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Motivation: inverse problems in the Bayesian setting

Observations y Parameters x

πpos(x) := π(x |y) ∝ Ly (x) πpr(x)︸ ︷︷ ︸
Bayes’ rule

I Characterize the posterior distribution (density πpos)
I This is a challenging task since:

I x ∈ Rd is typically high-dimensional (e.g., a discretized function)
I πpos is non-Gaussian
I evaluations of the likelihood (hence πpos) may be expensive

I πpos can be evaluated up to a normalizing constant
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A conjecture

In many situations, the data are “informative” only on a low-dimensional
subspace

Rd = Xr︸︷︷︸
πpos 6= πpr

+ X⊥︸︷︷︸
πpos ≈ πpr
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A conjecture

In many situations, the data are “informative” only on a low-dimensional
subspace

This structure is now well understood in the linear–Gaussian case,
x ∼ N(0,Σpr), y |x ∼ N(Gx ,Σobs) [Spantini et al. 2015]:
I Optimal approximations of the posterior covariance as a low-rank

update of the prior, Σ̃pos = Σpr − KrK>r , for any r ≤ d
I Optimal posterior mean approximations, µ̃pos = Ary
I Central role of generalized eigenproblems, e.g.,

(
GT Σ−1

obsG ,Σ
−1
pr
)
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Low effective dimensionality of Bayesian inverse problems

More general idea: the posterior distribution can be well approximated by

π̃pos(x) ∝ L̃(Prx)πpr(x)

for some positive function L̃ and rank r linear projector Pr ∈ Rd×d

Pr induces a decomposition of the space

x = xr + x⊥

{
xr ∈ Im(Pr )
x⊥ ∈ Ker(Pr )

By construction, x 7→ L̃(Prx) = L̃(xr ) is only a function of xr ∈ Im(Pr ) ≡ Rr .

If r � d , we can:

I Design structure-exploiting MCMC algorithms to sample from πpos (e.g.,
DILI samplers [Cui, Law, M 2016])

I More easily build surrogates (i.e., fast approximations) of xr 7→ L̃(xr )

I Develop tractable variational characterizations of the posterior (second
part of this talk)
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Many previous proposals

I Pr can be defined as a projector onto the dominant eigenspace of a matrix
H ∈ Rd×d which contains “relevant information”

I Likelihood-informed subspace (LIS) [Cui et al. 2014]

HLIS =

∫ (
∇G

)T
Σ−1

obs

(
∇G

)
dπpos

where Ly follows from y ∼ N (G (x),Σobs)

I Active subspace (AS) [Constantine et al. 2015]

HAS =

∫
∇ logLy ⊗∇ logLy dπpr

I Similarly, various definitions of L̃:
I (LIS) Fix complementary parameters L̃(Prx) = Ly (Prx + (I − Pr )m0)

I (AS) Take conditional expectation of the log-likelihood

L̃(Prx) = expEπpr(logLy |Prx)
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Broad objective

Build an approximation of πpos of the form

π̃pos(x) ∝ L̃(Prx)πpr(x) with
{
L̃ : Rd → R+

Pr ∈ Rd×d rank-r projector

such that

DKL(πpos||π̃pos) ≤ ε

with r = r(ε) much smaller than d .

See full details in [ZCLSM 21].
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Decomposition of the error

A “Pythagorean” theorem

For any Pr and L̃ we have

DKL
(
πpos

∣∣∣∣π̃pos
)

= DKL
(
πpos

∣∣∣∣π∗pos
)︸ ︷︷ ︸

= function(Pr )

+DKL
(
π∗pos

∣∣∣∣π̃pos
)︸ ︷︷ ︸

= function(Pr ,L̃)

where
π∗pos(x) ∝ Eπpr

(
Ly
∣∣Prx

)
πpr(x)

This allows decoupling the construction of L̃ and Pr .
I Given Pr , the function L̃ such that L̃(Prx) = Eπpr

(
Ly
∣∣Prx

)
yields

DKL
(
π∗pos

∣∣∣∣π̃pos
)

= 0
I How to construct Pr such that

DKL
(
πpos

∣∣∣∣π∗pos
)
≤ ε

with a rank r � d ?

Marzouk et al. BIRS workshop 7 / 30



Decomposition of the error

A “Pythagorean” theorem

For any Pr and L̃ we have

DKL
(
πpos

∣∣∣∣π̃pos
)

= DKL
(
πpos

∣∣∣∣π∗pos
)︸ ︷︷ ︸

= function(Pr )

+DKL
(
π∗pos

∣∣∣∣π̃pos
)︸ ︷︷ ︸

= function(Pr ,L̃)

where
π∗pos(x) ∝ Eπpr

(
Ly
∣∣Prx

)
πpr(x)

This allows decoupling the construction of L̃ and Pr .
I Given Pr , the function L̃ such that L̃(Prx) = Eπpr

(
Ly
∣∣Prx

)
yields

DKL
(
π∗pos

∣∣∣∣π̃pos
)

= 0
I How to construct Pr such that

DKL
(
πpos

∣∣∣∣π∗pos
)
≤ ε

with a rank r � d ?

Marzouk et al. BIRS workshop 7 / 30



Constructing the projector Pr

Assumption on the prior distribution

There exist functions V and Ψ such that

πpr(x) ∝ exp
(
− V (x)−Ψ(x)

)
with

{
∇2V � Γ

exp(sup Ψ− inf Ψ) ≤ κ
for some SPD matrix Γ ∈ Rd×d and some κ ≥ 1.

- 2 - 1 1 2

1

2

3

4 -

I Gaussian prior satisfies this assumption with Γ = Σ−1
pr and κ = 1

I Gaussian mixture πpr ∝
∑

i N (µi ,Σi) also satisfies this assumption
I Uniform prior on convex bounded domain also allowed [ZCLSM21]
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Constructing the projector Pr

Based on this assumption, πpr satisfies the logarithmic Sobolev
inequality ∫

h2 log
h2∫

h2 dπpr
dπpr ≤ 2κ

∫
‖∇h‖2Γ−1dπpr

for any function h with sufficient regularity.

I Putting h2 = Ly/
∫
Ly dπpr bounds the KL divergence from prior to

posterior:

DKL(πpos||πpr) ≤
κ

2

∫
‖∇ logLy‖2Γ−1 dπpos
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Constructing the projector Pr

Proposition: subspace logarithmic Sobolev inequality

πpr also satisfies∫
h2 log

h2

E(h2|Prx)
dπpr ≤ 2κ

∫
‖(Id − PT

r )∇h‖2Γ−1 dπpr

for any function h with sufficient regularity and any projector Pr .

Corollary

For any projector Pr we have

DKL
(
πpos

∣∣∣∣π∗pos
)
≤
κ

2
Rπpos(Pr )

where

Rπpos(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖2Γ−1 dπpos
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Constructing the projector Pr

Corollary

For any projector Pr we have

DKL
(
πpos

∣∣∣∣π∗pos

)
≤
κ

2
Rπpos(Pr )

where

Rπpos(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖2Γ−1 dπpos

Finding Pr that minimizes this bound corresponds to PCA of ∇ logLy (X ).

I For a fixed r , the minimizer P∗r of the reconstruction error Rπpos(Pr ) is the
Γ-orthogonal projector onto the dominant generalized eigenspace of

H =

∫
∇ logLy ⊗∇ logLy dπpos

I Furthermore, we have Rπpos(P
∗
r ) =

∑
i>r λi , where λi is the i-th generalized

eigenvalue of (H, Γ)
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An idealized algorithm

1 Compute

H =

∫
∇ logLy ⊗∇ logLy dπpos

2 Define Pr as the projector on the dominant eigenspace of H

3 Compute the conditional expectation

L̃(Prx) = Epr(Ly |Prx)

Then π∗pos(x) ∝ L̃(Prx)πpr(x) satisfies

DKL
(
πpos

∣∣∣∣π∗pos

)
≤
κ

2

∑
i>r

λi

I At step 2, we can choose the rank r = r(ε) of Pr such that

DKL(πpos||π∗pos) ≤ ε

I A strong decay in λi implies r(ε)� d
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An idealized algorithm

1 Compute

H =

∫
∇ logLy ⊗∇ logLy dπpos

2 Define Pr as the projector on the dominant eigenspace of H

3 Compute the conditional expectation

L̃(Prx) = Epr(Ly |Prx)

Practical issues

I Evaluating H requires computing an integral over the posterior

I Computing the conditional expectation requires some effort
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Sample approximations

1 Monte Carlo approximation of H:

H ≈ ĤK :=
1
K

K∑
i=1

∇ logLy (Xi)⊗∇ logLy (Xi) with Xi
iid∼ πpos

Proposition

Under some assumptions, quasi-optimal projectors are obtained with high
probability 1− δ if

K ≥ O
(√

rank(H) +
√

log(2δ−1)
)2

I Key assumption: ∇ logLy (X ) is sub-Gaussian, for X ∼ πpos

2 Sample approximations of the conditional expectation Epr(Ly |Prx)
I Error controlled by same factors; details in [ZCLSM21]
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Example: GOMOS atmospheric remote sensing [Tamminen 2004]

I Estimate gas densities x = %gas(z) from transmission spectra yω(z)

I Beer’s law:

yω(z) = exp

(
−
∫

light path

∑
gas

αgas
ω (z(ζ)) %gas(z(ζ)) dζ

)
+ ξ

I Gaussian prior N (µpr,Σpr) (hence Γ = Σ−1
pr and κ = 1)

I After discretization of the atmosphere, dim(x) = 200
Marzouk et al. BIRS workshop 14 / 30



GOMOS: results

DKL(πpos||π̃pos) = function(r)

10 20 30 40 50

10−6

10−4

10−2

100

102

104

error bound
New, ρ = πpos

dHell(πpos, π̃pos) = function(r)

10 20 30 40 50
10−4

10−3

10−2

10−1

100

LIS, ρ = πpos

LIS, ρ = Laplace(πpos)
LIS, ρ = πpr
ρ = πpr

ρ = Laplace(πpos)
New, ρ = πpos

H =

∫
∇ logLy ⊗∇ logLy dπpos

H(ρ)
LIS =

∫ (
∇G

)T
Γ−1

obs

(
∇G

)
dρ
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An iterative algorithm

In practice, to avoid drawing samples from πpos, we can iterate directly
towards a low-dimensional approximation π̃pos:

Conceptually:(
ρ` ≡ π̃r ,`

pos

) sampling−→ H(ρ`+1) eigenprob−→ P`+1
r −→

(
ρ`+1 ≡ π̃r ,`+1

pos

)
→ · · ·
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Iterative algorithm: results

1 2 3 4 5

iteration k

10
-3

10
-1

10
1

10
3

10
5

10
7

er
ro
r

fix error threshold = 10−2

error bound

DKL(ν||ν̂
(k)
r ), Yi = m

10−2

1 2 3 4 5

iteration k

30

35

40

ra
n
k

1 2 3 4 5

iteration k

10
-3
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-1

10
1

10
3

10
5

10
7

er
ro
r

fix rank = 30

(left) fixed threshold; (right) fixed rank
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Questions about these low-dimensional approximations

Some open or interesting questions:
I Many MCMC algorithms use the subspace Im(Pr ) to derive proposals

and/or splitting (Metropolis-within-Gibbs) schemes (e.g., DILI [Cui et
al. 2016])
I Impact of subspace quality on computational performance of MCMC

algorithms? Some inital results in [Cui & Tong 2021]

I Understanding the convergence of iterative algorithms for identifying
the projector Pr , and the associated computational tradeoffs

I Extension to the infinite-dimensional setting
I Possibility of handling heavier-tailed priors?

Next: an application of these ideas to transport. . .
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Inference through transport

Main idea: Characterize πpos (henceforth π) as a transformation of some
simple distribution ρ.

Goal: Find a function T s.t. if X ∼ ρ, then T (X ) ∼ π.
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Inference through transport

Main idea: Characterize πpos (henceforth π) as a transformation of some
simple distribution ρ.

Goal: Find a function T s.t. if X ∼ ρ, then T (X ) ∼ π.

Notation:
pushforward
T]ρ = π ←→

pullback
ρ = T ]π
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How to construct a suitable map?

Maps from unnormalized densities, i.e., variational characterization of
the map T :

min
T∈T h

DKL(T] ρ ||π ) = min
T∈T h

DKL( ρ ||T−1
] π )

I π is the “target” density on Rd ; ρ is, e.g., N (0, Id)

I T h is a parameterized class of maps from Rd to itself
I For instance, monotone lower triangular maps (approximate the

Knothe–Rosenblatt rearrangement)
I Expectation is with respect to the reference measure ρ

I Compute via, e.g., Monte Carlo, sparse quadrature

I Use unnormalized evaluations of π and its gradients
I No MCMC or importance sampling
I In general non-convex, unless π is log-concave

I Key steps: (1) parameterize, (2) optimize
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Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions
I Essential trade-off between expressiveness and computational

effort/tractability!
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Low rank structure

(See [BBZSM 2020] for details.)

I Let U = [Ur U⊥] ∈ Rd×d be a unitary matrix, with Ur ∈ Rd×r . A
lazy map T : Rd → Rd takes the form:

T (z) = Urτ(z1, . . . , zr ) + U⊥z⊥
for some diffeomorphism τ : Rr → Rr .
I Map T ∈ Tr (U) departs from the identity only on an r -dimensional

subspace

I Proposition: For any lazy map T ∈ Tr (U), there exists a strictly
positive function f : Rr → R+ such that

T]ρ(x) = f (U>r x) ρ(x),

for all x ∈ Rd where ρ = N (0, Id). Conversely, any density of the
form f (U>r x) ρ(x) for some f : Rr → R+ admits a lazy map
representation.
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Discovering structure in π before optimization

How to find a good Ur?
I Define

Hπ := Eπ

[(
∇ log

π

ρ

)(
∇ log

π

ρ

)>]
I Let (λi , ui) be the ith eigenpair of Hπ and put Ur = [u1 u2 · · · ur ].
I From previous results: There exists a map T ? ∈ Tr (U) such that

DKL(π||T ?
] ρ) ≤

1
2

(λr+1 + . . .+ λd).

I Good approximation when the spectrum of Hπ decays quickly
I T ? uses a ridge approximation of the likelihood dπ

dρ ≈ f ?(U>r x), with

optimal profile function f ?(zr ) = EX∼ρ

[
π(X )
ρ(X ) |U

>
r X = zr

]
.
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Error bound after optimization (“trace diagnostic”)

Consider the matrix

HT ]π := ET ]π

[(
∇ log

T ]π

ρ

)(
∇ log

T ]π

ρ

)>]

Then
DKL(π||T]ρ) ≤

1
2

Tr (HT ).

Limiting case: if T ]π = ρ, then HT = 0 and DKL(π||T]ρ) = 0.

Bound on the forward KL divergence for a given map.
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Layers of lazy maps

I What if (λi) do not decay quickly? What if we are limited to small r?

I Answer: build a composition of lazy maps, via a greedy construction
T` = T1 ◦ T2 ◦ · · · ◦ T`

I Algorithm (“deeply lazy” maps):
I Given (π, ρ, r1): compute Hπ and construct a first lazy map T1
I Pull back π by T1: π2 := (T−1

1 )]π
I Given (π2, ρ, r2): compute Hπ2 and construct a next lazy map T2 . . .

I Generic iteration: at stage `, build a lazy map to the pullback
π` := (T1 ◦ T2 ◦ · · · ◦ T`−1)−1

] π

I Stop when 1
2 Tr(Hπ`) < ε
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Layers of lazy maps

Example: rotated “banana” target distribution, r = 1 maps

Target π T]1π T]2π

T]3π T]5π T]8π
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Example: log-Gaussian Cox process

0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

Field ΛΛΛ? and observations y?
Realizations of ΛΛΛ ∼ πΛΛΛ|y?
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Example: log-Gaussian Cox process

I Parameter dimension n = 4096, 30 observations; fixed ranks r

0 1 2 3 4 5 6 7
Lazy iteration 

100

101

102

103

1 2T
r(H

)

Lazy rank: 1
Lazy rank: 3
Lazy rank: 5

Convergence

0 10 20 30
Eigenvalues

10 3

10 1

101

103 Eig(H0)
Eig(H1)
Eig(H2)
Eig(H3)
Eig(H4)

Spectrum of Hπ`
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Example: elliptic PDE Bayesian inverse problem

{
∇ · (eκ(x)∇u(x)) = 0, for x ∈ D := [0, 1]2 ,

u(x) = 0 for x1 = 0, u(x) = 1 for x1 = 1, ∂u(x)
∂n = 0 for x2 ∈ {0, 1}

I Infer κ(x), discretized with n = 2601 parameters; 81 observations;
lazy maps of r ≤ 4 and polynomial degree up to 2

0

1

u(x) and observations
0 2 4 6 8 10

Lazy iteration 

100

101

102

103

104

105
1
2Tr(H )
1
2V[log /T ]

Convergence

3

2

1

0

1

2

Posterior realizations
of κ(x)
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Summary

I Identify and exploit low-dimensional structure in “updates” between
distributions (from prior to posterior, from reference to target):
I Derive an upper bound on the forward KL divergence
I Minimize this upper bound using PCA on ∇ logLy
I Better performance than heuristic gradient-based methods (e.g.,

likelihood-informed subspace or active subspaces)

I Transport methods: exploiting the pullback distribution
I Compositions of low-dimensional maps, constructed greedily (“deeply

lazy” maps)

Thanks for your attention!
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Approximation of π∗pos(x) ∝ Epr(Ly |Prx)πpr(x)

I The conditional expectation Epr(Ly |Prx) can be expressed as

x 7→
∫
Ly (Prx + (Id − Pr )z) πpr(z |Prx)dz

where πpr(·|Prx) denotes the conditional prior, which depends on x .

I Consider the following Monte Carlo estimate

L̃ : x 7→
1
M

M∑
i=1

Ly (Prx + (Id − Pr )Zi) , Zi
iid∼ πpr

In general, L̃(Prx) is a biased estimator for Epr(Ly |Prx).

Proposition

The random distribution π̃pos(x) ∝ L̃(Prx)πpr(x) is such that

E
(
DKL(π∗pos||π̃pos)

)
.
(
C1 +

C2

M

)
Rπpos(Pr )
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Convergence of the greedy construction

Theorem (BBZSM21)

Let U1,U2, . . . be a sequence of unitary matrices. For any ` ≥ 1, let
T` ∈ Tr (U`) be a lazy map that minimizes DKL(π`−1||(T`)]ρ), where
π`−1 = (T1 ◦ . . . ◦ T`−1)]π. If there exists 0 < t ≤ 1 such that for any
` ≥ 1

DKL((U`>r )]π`−1||ρr ) ≥ t sup
U∈Rd×d

s.t. UU>=Id

DKL((U>r )]π`−1||ρr ),

then (T1 ◦ . . . ◦ T`)]ρ converges weakly to π.

Comments:

I This is a sufficient, not necessary, condition for convergence

I t = 1 corresponds to an “ideal” greedy algorithm, but suboptimal choices for
U` corresponding to 0 < t < 1 are also sufficient

I Bound should apply simultaneously to all layers
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