Passive Source Localization

Margaret Cheney

with help from Jim Given (NRL) Chad Waddington (AFRL) Karleigh & Sam Pine (Matrix Research)

Passive Source Localization

Need for passive source localization

- Locate emergency beacons (downed aircraft, lost hikers, lost drones)
- Find locations where gunshots were fired
- Air and ship traffic management
- Military might want to locate:
 - adversary radars, communications systems, drones and drone controllers, jammers,
 - ships, submarines,
- Drones make near-field localization systems important

on j'th receiver: $d_j(t) = \beta_j a(t - \tau_j) e^{i(\Omega - \nu_j)t} + n_j(t)$ \uparrow \uparrow \uparrow unknowns: attenuation time delay Doppler shift

How to find TDOA

TDOA Hyperboloids revolve 2D hyperbola around x axis

http://virtualmathmuseum.org/Surface/hyperboloid2/hyperboloid2.html

How to find both TDOA and FDOA

Jarvensivu, P., Marja Matinmikko, and A. Mammela. "Signal design for LS and MMSE channel estimators." In *The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications*, vol. 2, pp. 956-960. IEEE, 2002.

TDOA/FDOA geolocation

TDOA/FDOA with two emitters

instead try to form SAR-like image

FDOA Curves with V1 = -V2; Parallel to X Axis

X Coordinate - Emttr Position

Geolocation Approaches

• current use: two-step methods

- one-step methods: use all the data together
 - backproject cross-correlation or cross-ambiguity, sum coherently (tomographic imaging)
 - focus is determined by TDOA and FDOA

Forward Problem (multiple sources)

$$\left(
abla^2 - rac{1}{c^2}rac{\partial^2}{\partial t^2}
ight)\mathcal{E}(t,m{x}) = p(t,m{x})$$
 = waveform transmitted from location $\,m{x}$

Ideal measured data: $d_1(t) = \mathcal{E}_1(t, \gamma_1(t)), \quad d_2(t) = \mathcal{E}_2(t, \gamma_2(t))$

for known flight paths γ_1,γ_2

plus noise

Inverse Problem

Given data:
$$d_1(t) = \mathcal{E}_1(t, \gamma_1(t)), \quad d_2(t) = \mathcal{E}_2(t, \gamma_2(t))$$

for known flight paths γ_1, γ_2

Find: $p(t, \boldsymbol{x})$? underdetermined

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathcal{E}(t, \boldsymbol{x}) = p(t, \boldsymbol{x})$$

$$\rho(\boldsymbol{x}) = \int |p(t, \boldsymbol{x})|^2 dt?$$

Today: Pieces of the problem

 Geometry of two-step localization from fixed positions: What are FDOA iso-surfaces?

Synthetic-aperture approaches (for a distribution of sources)

Basic Facts about FDOA

 Obtain FDOA from coherence detector, cross-ambiguity functions, or frequency ratios

$$\frac{\omega_2}{\omega_1} = \frac{\omega_0 \left(1 + \widehat{\boldsymbol{R}}_{\boldsymbol{y},2} \cdot \frac{\boldsymbol{v}_2}{c}\right)}{\omega_0 \left(1 + \widehat{\boldsymbol{R}}_{\boldsymbol{y},1} \cdot \frac{\boldsymbol{v}_1}{c}\right)} = 1 + \frac{1}{c} \cdot \left(\underbrace{\widehat{\boldsymbol{R}}_{\boldsymbol{y},2} \cdot \boldsymbol{v}_2 - \widehat{\boldsymbol{R}}_{\boldsymbol{y},1} \cdot \boldsymbol{v}_1}_{\text{FDOA}} + \cdots\right)$$

Notation:

 \bullet

FDOA
$$= \widehat{\boldsymbol{R}}_{\boldsymbol{y},2} \cdot \boldsymbol{v}_2 - \widehat{\boldsymbol{R}}_{\boldsymbol{y},1} \cdot \boldsymbol{v}_1$$

• sensitivity $\nabla_{\boldsymbol{y}} \text{FDOA} = \frac{I - \widehat{\boldsymbol{R}}_{\boldsymbol{y},2} \widehat{\boldsymbol{R}}_{\boldsymbol{y},2}^T}{|\boldsymbol{R}_{\boldsymbol{y},2}|} \cdot \boldsymbol{v}_2 - \frac{I - \widehat{\boldsymbol{R}}_{\boldsymbol{y},1} \widehat{\boldsymbol{R}}_{\boldsymbol{y},1}^T}{|\boldsymbol{R}_{\boldsymbol{y},1}|} \cdot \boldsymbol{v}_1$

In far-field, |R| is large, so changes in source position have small effect on FDOA

• far-field analysis $FDOA \approx (\boldsymbol{v}_1 - \boldsymbol{v}_2) \cdot \widehat{\boldsymbol{R}}_{\boldsymbol{y}}$ cone!

K.J. Cameron & S.J. Pine, A novel method for determining DOA from far-field FDOA or FDOA 2018, arXiv:1808.04741v1

when
$$v_1 = v_2 \doteq v$$
 FDOA = $\frac{v \cdot \left[I - \widehat{R_y} \widehat{R_y}^T\right] \cdot \Delta s}{|R_y|}$ vector difference between sensors

 $|\boldsymbol{R}_{\boldsymbol{y}}| = \frac{\boldsymbol{v} \cdot \left[I - \widehat{\boldsymbol{R}_{\boldsymbol{y}}} \widehat{\boldsymbol{R}_{\boldsymbol{y}}}^T\right] \cdot \Delta \boldsymbol{s}}{\text{FDOA}}$

or

can use to plot approximate far-field FDOA curves when velocities are the same

FDOA curves with unequal velocities

Note linearity in far field as predicted by Cameron-Pine theory

Far-field, case of equal sensor velocities

top: true FDOA curves passing through small red circles

bottom: approximate far-field formula

nulls are along velocity directions and along sensor axis

TDOA-FDOA far-field 2-sensor geolocation, unequal velocities

TDOA and FDOA curves are tangent in the far field

TDOA-FDOA far-field 2-sensor geolocation, equal velocities

degenerate case: source lies along velocity axis or source lies along sensor axis (FDOA = 0)

$$|\boldsymbol{R}_{\boldsymbol{y}}| = rac{\boldsymbol{v} \cdot \left[I - \widehat{\boldsymbol{R}_{\boldsymbol{y}}} \widehat{\boldsymbol{R}_{\boldsymbol{y}}}^T\right] \cdot \Delta s}{\text{FDOA}}$$

FDOA Iso-surfaces: Unequal velocities in the sensor plane

0

sensors are always at (1,0,0) and (-1,0,0)

red: surface passes through (1,1,1) cyan: surface passes through (1,10,0)

es (2.2.0), (1.3.0

FDOA isosurface, sensor velocities (1,0,0), (0,1,0)

FDOA isosurface, sensor velocities (1,0,0), (0,1,0)

Unequal velocities out of the sensor plane

FDOA isosurface, sensor velocities (1,1,1), (1,0,1)

FDOA isosurface, sensor velocities (1,1,1), (1,0,1)

FDOA isosurface, sensor velocities (1,1,1), (1,-1,1)

FDOA isosurface, sensor velocities (1,0,2), (0,1,1)

FDOA isosurface, sensor velocities (1,0,2), (0,1,1)

Equal velocities sensors are always at (1,0,0) and (-1,0,0)

red: surface passes through (1,1,1) cyan: surface passes through (1,10,0)

FDOA isosurface, sensor velocities (1,1,0), (1,1,0)

FDOA isosurface, sensor velocities (1,0,0), (1,0,0)

FDOA isosurface, sensor velocities (1,0,0), (1,0,0)

FDOA isosurface, sensor velocities (0,1,0), (0,1,0)

extra symmetry

FDOA isosurface, sensor velocities (0,1,0), (0,1,0)

FDOA isosurface, sensor velocities (1,1,0), (1,1,0)

Sequence of FDOA isosurfaces for velocity pair (1,1,1), (1,0,1)

FDOA isosurface, sensor velocities (1,1,1), (1,0,1)

10

-5

-10

-6

-4

V

-2

-10

-2

This shrinks to nothing as d becomes more negative

Conclusions for (single-look) FDOA localization

- Far-field is now reasonably well-understood
- TDOA/FDOA far-field localization:
 - with different velocities: far-field TDOA and FDOA lines are tangent (bad)
 - with equal velocities: OK away from sensor axis and velocity axis
 - quasi-near-field region for source on a known plane
- Near-field ?????

Pine, K.C., Pine, S. and Cheney, M., 2021. The Geometry of Far-Field Passive Source Localization with TDOA and FDOA. *IEEE Trans. on Aerospace and Electronic Systems*.

One-step approach: Synthetic Aperture Source Localization (SASL) PhD dissertation of Chad Waddington

$$\nabla^2 \mathcal{E} - \frac{1}{c^2} \frac{\partial^2 \mathcal{E}}{\partial t^2} = \sum_n p_n(t) \delta(\mathbf{x} - \mathbf{e}_n)$$
source locations
slow time variable
$$\mathbf{field \ at \ sensor \ i} \qquad \mathcal{E}_i(s, t) = \sum_n \frac{p_n(t - |\gamma_i(s) - \mathbf{e}_n|/c)}{4\pi |\gamma_i(s) - \mathbf{e}_n|}$$

cross-correlate

$$d(s,t) = \int \mathcal{E}_1^*(s,t+\tau)\mathcal{E}_2(s,\tau)d\tau$$

diagonal terms

cross terms

Diagonal termsAssume: $\sum |P_n(\omega)|^2 \delta(\boldsymbol{y} - \boldsymbol{e}_n) \approx B(\omega)V(\boldsymbol{y})$ \uparrow \uparrow Fourier transform
of waveform \uparrow source density
function

$$d_D(s,t) = \int e^{-i\omega(t-r(s,\boldsymbol{y})/c)} A(s,\boldsymbol{y}) B(\omega) d\omega \ V(\boldsymbol{y}) d\boldsymbol{y}$$

TDOA $r(s,\boldsymbol{y}) = |\gamma_2(s) - \boldsymbol{y}| - |\gamma_1(s) - \boldsymbol{y}|$

Fourier integral operator

Form image based on diagonal terms.

$$I(\boldsymbol{z}) = \int e^{i\omega(t-r(s,\boldsymbol{z})/c)}Q(s,\omega,\boldsymbol{z})d\omega \ d(s,t)dsdt$$

What happens to cross terms?

Longer synthetic aperture

df.

When sources are transmitting the SAME waveform,
 cross terms still focus only at correct source positions!

5 sources transmitting the same waveform

Longer synthetic aperture

Analysis of Image

$$\begin{split} I(\boldsymbol{z}) &= \int e^{i\omega(t-r(s,\boldsymbol{z})/c)}Q(s,\omega,\boldsymbol{z})d\omega \ d(s,t)dsdt\\ &\text{plug in } \mathbf{\hat{n}}\\ d_D(s,t) &= \int e^{-i\omega(t-r(s,\boldsymbol{y})/c)}A(s,\boldsymbol{y})B(\omega)d\omega \ V(\boldsymbol{y})d\boldsymbol{y} \end{split}$$

stationary phase calculation: main contribution comes from

$$r(s, \boldsymbol{y}) = r(s, \boldsymbol{z})$$
 TDOAs match $r(s, \boldsymbol{y}) = |\gamma_2(s) - \boldsymbol{y}| - |\gamma_1(s) - \boldsymbol{y}|$
 $\frac{\partial r(s, \boldsymbol{y})}{\partial s} = \frac{\partial r(s, \boldsymbol{z})}{\partial s}$ FDOAs match

analysis of cross terms proceeds similarly

Resolution (analysis of diagonal terms)

desirable vs. undesirable geometry

(a) The DCM when the stationary re- (b) The DCM when the stationary re- ceiver is located at (10km,20km). ceiver is located at (0km, 20km).

Figure 1: The Data Collection Manifold(DCM) for the scene center for two locations of the stationary receiver

Summary

• Cross-correlation + synthetic aperture imaging

- Analysis of cross terms
- Resolution

Focusing occurs only in correct source locations!!!

"Synthetic Aperture Source Localization", C. Waddington, M. Cheney, J.A. Given, Inverse Problems 36 (2020) 015007

Open questions (SASL)

- Avoid assumption about waveforms
- Interaction of different waveforms
- Use cross-correlation function or cross-ambiguity function?
- Artifacts?
- Both receivers moving
- Desirable and undesirable flight paths
- Positioning uncertainty & noise

Open questions (other methods)

- Analysis of FDOA curves & surfaces (algebraic geometry)
- Exploit partial information about waveform
- Treat other waveforms as noise?

Want to do the same for sonar!

https://www.comsol.com/model/underwater-ray-tracing-tutorial-in-a-2d-axisymmetric-geometry-44711

Thanks!