Level structures and images of the

Steinberg module for surfaces with

marked points

Nathan Broaddus

Ohio State University
Joint with: T. Brendle and A. Putman
October 12, 2021

Preprint: https://arxiv.org/abs/2003.10913

Surface of genus g with n marked points

- Surface $\Sigma_{g, n}$ of genus g with finite marked point set $P \subset \Sigma_{g, n}$ with $|P|=n$.
- If $n=0$ we write Σ_{g}.

Moduli Space and Teichmüller space

- Moduli Space is
$\mathscr{M}_{g, n} \equiv\left\{\right.$ Complete fixed-area hyp. structures on $\left.\Sigma_{g, n}-P\right\}$
- $\mathscr{M}_{g, n}$ is orbifold with R-dimension $6 g-6+2 n$ and orbifold fundamental group Mod $_{g, n}$.
- Universal orbifold cover of $\mathscr{M}_{g, n}$ is Teichmüller space $\mathscr{T}_{g, n}$ (topologically $\mathbf{R}^{6 g-6+2 n}$ so contractible).

(Pure) mapping class group

Definition

(Pure) mapping class group of $\Sigma_{g, n}$ is

$$
\operatorname{Mod}_{g, n} \equiv \operatorname{Diff}^{+}\left(\Sigma_{g, n}, P\right) / \operatorname{Diff}^{0}\left(\Sigma_{g, n}, P\right)
$$

- Marked points fixed pointwise.
- Index n ! in usual $\operatorname{Mod}_{g, n}$
- Today all mapping classes are pure.

Why study cohomology of $\operatorname{Mod}_{g, n}$?

- Nice to be at a conference where no justification necessary!
- But also, $\mathscr{M}_{g, n}$ is $B \operatorname{Diff}\left(\Sigma_{g, n}\right)$ so cohomology gives characteristic classes of surface bundles.

$$
\mathrm{H}^{*}\left(\operatorname{Mod}_{g, n} ; \mathbf{Q}\right) \cong \mathrm{H}^{*}\left(\mathscr{M}_{g, n} ; \mathbf{Q}\right)
$$

vcd of mapping class group

Theorem (Harer)
$\operatorname{Mod}_{g, n}$ has virtual cohomological dimension

$$
\nu=\operatorname{vcd}\left(\operatorname{Mod}_{g, n}\right)=\left\{\begin{array}{cc}
4 g+n-4, & g \geq 1 \text { and } n \geq 1 \\
4 g-5, & g \geq 1 \text { and } n=0 \\
n-3, & g=0 \text { and } n \geq 3
\end{array}\right.
$$

Stable cohomology of $\mathscr{M}_{g, n}$

- Madsen-Weiss give graded ring isomorphism in degrees below

$$
\begin{aligned}
& \frac{2}{3}(g-1) \\
& \quad \mathbf{Q}\left[u_{1}, \cdots, u_{n}, \kappa_{1}, \kappa_{2}, \cdots\right] \rightarrow \mathrm{H}^{*}\left(\mathscr{M}_{g, n} ; \mathbf{Q}\right)
\end{aligned}
$$

- Miller Mumford Morita classes $\kappa_{i} \in \mathrm{H}^{2 i}\left(\mathscr{M}_{g, n} ; \mathbf{Q}\right)$
- Euler classes of tangent directions moving jth marked point $u_{j} \in \mathrm{H}^{2}\left(\mathscr{M}_{g, n} ; \mathbf{Q}\right)$

Unstable cohomology exists

- If cohomology for fixed topology were mostly stable classes then Euler characteristic would be at most polynomial in g and n. Harer-Zagier and Bini-Harer give super-exponential in both.
- Lots of unstable cohomology.

Unstable results

Unstable cohomology only possible in higher degrees
Theorem (Church-Farb-Putman, Morita-Sakasai-Suzuki)
For $g \geq 2$

$$
\mathrm{H}^{4 g-5}\left(\operatorname{Mod}_{g} ; \mathbf{Q}\right)=0
$$

Theorem (Chan-Galatius-Payne)
For $g \geq 7$

$$
\mathrm{H}^{4 g-6}\left(\operatorname{Mod}_{g} ; \mathbf{Q}\right) \neq 0
$$

Level- ℓ subgroup

Definition

$\ell \geq 2$. For P marked point set of $\Sigma_{g, n}$ level- ℓ subgroup
$\operatorname{Mod}_{g, n}[\ell]$ of $\operatorname{Mod}_{g, n}$ is kernel of action on $\mathrm{H}_{1}\left(\sum_{g, n}, P ; \mathbf{Z} / \ell\right)$

- Have corresponding moduli space for surfaces with level- ℓ structure $\mathscr{M}_{g, n}[\ell]$
- Cohomology of $\mathscr{M}_{g, n}[\ell]$ gives characteristic classes for surface bundles with level- ℓ structure.

Top cohomology virtually nontrivial for Mod_{g}

Theorem (Fullarton-Putman)
For $g \geq 1$ and p prime dividing ℓ

$$
\operatorname{dim}_{\mathbf{Q}} H^{4 g-5}\left(\operatorname{Mod}_{g}[\ell] ; \mathbf{Q}\right) \geq \frac{1}{g} p^{2 g-1} \prod_{k=1}^{g-1}\left(p^{2 k}-1\right) p^{2 k-1}
$$

Main Theorem

Theorem (Brendle-B-Putman)
For $g \geq 1, n \geq 2$ and $\ell \geq 2$
$\operatorname{dim}_{\mathbf{Q}} \mathrm{H}^{\nu}\left(\operatorname{Mod}_{g, n}[\ell] ; \mathbf{Q}\right) \geq\left(\prod_{k=1}^{\prod_{g-1}^{n}}\left(k \ell^{2 g}-1\right)\right) \cdot \underbrace{\operatorname{dim}_{\mathbf{Q}} \mathrm{H}^{4 g-3}\left(\operatorname{Mod}_{g, 1}[\ell] ; \mathbf{Q}\right)}_{\text {Fullowtan - Putman }}$

Curves

A curve is an isotopy class of embedded circle in $\Sigma_{g, n}$ not bounding disk with single marked point.

Fix hyp. metric on $\Sigma_{g, n}$ then curves have unique geodesic reps with minimal intersection.

- Curve system is disjoint set of curves.

Curve complex

- Curve complex $\mathscr{C}_{g, n}$
is flag complex with

vertex set curves in
$\Sigma_{g, n}$ and simplex for
each curve system

Homotopy type of curve complex

Theorem (Harer)

Curve complex has homotopy type of infinite wedge sum of spheres of dimension

$$
\lambda=\left\{\begin{array}{cl}
2 g+n-3, & g \geq 1 \text { and } n \geq 1 \\
2 g-2, & g \geq 1 \text { and } n=0 \\
n-4, & g=0 \text { and } n \geq 4
\end{array}\right.
$$

Harer Bordification

- Harer bordifies $\mathscr{T}_{g, n}$ to get $\overline{\mathscr{T}}_{g, n}$ with boundary

$$
\begin{aligned}
\partial \overline{\mathscr{T}}_{g, n} & =\overline{\mathscr{T}}_{g, n}-\mathscr{T}_{g, n} \\
& \simeq \mathscr{C}_{g, n} \\
& \simeq V^{\infty} S^{\lambda}
\end{aligned}
$$

- Harer work mirrors Borel-Serre bordification of symmetric space

Mapping class group is virtual duality group

Theorem (Harer)
$\operatorname{Mod}_{g, n}$ is a virtual duality group with

$$
\operatorname{vcd}\left(\operatorname{Mod}_{g, n}\right)=\left\{\begin{array}{cc}
4 g+n-4, & g \geq 1 \text { and } n \geq 1 \\
4 g-5, & g \geq 1 \text { and } n=0 \\
n-3, & g=0 \text { and } n \geq 3
\end{array}\right.
$$

and dualizing module the Steinberg module

$$
\mathrm{St}_{g, n}=\widetilde{\mathrm{H}}_{\lambda}\left(\mathscr{C}_{g, n}\right)
$$

Steinberg module facts

Theorem (B, Birman-B-Menasco)

$\mathrm{St}_{g, 1}$ and $\mathrm{St}_{0, n}$ have finite virtually free Mod-module resolutions with last two terms giving finite Mod-module presentations .

Theorem (B, Birman-B-Menasco)
$\mathrm{St}_{g, 1}$ and $\mathrm{St}_{0, n}$ are cyclic Mod-modules hence singleton generator is nontrivial sphere.

St_{2} generator

Top cohomology and Steinberg coinvariants

- Now return to the rational Steinberg module

$$
\mathrm{St}_{g, n}=\widetilde{\mathrm{H}}_{\lambda}\left(\mathscr{C}_{g, n} ; \mathbf{Q}\right)
$$

- By duality if $\Gamma<\operatorname{Mod}_{\text {g.n }}$ finite index then

$$
H^{\nu}(\Gamma ; \mathbf{Q}) \cong H_{0}(\Gamma ; S t) \cong(S t)_{\Gamma}
$$

- Hence cohomology in vcd if $\operatorname{Mod}_{g, n}[\ell]$ in vcd is coinvariants

$$
(\mathrm{St})_{\mathrm{Mod}_{g, n}[\ell]}
$$

Forgetful map on $\mathscr{C}_{g, n}$

- For $n \geq 2$ have partially defined "forgetful map"

$$
\mathscr{C}_{g, n} \rightarrow \mathscr{C}_{g, n-1}
$$

which "forgets" nth marked point.

- Let $\mathbf{A}_{g, n}$ be set of curves in $\Sigma_{g, n}$ bounding dsk containing nth marked point and one other marked point.
- Forgetful map defined except on $\mathbf{A}_{g, n}$

Inductive description of homotopy type of

curve complex

- For $g \geq 1$ and $n \geq 2$ such that $\Sigma_{g, n} \notin\left\{\Sigma_{0,2}, \Sigma_{0,3}\right\}$ there is a
$\operatorname{Mod}_{g, n}$-equivariant homotopy equivalence

$$
\mathscr{C}_{g, n} \simeq \mathbf{A}_{g, n} * \mathscr{C}_{g, n-1}
$$

We give new proof using "Hatcher Flow".

Homotopy picture of curve complex

$\mathbf{X}_{g, n}$ homotopy equivalent to $\mathscr{C}_{g, n-1}$

- Let $\mathbf{X}_{g, n} \subset \mathscr{C}_{g, n}$ be full subcomplex spanned by vertices of $\mathscr{C}_{g, n}$ not in $A C_{g, n}$

Proposition

For all $c \in \mathbf{A}_{g, n}$ we have deformation retraction

Proof.

$$
r_{c}: \mathbf{X}_{g, n} \rightarrow \mathrm{I}_{\mathscr{C}_{g, n}}(c)
$$

Set α to be unique arc connecting nth

marked point to other marked point disjoint from c.

Hatcher flow

Consequences for $\mathrm{St}_{g, n}$

- Joining wedge sum of spheres with discrete set gives wedge sum of spheres of increased dimension
- Hence

$$
\mathrm{St}_{g, n} \cong \widetilde{\mathrm{H}}_{\lambda}\left(\mathscr{C}_{g, n} ; \mathbf{Q}\right) \cong \widetilde{\mathrm{H}}_{0}\left(\mathbf{A}_{g, n} ; \mathbf{Q}\right) \otimes \widetilde{\mathrm{H}}_{\lambda-1}\left(\mathscr{C}_{g, n-1} ; \mathbf{Q}\right)
$$

Inductive Steinberg description

- For S a set let $\widetilde{\mathbf{Q}}[S]$ denote the kernel of augmentation

$$
\varepsilon: \mathbf{Q}[S] \rightarrow \mathbf{Q}
$$

- Get inductive description:

$$
\mathrm{St}_{g, n} \cong \widetilde{\mathbf{Q}}\left[\mathbf{A}_{g, n}\right] \otimes \mathrm{St}_{g, n-1}
$$

- Enough to find $\operatorname{Mod}_{g, n}[\ell]$-invariant quotients of factors on RHS.

Action of $\operatorname{Mod}_{g, n}[\ell]$ on $\mathbf{A}_{g, n}$

- Now view $\mathbf{A}_{g, n}$ as set of arcs (embedded intervals connecting distinct elts. of P)
- Let $\mathbf{A}_{g, n}^{k} \subset \mathbf{A}_{g, n}$ be arcs connecting k th and nth marked points p_{k} and p_{n}.

Lemma

Action of $\operatorname{Mod}_{g, n}[\ell]$ on arc set $\mathbf{A}_{g, n}^{k}$ has $\ell^{2 g}$ orbits.

Source of lower bound formula

Proposition

Action of $\operatorname{Mod}_{g, n}[\ell]$ on arc set $\mathbf{A}_{g, n}^{k}$ has $(n-1) \ell^{2 g}$ orbits.

- Adding nth marked point multiplies size of basis of coinvariants by $(n-1) \ell^{2 g}-1$
- Let $\mathbf{A}_{g, n}^{k} \subset \mathbf{A}_{g, n}$ be arcs connecting k th and nth marked points p_{k} and p_{n}.

Applications

For $g \geq 2$ and $n \geq 1$
Conjecture (Looijenga)

$$
\operatorname{CohCD}\left(\mathscr{M}_{g}\right) \leq g-2
$$

Theorem (Fullarton-Putman)

$$
\operatorname{CohCD}\left(\mathscr{M}_{g}\right) \geq g-2
$$

Theorem (Brendle-B-Putman)

$$
\begin{aligned}
& \operatorname{CohCD}\left(\mathscr{M}_{g, n}\right) \geq g-1 \\
& \operatorname{CohCD}\left(\mathscr{M}_{g, n}\right) \leq \operatorname{CohCD}\left(\mathscr{M}_{g}\right)+1
\end{aligned}
$$

