorname{Im}\left(P_{r}\right)$ to derive proposals and/or splitting (Metropolis-within-Gibbs) schemes (e.g., DILI [Cui et al. 2016])
- Impact of subspace quality on computational performance of MCMC algorithms? Some inital results in [Cui \& Tong 2021]
- Understanding the convergence of iterative algorithms for identifying the projector P_{r}, and the associated computational tradeoffs
- Extension to the infinite-dimensional setting
- Possibility of handling heavier-tailed priors?

Next: an application of these ideas to transport. . .

Inference through transport

Main idea: Characterize $\pi_{\text {pos }}$ (henceforth π) as a transformation of some simple distribution ρ.

Goal: Find a function T s.t. if $X \sim \rho$, then $T(X) \sim \pi$.

Inference through transport

Main idea: Characterize $\pi_{\text {pos }}$ (henceforth π) as a transformation of some simple distribution ρ.

Goal: Find a function T s.t. if $X \sim \rho$, then $T(X) \sim \pi$.

Inference through transport

Main idea: Characterize $\pi_{\text {pos }}$ (henceforth π) as a transformation of some simple distribution ρ.

Goal: Find a function T s.t. if $X \sim \rho$, then $T(X) \sim \pi$.

Inference through transport

Main idea: Characterize $\pi_{\text {pos }}$ (henceforth π) as a transformation of some simple distribution ρ.

Goal: Find a function T s.t. if $X \sim \rho$, then $T(X) \sim \pi$.

Notation: $\begin{gathered}\text { pushforward } \\ T_{\sharp} \rho=\pi\end{gathered} \begin{gathered}\text { pullback } \\ \sharp\end{gathered} T^{\sharp} \pi$

How to construct a suitable map?

Maps from unnormalized densities, i.e., variational characterization of the map T :

How to construct a suitable map?

Maps from unnormalized densities, i.e., variational characterization of the map T :

$$
\min _{T \in \mathcal{T}^{h}} \mathcal{D}_{K L}\left(T_{\sharp} \rho \| \pi\right)=\min _{T \in \mathcal{T}^{h}} \mathcal{D}_{K L}\left(\rho \| T_{\sharp}^{-1} \pi\right)
$$

$-\pi$ is the "target" density on $\mathbb{R}^{d} ; \rho$ is, e.g., $\mathcal{N}\left(0, \mathbf{I}_{d}\right)$

- \mathcal{T}^{h} is a parameterized class of maps from \mathbb{R}^{d} to itself
- For instance, monotone lower triangular maps (approximate the Knothe-Rosenblatt rearrangement)
- Expectation is with respect to the reference measure ρ
- Compute via, e.g., Monte Carlo, sparse quadrature
- Use unnormalized evaluations of π and its gradients
- No MCMC or importance sampling
- In general non-convex, unless π is log-concave

How to construct a suitable map?

Maps from unnormalized densities, i.e., variational characterization of the map T :

$$
\min _{T \in \mathcal{T}^{h}} \mathcal{D}_{K L}\left(T_{\sharp} \rho \| \pi\right)=\min _{T \in \mathcal{T}^{h}} \mathcal{D}_{K L}\left(\rho \| T_{\sharp}^{-1} \pi\right)
$$

$-\pi$ is the "target" density on $\mathbb{R}^{d} ; \rho$ is, e.g., $\mathcal{N}\left(0, \mathbf{I}_{d}\right)$

- \mathcal{T}^{h} is a parameterized class of maps from \mathbb{R}^{d} to itself
- For instance, monotone lower triangular maps (approximate the Knothe-Rosenblatt rearrangement)
- Expectation is with respect to the reference measure ρ
- Compute via, e.g., Monte Carlo, sparse quadrature
- Use unnormalized evaluations of π and its gradients
- No MCMC or importance sampling
- In general non-convex, unless π is log-concave
- Key steps: (1) parameterize, (2) optimize

Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions

- Essential trade-off between expressiveness and computational effort/tractability!

Low rank structure

(See [BBZSM 2020] for details.)

- Let $U=\left[U_{r} U_{\perp}\right] \in \mathbb{R}^{d \times d}$ be a unitary matrix, with $U_{r} \in \mathbb{R}^{d \times r}$. A lazy map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ takes the form:

$$
T(z)=U_{r} \tau\left(z_{1}, \ldots, z_{r}\right)+U_{\perp} z_{\perp}
$$

for some diffeomorphism $\tau: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$.

- Map $T \in \mathcal{T}_{r}(U)$ departs from the identity only on an r-dimensional subspace
- Proposition: For any lazy map $T \in \mathcal{T}_{r}(U)$, there exists a strictly positive function $f: \mathbb{R}^{r} \rightarrow \mathbb{R}_{+}$such that

$$
T_{\sharp} \rho(x)=f\left(U_{r}^{\top} x\right) \rho(x),
$$

for all $x \in \mathbb{R}^{d}$ where $\rho=\mathcal{N}\left(0, \mathbf{I}_{d}\right)$. Conversely, any density of the form $f\left(U_{r}^{\top} x\right) \rho(x)$ for some $f: \mathbb{R}^{r} \rightarrow \mathbb{R}_{+}$admits a lazy map representation.

Discovering structure in π before optimization

How to find a good U_{r} ?

- Define

$$
H_{\pi}:=\mathbb{E}_{\pi}\left[\left(\nabla \log \frac{\pi}{\rho}\right)\left(\nabla \log \frac{\pi}{\rho}\right)^{\top}\right]
$$

- Let $\left(\lambda_{i}, u_{i}\right)$ be the i th eigenpair of H_{π} and put $U_{r}=\left[u_{1} u_{2} \cdots u_{r}\right]$.
- From previous results: There exists a map $T^{\star} \in \mathcal{T}_{r}(U)$ such that

$$
\mathcal{D}_{K L}\left(\pi \| T_{\sharp}^{\star} \rho\right) \leq \frac{1}{2}\left(\lambda_{r+1}+\ldots+\lambda_{d}\right) .
$$

Discovering structure in π before optimization

How to find a good U_{r} ?

- Define

$$
H_{\pi}:=\mathbb{E}_{\pi}\left[\left(\nabla \log \frac{\pi}{\rho}\right)\left(\nabla \log \frac{\pi}{\rho}\right)^{\top}\right]
$$

- Let $\left(\lambda_{i}, u_{i}\right)$ be the i th eigenpair of H_{π} and put $U_{r}=\left[u_{1} u_{2} \cdots u_{r}\right]$.
- From previous results: There exists a map $T^{\star} \in \mathcal{T}_{r}(U)$ such that

$$
\mathcal{D}_{K L}\left(\pi \| T_{\sharp}^{\star} \rho\right) \leq \frac{1}{2}\left(\lambda_{r+1}+\ldots+\lambda_{d}\right) .
$$

- Good approximation when the spectrum of H_{π} decays quickly
- T^{\star} uses a ridge approximation of the likelihood $\frac{\mathrm{d} \pi}{\mathrm{d} \rho} \approx f^{\star}\left(U_{r}^{\top} x\right)$, with optimal profile function $f^{\star}\left(z_{r}\right)=\mathbb{E}_{X \sim \rho}\left[\left.\frac{\pi(X)}{\rho(X)} \right\rvert\, U_{r}^{\top} X=z_{r}\right]$.

Error bound after optimization ("trace diagnostic")

Consider the matrix

$$
H_{T \sharp}:=\mathbb{E}_{T \sharp}\left[\left(\nabla \log \frac{T^{\sharp} \pi}{\rho}\right)\left(\nabla \log \frac{T^{\sharp} \pi}{\rho}\right)^{\top}\right]
$$

Then

$$
\mathcal{D}_{K L}\left(\pi \| T_{\sharp} \rho\right) \leq \frac{1}{2} \operatorname{Tr}\left(H_{T}\right) .
$$

Limiting case: if $T^{\sharp} \pi=\rho$, then $H_{T}=\mathbf{0}$ and $\mathcal{D}_{K L}\left(\pi \| T_{\sharp} \rho\right)=0$.

Bound on the forward KL divergence for a given map.

Layers of lazy maps

- What if $\left(\lambda_{i}\right)$ do not decay quickly? What if we are limited to small r ?
- Answer: build a composition of lazy maps, via a greedy construction

$$
\mathfrak{T}_{\ell}=T_{1} \circ T_{2} \circ \cdots \circ T_{\ell}
$$

- Algorithm ("deeply lazy" maps):
- Given $\left(\pi, \rho, r_{1}\right)$: compute H_{π} and construct a first lazy map T_{1}
- Pull back π by $T_{1}: \pi_{2}:=\left(T_{1}^{-1}\right)_{\sharp} \pi$
- Given $\left(\pi_{2}, \rho, r_{2}\right)$: compute $H_{\pi_{2}}$ and construct a next lazy map $T_{2} \ldots$
- Generic iteration: at stage ℓ, build a lazy map to the pullback $\pi_{\ell}:=\left(T_{1} \circ T_{2} \circ \cdots \circ T_{\ell-1}\right)_{\sharp}^{-1} \pi$
- Stop when $\frac{1}{2} \operatorname{Tr}\left(H_{\pi_{\ell}}\right)<\epsilon$

Layers of lazy maps

Example: rotated "banana" target distribution, $r=1$ maps

Example: log-Gaussian Cox process

Field $\boldsymbol{\Lambda}^{\star}$ and observations \mathbf{y}^{\star}

Realizations of $\boldsymbol{\Lambda} \sim \boldsymbol{\pi}_{\boldsymbol{\Lambda} \mid \mathrm{y}^{\star}}$

Example: log-Gaussian Cox process

- Parameter dimension $n=4096,30$ observations; fixed ranks r

Example: elliptic PDE Bayesian inverse problem

$$
\left\{\begin{array}{l}
\nabla \cdot\left(e^{\kappa(x)} \nabla u(\mathbf{x})\right)=0, \quad \text { for } \mathbf{x} \in \mathcal{D}:=[0,1]^{2}, \\
u(\mathbf{x})=0 \text { for } x_{1}=0, u(\mathbf{x})=1 \text { for } x_{1}=1, \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}}=0 \text { for } x_{2} \in\{0,1\}
\end{array}\right.
$$

- Infer $\kappa(\mathbf{x})$, discretized with $n=2601$ parameters; 81 observations; lazy maps of $r \leq 4$ and polynomial degree up to 2

$u(\mathbf{x})$ and observations

Convergence

Posterior realizations of $\kappa(\mathbf{x})$

Summary

- Identify and exploit low-dimensional structure in "updates" between distributions (from prior to posterior, from reference to target):
- Derive an upper bound on the forward KL divergence
- Minimize this upper bound using PCA on $\nabla \log \mathcal{L}_{y}$
- Better performance than heuristic gradient-based methods (e.g., likelihood-informed subspace or active subspaces)
- Transport methods: exploiting the pullback distribution
- Compositions of low-dimensional maps, constructed greedily ("deeply lazy" maps)

Summary

- Identify and exploit low-dimensional structure in "updates" between distributions (from prior to posterior, from reference to target):
- Derive an upper bound on the forward KL divergence
- Minimize this upper bound using PCA on $\nabla \log \mathcal{L}_{y}$
- Better performance than heuristic gradient-based methods (e.g., likelihood-informed subspace or active subspaces)
- Transport methods: exploiting the pullback distribution
- Compositions of low-dimensional maps, constructed greedily ("deeply lazy" maps)

Thanks for your attention!

References

- M. Brennan, D. Bigoni, O. Zahm, A. Spantini, Y. Marzouk. "Greedy inference with structure-exploiting lazy maps." NeurIPS 2020.
- O. Zahm, T. Cui, K. Law, A. Spantini, Y. Marzouk. "Certified dimension reduction in nonlinear Bayesian inverse problems." arXiv:1807.03712v3, 2021.
- T. Cui, O. Zahm, "Data-free likelihood-informed dimension reduction of Bayesian inverse problems." Inverse Problems, 2021.
- T. Cui, X. Tong, "A unified performance analysis of likelihood-informed subspace methods." arXiv:2101.02417, 2021.
- O. Zahm, P. Constantine, C. Prieur, Y. Marzouk. "Gradient-based dimension reduction of multivariate vector-valued functions," SISC, 2020.
- A. Spantini, D. Bigoni, Y. Marzouk. "Inference via low-dimensional couplings." JMLR 19(66): 1-71, 2018.
- P. Constantine, C. Kent, T. Bui-Thanh. "Accelerating Markov chain Monte Carlo with active subspaces." SISC, 2016.
- A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, Y. Marzouk, "Optimal low-rank approximations of Bayesian linear inverse problems," SISC, 2015.
- T. Cui, J. Martin, Y. Marzouk, A. Solonen. A. Spantini, "Likelihood-informed dimension reduction for nonlinear inverse problems," Inverse Problems, 2014.

Approximation of $\pi_{\text {pos }}^{*}(x) \propto \quad \pi_{\mathrm{pr}}(x)$

- The conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ can be expressed as

$$
x \mapsto \int \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) z\right) \pi_{\mathrm{pr}}\left(z \mid P_{r} x\right) \mathrm{d} z
$$

where $\pi_{\mathrm{pr}}\left(\cdot \mid P_{r} x\right)$ denotes the conditional prior, which depends on x.

Approximation of $\pi_{\text {pos }}^{*}(x) \propto$ $\pi_{\mathrm{pr}}(x)$

- The conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ can be expressed as

$$
x \mapsto \int \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) z\right) \pi_{\mathrm{pr}}\left(z \mid P_{r} x\right) \mathrm{d} z
$$

where $\pi_{\mathrm{pr}}\left(\cdot \mid P_{r} x\right)$ denotes the conditional prior, which depends on x.

- Consider the following Monte Carlo estimate

$$
\widetilde{\mathcal{L}}: x \mapsto \frac{1}{M} \sum_{i=1}^{M} \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) Z_{i}\right) \quad, \quad Z_{i} \stackrel{\text { iid }}{\sim} \pi_{\mathrm{pr}}
$$

In general, $\widetilde{\mathcal{L}}\left(P_{r} x\right)$ is a biased estimator for $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$.

Approximation of $\pi_{\text {pos }}^{*}(x) \propto$

 $\pi_{\mathrm{pr}}(x)$- The conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ can be expressed as

$$
x \mapsto \int \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) z\right) \pi_{\mathrm{pr}}\left(z \mid P_{r} x\right) \mathrm{d} z
$$

where $\pi_{\mathrm{pr}}\left(\cdot \mid P_{r} x\right)$ denotes the conditional prior, which depends on x.

- Consider the following Monte Carlo estimate

$$
\widetilde{\mathcal{L}}: x \mapsto \frac{1}{M} \sum_{i=1}^{M} \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) Z_{i}\right) \quad, \quad Z_{i} \stackrel{\mathrm{iid}}{\sim} \pi_{\mathrm{pr}}
$$

In general, $\widetilde{\mathcal{L}}\left(P_{r} x\right)$ is a biased estimator for $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$.

Proposition

The random distribution $\widetilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x)$ is such that

$$
\mathbb{E}\left(D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*} \| \widetilde{\pi}_{\mathrm{pos}}\right)\right) \lesssim\left(C_{1}+\frac{C_{2}}{M}\right) \mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)
$$

Convergence of the greedy construction

Theorem (BBZSM21)

Let U^{1}, U^{2}, \ldots be a sequence of unitary matrices. For any $\ell \geq 1$, let $T_{\ell} \in \mathcal{T}_{r}\left(U^{\ell}\right)$ be a lazy map that minimizes $\mathcal{D}_{K L}\left(\pi_{\ell-1} \|\left(T_{\ell}\right)_{\sharp} \rho\right)$, where $\pi_{\ell-1}=\left(T_{1} \circ \ldots \circ T_{\ell-1}\right)^{\sharp} \pi$. If there exists $0<t \leq 1$ such that for any $\ell \geq 1$

$$
\mathcal{D}_{K L}\left(\left(U_{r}^{\ell \top}\right)_{\sharp} \pi_{\ell-1} \| \rho_{r}\right) \geq t \sup _{\substack{U \in \mathbb{R}^{d \times d} \\ \text { s.t. } U U^{\top}=I_{d}}} \mathcal{D}_{K L}\left(\left(U_{r}^{\top}\right)_{\sharp} \pi_{\ell-1} \| \rho_{r}\right),
$$

then $\left(T_{1} \circ \ldots \circ T_{\ell}\right)_{\sharp} \rho$ converges weakly to π.

Theorem (BBZSM21)

Let U^{1}, U^{2}, \ldots be a sequence of unitary matrices. For any $\ell \geq 1$, let $T_{\ell} \in \mathcal{T}_{r}\left(U^{\ell}\right)$ be a lazy map that minimizes $\mathcal{D}_{K L}\left(\pi_{\ell-1} \|\left(T_{\ell}\right)_{\sharp} \rho\right)$, where $\pi_{\ell-1}=\left(T_{1} \circ \ldots \circ T_{\ell-1}\right)^{\sharp} \pi$. If there exists $0<t \leq 1$ such that for any $\ell \geq 1$

$$
\mathcal{D}_{K L}\left(\left(U_{r}^{\ell \top}\right)_{\sharp} \pi_{\ell-1} \| \rho_{r}\right) \geq t \sup _{\substack{U \in \mathbb{R}^{d \times d} \\ \text { s.t. } U U^{\top}=I_{d}}} \mathcal{D}_{K L}\left(\left(U_{r}^{\top}\right)_{\sharp} \pi_{\ell-1} \| \rho_{r}\right),
$$

then $\left(T_{1} \circ \ldots \circ T_{\ell}\right)_{\sharp} \rho$ converges weakly to π.

Comments:

- This is a sufficient, not necessary, condition for convergence
- $t=1$ corresponds to an "ideal" greedy algorithm, but suboptimal choices for U^{ℓ} corresponding to $0<t<1$ are also sufficient
- Bound should apply simultaneously to all layers

