Hermitian geometry of Oeljeklaus-Toma manifolds

Alexandra Otiman

University of Florence and Institute of Mathematics of the Romanian Academy

Locally Conformal Symplectic Manifolds: Interactions and Applications
Banff, 2021

•
$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
 (g Hermitian)

- $g(\cdot, \cdot) = g(J\cdot, J\cdot)$ (g Hermitian)
- $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J\cdot, \cdot)$).

- $g(\cdot, \cdot) = g(J\cdot, J\cdot)$ (g Hermitian)
- $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J\cdot, \cdot)$).
 - $\dim_{\mathbb{C}} = 1$:

- $g(\cdot, \cdot) = g(J\cdot, J\cdot)$ (g Hermitian)
- $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J\cdot, \cdot)$).
 - $\dim_{\mathbb{C}} = 1 : (M, J, g)$ Kähler

- $g(\cdot, \cdot) = g(J\cdot, J\cdot)$ (g Hermitian)
- $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J\cdot, \cdot)$).
 - $\dim_{\mathbb{C}} = 1 : (M, J, g)$ Kähler
 - $\dim_{\mathbb{C}} = 2$:

- $g(\cdot, \cdot) = g(J\cdot, J\cdot)$ (g Hermitian)
- $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J\cdot, \cdot)$).
 - $\dim_{\mathbb{C}} = 1 : (M, J, g)$ Kähler
 - $\dim_{\mathbb{C}} = 2$:

Theorem (Miyaoka, Todorov, Siu, Buchdahl, Lamari)

(M, J) compact complex surface admits a Kähler metric $\Leftrightarrow b_1$ even.

(Global Spherical Shell) Conjecture: These are all the surfaces!

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics?

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

pluriclosed metrics

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

• pluriclosed metrics ($\partial \overline{\partial} \Omega = 0$, Gauduchon metrics in $\dim_{\mathbb{C}} = 2$)

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial \overline{\partial} \Omega = 0$, Gauduchon metrics in $\dim_{\mathbb{C}} = 2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are locally conformally Kähler (IcK) (Tricerri, Ornea, Gauduchon, Belgun, Brunella)

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial \overline{\partial} \Omega = 0$, Gauduchon metrics in $\dim_{\mathbb{C}} = 2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are *locally conformally Kähler (lcK)* (Tricerri, Ornea, Gauduchon, Belgun, Brunella) Ω is *lcK* if $d\Omega = \theta \wedge \Omega$, for a closed real one-form θ .

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial \overline{\partial} \Omega = 0$, Gauduchon metrics in $\dim_{\mathbb{C}} = 2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are *locally conformally Kähler (lcK)* (Tricerri, Ornea, Gauduchon, Belgun, Brunella) Ω is *lcK* if $d\Omega = \theta \wedge \Omega$, for a closed real one-form θ .

What about their higher dimensional analogues?

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial \overline{\partial} \Omega = 0$, Gauduchon metrics in $\dim_{\mathbb{C}} = 2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are *locally conformally Kähler (lcK)* (Tricerri, Ornea, Gauduchon, Belgun, Brunella) Ω is *lcK* if $d\Omega = \theta \wedge \Omega$, for a closed real one-form θ .

What about their higher dimensional analogues? Today: Study Oeljeklaus-Toma manifolds (generalize Inoue surfaces of type S_A)

Let $A \in \mathrm{SL}_3(\mathbb{Z})$ with one real eigenvalue $\alpha > 1$ and two complex eigenvalues β and $\overline{\beta}$.

Let $A \in \mathrm{SL}_3(\mathbb{Z})$ with one real eigenvalue $\alpha > 1$ and two complex eigenvalues β and $\overline{\beta}$.

 (a_1, a_2, a_3) - eigenvector of α .

Let $A \in \mathrm{SL}_3(\mathbb{Z})$ with one real eigenvalue $\alpha > 1$ and two complex eigenvalues β and $\overline{\beta}$.

 (a_1, a_2, a_3) - eigenvector of α .

 (b_1, b_2, b_3) - eigenvector of β .

Let $A \in SL_3(\mathbb{Z})$ with one real eigenvalue $\alpha > 1$ and two complex eigenvalues β and $\overline{\beta}$.

 (a_1, a_2, a_3) - eigenvector of α .

 (b_1, b_2, b_3) - eigenvector of β .

 G_A be the group of affine transformations of $\mathbb{C} \times \mathbb{H}$ generated by:

$$(z, w) \mapsto (\beta z, \alpha w),$$

 $(z, w) \mapsto (z + b_i, w + a_i).$

Let $A \in SL_3(\mathbb{Z})$ with one real eigenvalue $\alpha > 1$ and two complex eigenvalues β and $\overline{\beta}$.

 (a_1, a_2, a_3) - eigenvector of α .

 (b_1, b_2, b_3) - eigenvector of β .

 G_A be the group of affine transformations of $\mathbb{C} \times \mathbb{H}$ generated by:

$$(z, w) \mapsto (\beta z, \alpha w),$$

 $(z, w) \mapsto (z + b_i, w + a_i).$

$$S_A := \mathbb{C} \times \mathbb{H}/G_A$$

Let $A \in SL_3(\mathbb{Z})$ with one real eigenvalue $\alpha > 1$ and two complex eigenvalues β and $\overline{\beta}$.

 (a_1, a_2, a_3) - eigenvector of α .

 (b_1, b_2, b_3) - eigenvector of β .

 G_A be the group of affine transformations of $\mathbb{C} \times \mathbb{H}$ generated by:

$$(z, w) \mapsto (\beta z, \alpha w),$$

 $(z, w) \mapsto (z + b_i, w + a_i).$

$$\mathcal{S}_A := \mathbb{C} \times \mathbb{H} / \mathcal{G}_A$$

Theorem

Tricerri ('82) On S_A , the metric $\omega = \frac{dw \wedge d\overline{w}}{(\operatorname{Im} w)^2} + \operatorname{Im} w \, dz \wedge d\overline{z}$ is lcK $(d\omega = \frac{d \operatorname{Im} w}{\operatorname{Im} w} \wedge \omega)$.

• introduced by K. Oeljeklaus and M. Toma in 2005

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

 $\sigma_1, \ldots, \sigma_s \colon K \hookrightarrow \mathbb{R}$ s real embeddings

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon \mathsf{K} \hookrightarrow \mathbb{R}$$
 s real embeddings

$$\sigma_{s+1}, \dots, \sigma_{s+t} : K \hookrightarrow \mathbb{C}$$

$$\overline{\sigma}_{s+1}, \dots, \overline{\sigma}_{s+t} : K \hookrightarrow \mathbb{C}$$

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon \mathsf{K} \hookrightarrow \mathbb{R} \qquad s \text{ real embeddings}$$

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1,\ldots,\sigma_s\colon K\hookrightarrow\mathbb{R}$$
 s real embeddings

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

 $K = \mathbb{Q}(\alpha)$, α algebraic number,

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon \mathsf{K} \hookrightarrow \mathbb{R} \qquad \mathsf{s} \text{ real embeddings}$$

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

 $K = \mathbb{Q}(\alpha)$, α algebraic number, α_i its conjugates

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon K \hookrightarrow \mathbb{R}$$
 s real embeddings

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

 $K = \mathbb{Q}(\alpha)$, α algebraic number, α_i its conjugates

$$\sigma_i:K\to\mathbb{C}$$

$$\sigma_i(\alpha) = \alpha_i$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon K \hookrightarrow \mathbb{R}$$
 s real embeddings

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

 $K = \mathbb{Q}(\alpha)$, α algebraic number, α_i its conjugates

$$\sigma_i:K\to\mathbb{C}$$

$$\sigma_i(\alpha) = \alpha_i$$

$$[K:\mathbb{Q}]=n=s+2t$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon \mathsf{K} \hookrightarrow \mathbb{R} \qquad s \text{ real embeddings}$$

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

 $K = \mathbb{Q}(\alpha)$, α algebraic number, α_i its conjugates

$$\sigma_i: K \to \mathbb{C}$$
$$\sigma_i(\alpha) = \alpha_i$$

 $[K:\mathbb{Q}] = n = s + 2t$ (from now on, consider only the case $s, t \ge 1$).

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Let $\mathbb{Q} \subseteq K$ finite extension, $[K : \mathbb{Q}] = n$

$$\sigma_1, \ldots, \sigma_s \colon \mathsf{K} \hookrightarrow \mathbb{R} \qquad s \text{ real embeddings}$$

$$\left. \begin{array}{l} \sigma_{s+1}, \ldots, \sigma_{s+t} : \mathcal{K} \hookrightarrow \mathbb{C} \\ \overline{\sigma}_{s+1}, \ldots, \overline{\sigma}_{s+t} \colon \mathcal{K} \hookrightarrow \mathbb{C} \end{array} \right\} 2t \text{ complex embeddings}.$$

 $K = \mathbb{Q}(\alpha)$, α algebraic number, α_i its conjugates

$$\sigma_i: K \to \mathbb{C}$$
$$\sigma_i(\alpha) = \alpha_i$$

 $[K:\mathbb{Q}] = n = s + 2t$ (from now on, consider only the case $s, t \geq 1$). For any $s, t \in \mathbb{N}$, there exists $\mathbb{Q} \subseteq K$ with s real embeddings, 2t complex embeddings.

Let
$$\left\{ \begin{array}{l} \mathcal{O}_K \text{ the ring of algebraic integers of } K \\ \mathcal{O}_K^{*,+} = \{u \in \mathcal{O}_K^* \mid \sigma_i(u) > 0, 1 \leq i \leq s \} \end{array} \right.$$

$$\mathsf{Let} \left\{ \begin{array}{l} \mathcal{O}_K \text{ the ring of algebraic integers of } K \\ \mathcal{O}_K^{*,+} = \{u \in \mathcal{O}_K^* \mid \sigma_i(u) > 0, 1 \leq i \leq s \} \end{array} \right.$$

$$\mathcal{O}_{\mathcal{K}} \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t$$

Let
$$\left\{ \begin{array}{l} \mathcal{O}_K \text{ the ring of algebraic integers of } K \\ \mathcal{O}_K^{*,+} = \left\{ u \in \mathcal{O}_K^* \mid \sigma_i(u) > 0, 1 \leq i \leq s \right\} \\ \\ \mathcal{O}_K \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t \end{array} \right.$$

$$T_a(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}) := (w_1 + \sigma_1(a),\ldots,z_{s+t} + \sigma_{s+t}(a)).$$

Let
$$\left\{ \begin{array}{l} \mathcal{O}_K \text{ the ring of algebraic integers of } K \\ \mathcal{O}_K^{*,+} = \left\{ u \in \mathcal{O}_K^* \mid \sigma_i(u) > 0, 1 \leq i \leq s \right\} \end{array} \right.$$

$$\mathcal{O}_{\mathcal{K}} \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t$$

$$T_a(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}) := (w_1 + \sigma_1(a),\ldots,z_{s+t} + \sigma_{s+t}(a)).$$

$$\sigma: \mathcal{O}_{\kappa} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}$$

Let
$$\left\{ \begin{array}{l} \mathcal{O}_K \text{ the ring of algebraic integers of } K \\ \mathcal{O}_K^{*,+} = \left\{ u \in \mathcal{O}_K^* \mid \sigma_i(u) > 0, 1 \leq i \leq s \right\} \end{array} \right.$$

$$T_a(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}) := (w_1 + \sigma_1(a),\ldots,z_{s+t} + \sigma_{s+t}(a)).$$

 $\mathcal{O}_{\kappa} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}$

$$\sigma: \mathcal{O}_{\mathcal{K}} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}$$

$$\sigma(a) = (\sigma_1(a), \ldots, \sigma_{s+t}(a))$$

$$T_a(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}):=(w_1+\sigma_1(a),\ldots,z_{s+t}+\sigma_{s+t}(a)).$$

$$\sigma: \mathcal{O}_{\mathcal{K}} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}$$

$$\sigma(a) = (\sigma_1(a), \ldots, \sigma_{s+t}(a))$$

 $\operatorname{Im} \sigma$ is a lattice of rank s + 2t = n

Let
$$\left\{ \begin{array}{l} \mathcal{O}_K \text{ the ring of algebraic integers of } K \\ \mathcal{O}_K^{*,+} = \{u \in \mathcal{O}_K^* \mid \sigma_i(u) > 0, 1 \leq i \leq s \} \end{array} \right.$$

$$\mathcal{O}_{\mathcal{K}} \circlearrowleft \mathbb{H}^s imes \mathbb{C}^t$$

$$T_a(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}) := (w_1 + \sigma_1(a),\ldots,z_{s+t} + \sigma_{s+t}(a)).$$

$$\sigma: \mathcal{O}_{\mathcal{K}} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}$$

$$\sigma(a) = (\sigma_1(a), \ldots, \sigma_{s+t}(a))$$

 $\operatorname{Im} \sigma$ is a lattice of rank s + 2t = n

$$\mathbb{H}^s \times \mathbb{C}^t / \mathcal{O}_K \simeq \mathbb{R}^s_+ \times \mathbb{T}^n$$

$$\mathcal{O}_{K}^{*,+}\circlearrowleft\mathbb{H}^{s}\times\mathbb{C}^{t}$$

$$\mathcal{O}_{\mathcal{K}}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}$$

$$R_u(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}):=(w_1\cdot\sigma_1(u),\ldots,z_{s+t}\cdot\sigma_{s+t}(u)).$$

$$\mathcal{O}_{\kappa}^{*,+}\circlearrowleft\mathbb{H}^{s}\times\mathbb{C}^{t}$$

$$R_u(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}) := (w_1\cdot\sigma_1(u),\ldots,z_{s+t}\cdot\sigma_{s+t}(u)).$$

$$\mathcal{O}_{\kappa}^{*,+}\circlearrowleft\mathbb{H}^s\times\mathbb{C}^t/\mathcal{O}_{\kappa}$$

$$\mathcal{O}_{\kappa}^{*,+}\circlearrowleft\mathbb{H}^{s}\times\mathbb{C}^{t}$$

$$R_u(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}):=(w_1\cdot\sigma_1(u),\ldots,z_{s+t}\cdot\sigma_{s+t}(u)).$$

$$\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}/\mathcal{O}_{K}$$

$$U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t/\mathcal{O}_K$$

$$\mathcal{O}_{K}^{*,+}\circlearrowleft\mathbb{H}^{s}\times\mathbb{C}^{t}$$

$$R_u(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}):=(w_1\cdot\sigma_1(u),\ldots,z_{s+t}\cdot\sigma_{s+t}(u)).$$

$$\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}/\mathcal{O}_{K}$$

$$U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t/\mathcal{O}_K$$

$$\ell \colon \mathcal{O}_{K}^{*,+} \to \mathbb{R}^{s+t}$$

$$\ell(u) = (\log \sigma_1(u), \dots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \dots, 2\log |\sigma_{s+t}(u)|).$$

$$\mathcal{O}_K^{*,+}\circlearrowleft\mathbb{H}^s imes\mathbb{C}^t$$

$$R_u(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}):=(w_1\cdot\sigma_1(u),\ldots,z_{s+t}\cdot\sigma_{s+t}(u)).$$

$$\mathcal{O}_K^{*,+}\circlearrowleft\mathbb{H}^s imes\mathbb{C}^t/\mathcal{O}_K$$

$$U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t/\mathcal{O}_K$$

$$\ell \colon \mathcal{O}_{\kappa}^{*,+} \to \mathbb{R}^{s+t}$$

$$\ell(u) = (\log \sigma_1(u), \ldots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \ldots, 2\log |\sigma_{s+t}(u)|).$$

$$\operatorname{Im} \ell \leq \mathcal{H} := \{ (x_1, \dots, x_{s+t}) \mid x_1 + \dots + x_{s+t} = 0 \}$$

$$\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}$$

$$R_u(w_1,\ldots,w_s,z_{s+1},\ldots,z_{s+t}):=(w_1\cdot\sigma_1(u),\ldots,z_{s+t}\cdot\sigma_{s+t}(u)).$$

$$\mathcal{O}_{K}^{*,+}\circlearrowleft\mathbb{H}^{s}\times\mathbb{C}^{t}/\mathcal{O}_{K}$$

$$U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t/\mathcal{O}_K$$

$$\ell \colon \mathcal{O}_{\kappa}^{*,+} \to \mathbb{R}^{s+t}$$

$$\ell(u) = (\log \sigma_1(u), \ldots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \ldots, 2\log |\sigma_{s+t}(u)|).$$

$$\operatorname{Im} \ell \leq \mathcal{H} := \{ (x_1, \dots, x_{s+t}) \mid x_1 + \dots + x_{s+t} = 0 \}$$

$$(u \text{ unit } \sigma_1(u) \dots \sigma_s(u) \sigma_{s+1}(u) \dots \sigma_{s+t}(u) \overline{\sigma}_{s+1}(u) \dots \overline{\sigma}_{s+t}(u) = 1)$$

 $\operatorname{Im} \ell \operatorname{maximal}$ lattice in $\mathcal H$

 $\operatorname{Im} \ell \operatorname{maximal}$ lattice in \mathcal{H}

$$(rank s + t - 1)$$

Choose $U \leq \mathcal{O}_K^{*,+}$ such that $pr_{\mathbb{R}^s}(I(U))$ is a lattice of rank s.

 $\operatorname{Im} \ell \operatorname{maximal}$ lattice in \mathcal{H}

$$(rank s + t - 1)$$

Choose $U \leq \mathcal{O}_K^{*,+}$ such that $pr_{\mathbb{R}^s}(I(U))$ is a lattice of rank s.

$$U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t/\mathcal{O}_K$$

 $\operatorname{Im} \ell \operatorname{maximal}$ lattice in \mathcal{H}

$$(rank s + t - 1)$$

Choose $U \leq \mathcal{O}_K^{*,+}$ such that $pr_{\mathbb{R}^s}(I(U))$ is a lattice of rank s.

$$U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t/\mathcal{O}_K$$

is fixed-point-free, properly discontinuous, and co-compact.

$$\mathcal{O}_K \rtimes U \circlearrowleft \mathbb{H}^s \times \mathbb{C}^t$$

Theorem (Oeljeklaus-Toma, 2005)

$$X(K, U) := \mathbb{H}^s \times \mathbb{C}^t / \mathcal{O}_K \rtimes U$$

is a compact complex manifold associated to algebraic number field K and to the admissible subgroup U of $\mathcal{O}_K^{*,+}$.

Let $f(x) = x^p - 2$, p prime.

Let $f(x) = x^p - 2$, p prime. one real root: $\sqrt[p]{2}$

Let $f(x) = x^p - 2$, p prime.

one real root: $\sqrt[p]{2}$

complex roots: $\sqrt[p]{2}\epsilon$, ..., $\sqrt[p]{2}\epsilon^{p-1}$

Let $f(x) = x^p - 2$, p prime. one real root: $\sqrt[p]{2}$ complex roots: $\sqrt[p]{2}\epsilon$, ..., $\sqrt[p]{2}\epsilon^{p-1}$ $K = \mathbb{Q}(\sqrt[p]{2})$

```
Let f(x) = x^p - 2, p prime. one real root: \sqrt[p]{2} complex roots: \sqrt[p]{2}\epsilon, ..., \sqrt[p]{2}\epsilon^{p-1} K = \mathbb{Q}(\sqrt[p]{2}) u = \sqrt[p]{2} - 1 u unit since (\sqrt[p]{2} - 1) \dots (\sqrt[p]{2}\epsilon^{p-1} - 1) = (-1)^p f(1) = 1
```

```
Let f(x) = x^p - 2, p prime. one real root: \sqrt[p]{2} complex roots: \sqrt[p]{2}\epsilon, ..., \sqrt[p]{2}\epsilon^{p-1} K = \mathbb{Q}(\sqrt[p]{2}) u = \sqrt[p]{2} - 1 u unit since (\sqrt[p]{2} - 1) \dots (\sqrt[p]{2}\epsilon^{p-1} - 1) = (-1)^p f(1) = 1 U = \langle u \rangle \mathbb{T}^p \to X(K, U) \to S^1
```

•
$$b_1(X(K, U)) = s \ge 1$$

- $b_1(X(K, U)) = s \ge 1$
- $\bullet \ \mathbb{T}^n \to X(K,U) \to \mathbb{T}^s$

- $b_1(X(K, U)) = s \ge 1$
- $\bullet \ \mathbb{T}^n \to X(K,U) \to \mathbb{T}^s$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)

- $b_1(X(K, U)) = s \ge 1$
- $\bullet \ \mathbb{T}^n \to X(K,U) \to \mathbb{T}^s$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) ($b_l = \sum_{p+q=l} h^{p,q}$)

- $b_1(X(K, U)) = s \ge 1$
- $\bullet \ \mathbb{T}^n \to X(K,U) \to \mathbb{T}^s$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) ($b_l = \sum_{p+q=l} h^{p,q}$)
- Kod = -∞, there are no global holomorphic vector fields or holomorphic one-forms

- $b_1(X(K, U)) = s \ge 1$
- $\bullet \ \mathbb{T}^n \to X(K,U) \to \mathbb{T}^s$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) ($b_l = \sum_{p+q=l} h^{p,q}$)
- Kod = $-\infty$, there are no global holomorphic vector fields or holomorphic one-forms
- they have a solvmanifold structure $\Gamma \setminus G$ (Kasuya, 2012)

- $b_1(X(K, U)) = s \ge 1$
- $\bullet \ \mathbb{T}^n \to X(K,U) \to \mathbb{T}^s$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) $(b_l = \sum_{p+q=l} h^{p,q})$
- Kod = $-\infty$, there are no global holomorphic vector fields or holomorphic one-forms
- they have a solvmanifold structure $\Gamma \setminus G$ (Kasuya, 2012)

What about the Hermitian geometry of X(K, U)?

Locally conformally metrics on X(K, U)

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

X(K, U) admits a locally conformally Kähler metric if and only if

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+i}(u)| = \ldots = |\sigma_{s+t}(u)|, \forall u \in U$$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

X(K,U) admits a locally conformally Kähler metric if and only if

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+i}(u)| = \ldots = |\sigma_{s+t}(u)|, \forall u \in U$$

Proof (Sketch):

loc. conf. Kähler metric Ω on X(K, U)

1

 $\tilde{\Omega} \text{ K\"{a}hler metric on } \mathbb{H}^s \times \mathbb{C}^t \text{ such that } \forall \gamma \in \text{ Deck}, \gamma^* \tilde{\Omega} = \underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}.$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

X(K,U) admits a locally conformally Kähler metric if and only if

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+i}(u)| = \ldots = |\sigma_{s+t}(u)|, \forall u \in U$$

Proof (Sketch):

loc. conf. Kähler metric Ω on X(K, U)

1

 $\tilde{\Omega} \text{ K\"{a}hler metric on } \mathbb{H}^s \times \mathbb{C}^t \text{ such that } \forall \gamma \in \text{ Deck}, \gamma^* \tilde{\Omega} = \underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}.$

(" \Rightarrow " $\pi: \tilde{X} \to X$ the universal cover, $\pi^*\theta = df$, $e^{-f}\pi^*\Omega =: \tilde{\Omega}$)

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

X(K,U) admits a locally conformally Kähler metric if and only if

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+i}(u)| = \ldots = |\sigma_{s+t}(u)|, \forall u \in U$$

Proof (Sketch):

loc. conf. Kähler metric Ω on X(K, U)

 $\tilde{\Omega} \text{ K\"{a}hler metric on } \mathbb{H}^s \times \mathbb{C}^t \text{ such that } \forall \gamma \in \text{ Deck}, \gamma^* \tilde{\Omega} = \underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}.$

("
$$\Rightarrow$$
" $\pi: \tilde{X} \to X$ the universal cover, $\pi^*\theta = df$, $e^{-f}\pi^*\Omega =: \tilde{\Omega}$) (" \Leftarrow " $\gamma \mapsto \log c_{\gamma} \leadsto Hom(\pi_1(X(K,U)), \mathbb{R}) \simeq H^1_{dR}(X(K,U)) \ni [\theta]$,

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

X(K,U) admits a locally conformally Kähler metric if and only if

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+i}(u)| = \ldots = |\sigma_{s+t}(u)|, \forall u \in U$$

Proof (Sketch):

loc. conf. Kähler metric Ω on X(K, U)

 $\tilde{\Omega} \text{ K\"{a}hler metric on } \mathbb{H}^s \times \mathbb{C}^t \text{ such that } \forall \gamma \in \text{ Deck}, \gamma^* \tilde{\Omega} = \underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}.$

(" \Rightarrow " $\pi: \tilde{X} \to X$ the universal cover, $\pi^*\theta = df$, $e^{-f}\pi^*\Omega =: \tilde{\Omega}$) (" \Leftarrow " $\gamma \mapsto \log c_{\gamma} \leadsto Hom(\pi_1(X(K,U)),\mathbb{R}) \simeq H^1_{dR}(X(K,U)) \ni [\theta]$, $\pi^*\theta = df$, $e^f\tilde{\Omega}$ is π_1 -invariant, IcK)

$$ilde{\Omega} := \mathrm{i}\partial\overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j
ight)^{-1/t} + \sum_{j=1}^t |z_j|^2
ight)$$

$$\tilde{\Omega} := \mathrm{i}\partial\overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j \right)^{-1/t} + \sum_{j=1}^t |z_j|^2 \right)$$

$$a \in \mathcal{O}_K : a^* \tilde{\Omega} = \tilde{\Omega}$$

$$ilde{\Omega} := \mathrm{i}\partial\overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j \right)^{-1/t} + \sum_{j=1}^t |z_j|^2 \right)$$

$$a \in \mathcal{O}_K : a^* \tilde{\Omega} = \tilde{\Omega}$$

$$u \in U : u^* \tilde{\Omega} = c_u \tilde{\Omega}, c_u = \left(\prod_{j=1}^s \sigma_j(u)\right)^{-1/t}$$

$$\tilde{\Omega} := \mathrm{i}\partial\overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j \right)^{-1/t} + \sum_{j=1}^t |z_j|^2 \right)$$

$$a \in \mathcal{O}_K : a^* \tilde{\Omega} = \tilde{\Omega}$$

$$u \in U : \mathbf{u}^* \tilde{\Omega} = \mathbf{c}_{\mathbf{u}} \tilde{\Omega}, c_{\mathbf{u}} = \left(\prod_{i=1}^s \sigma_j(u)\right)^{-1/t} = |\sigma_{s+j}(u)|^2, \forall 1 \leq j \leq t$$

$$\tilde{\Omega} := \mathrm{i} \partial \overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j \right)^{-1/t} + \sum_{j=1}^t |z_j|^2 \right)$$

$$a \in \mathcal{O}_K : a^* \tilde{\Omega} = \tilde{\Omega}$$

$$u \in U : u^* \tilde{\Omega} = c_u \tilde{\Omega}, c_u = \left(\prod_{j=1}^s \sigma_j(u)\right)^{-1/t} = |\sigma_{s+j}(u)|^2, \forall 1 \leq j \leq t$$

• If X(K, U) is loc. conf. Kähler, take a Kähler form

$$\tilde{\Omega} := a_{ij}(z) \sum_{i,j=1}^{s+t} dz_i \wedge d\overline{z}_j$$

such that $\gamma^* \tilde{\Omega} = c_\gamma \tilde{\Omega}$

$$\widetilde{\Omega} := \mathrm{i} \partial \overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j \right)^{-1/t} + \sum_{j=1}^t |z_j|^2 \right)$$

 $a \in \mathcal{O}_{\mathcal{K}} : a^* \tilde{\Omega} = \tilde{\Omega}$

$$u \in U : u^* \tilde{\Omega} = c_u \tilde{\Omega}, c_u = \left(\prod_{j=1}^s \sigma_j(u)\right)^{-1/t} = |\sigma_{s+j}(u)|^2, \forall 1 \leq j \leq t$$

• If X(K, U) is loc. conf. Kähler, take a Kähler form

$$\tilde{\Omega} := a_{ij}(z) \sum_{i,j=1}^{s+\iota} dz_i \wedge d\overline{z}_j$$

such that $\gamma^*\tilde{\Omega}=c_{\gamma}\tilde{\Omega}\leadsto a_{ij}=$ constant, for $i,j\geq s+1$

$$\tilde{\Omega} := \mathrm{i} \partial \overline{\partial} \left(\left(\prod_{j=1}^s \mathrm{Im} \ w_j \right)^{-1/t} + \sum_{j=1}^t |z_j|^2 \right)$$

$$a \in \mathcal{O}_K : a^* \tilde{\Omega} = \tilde{\Omega}$$

$$u \in U : u^* \tilde{\Omega} = c_u \tilde{\Omega}, c_u = \left(\prod_{j=1}^s \sigma_j(u)\right)^{-1/t} = |\sigma_{s+j}(u)|^2, \forall 1 \leq j \leq t$$

• If X(K, U) is loc. conf. Kähler, take a Kähler form

$$\tilde{\Omega} := a_{ij}(z) \sum_{i,j=1}^{s+t} dz_i \wedge d\overline{z}_j$$

such that
$$\gamma^*\tilde{\Omega} = c_{\gamma}\tilde{\Omega} \rightsquigarrow a_{ij} = \text{constant}$$
, for $i, j \geq s + 1$
 $\Rightarrow c_{ij} = |\sigma_{s+i}(u)|^2, 1 \leq j \leq t$.

• When t=1, X(K, U) always admits loc. conf. Kähler metrics!

- When t=1, X(K, U) always admits loc. conf. Kähler metrics!
- Dubickas, Vuletescu: found several conditions for s and t, still no explicit example with $t \neq 1$

- When t=1, X(K, U) always admits loc. conf. Kähler metrics!
- Dubickas, Vuletescu: found several conditions for s and t, still no explicit example with $t \neq 1$ t > s there are no loc. conf. Kähler metrics on X(K, U).

ullet Organize $\mathbb{H}^s imes \mathbb{C}^t$ as a Lie group:

ullet Organize $\mathbb{H}^s imes \mathbb{C}^t$ as a Lie group:

$$\ell \colon \mathcal{O}_{K}^{*,+} \to \mathbb{R}^{s+t},$$

$$\ell(u) = (\log \sigma_{1}(u), \dots, \log \sigma_{s}(u), 2\log |\sigma_{s+1}(u)|, \dots, 2\log |\sigma_{s+t}(u)|).$$

• Organize $\mathbb{H}^s \times \mathbb{C}^t$ as a Lie group:

$$\ell \colon \mathcal{O}_K^{*,+} \to \mathbb{R}^{s+t},$$

$$\ell(u) = (\log \sigma_1(u), \dots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \dots, 2\log |\sigma_{s+t}(u)|).$$

$$U \leq \mathcal{O}_K^{*,+}, \operatorname{pr}_{\mathbb{R}^s}(\ell(U)) \text{ lattice of rank } s \text{ in } \mathbb{R}^s.$$

• Organize $\mathbb{H}^s \times \mathbb{C}^t$ as a Lie group:

$$\ell \colon \mathcal{O}_{K}^{*,+} \to \mathbb{R}^{s+t},$$

$$\ell(u) = \left(\log \sigma_1(u), \dots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \dots, 2\log |\sigma_{s+t}(u)|\right).$$

$$U \leq \mathcal{O}_{K}^{*,+}, \operatorname{pr}_{\mathbb{R}^{s}}(\ell(U))$$
 lattice of rank s in \mathbb{R}^{s} .

There exist real numbers b_{ki} , c_{ki} , $1 \le k \le s$, $1 \le i \le t$ s.t. for any $u \in U$:

$$2\log |\sigma_{s+i}(u)| = \sum_{k=1}^{s} b_{ki} \log \sigma_k(u),$$

• Organize $\mathbb{H}^s \times \mathbb{C}^t$ as a Lie group:

$$\ell \colon \mathcal{O}_{K}^{*,+} \to \mathbb{R}^{s+t},$$

$$\ell(u) = \left(\log \sigma_1(u), \dots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \dots, 2\log |\sigma_{s+t}(u)|\right).$$

$$U \leq \mathcal{O}_{K}^{*,+}, \operatorname{pr}_{\mathbb{R}^{s}}(\ell(U))$$
 lattice of rank s in \mathbb{R}^{s} .

There exist real numbers b_{ki} , c_{ki} , $1 \le k \le s$, $1 \le i \le t$ s.t. for any $u \in U$:

$$2\log |\sigma_{s+i}(u)| = \sum_{k=1}^{s} b_{ki} \log \sigma_k(u),$$

or equivalently, $|\sigma_{s+i}(u)|^2 = \prod_{k=1}^s (\sigma_k(u))^{b_{ki}}$.

• Organize $\mathbb{H}^s \times \mathbb{C}^t$ as a Lie group:

$$\ell \colon \mathcal{O}_{K}^{*,+} \to \mathbb{R}^{s+t},$$

$$\ell(u) = \left(\log \sigma_1(u), \dots, \log \sigma_s(u), 2\log |\sigma_{s+1}(u)|, \dots, 2\log |\sigma_{s+t}(u)|\right).$$

$$U \leq \mathcal{O}_K^{*,+}, \operatorname{pr}_{\mathbb{R}^s}(\ell(U))$$
 lattice of rank s in \mathbb{R}^s .

There exist real numbers b_{ki} , c_{ki} , $1 \le k \le s$, $1 \le i \le t$ s.t. for any $u \in U$:

$$2\log |\sigma_{s+i}(u)| = \sum_{k=1}^{s} b_{ki} \log \sigma_k(u),$$

or equivalently, $|\sigma_{s+i}(u)|^2 = \prod_{k=1}^s (\sigma_k(u))^{b_{ki}}$.

$$\sigma_{s+i}(u) = \left(\prod_{k=1}^{s} \left(\sigma_k(u)\right)^{\frac{\mathbf{b}_{ki}}{2}}\right) e^{i\sum_{k=1}^{s} \mathbf{c}_{ki} \log \sigma_k(u)}$$

 $\forall (w,z),(w',z') \in \mathbb{H}^s \times \mathbb{C}^t$:

$$\forall (w,z), (w',z') \in \mathbb{H}^s \times \mathbb{C}^t :$$

$$(w,z) * (w',z') = (w^1,\ldots,w^s,z^1,\ldots,z^t),$$

$$\forall (w,z),(w',z') \in \mathbb{H}^s \times \mathbb{C}^t$$
:

$$(w,z)*(w',z')=(w^1,\ldots,w^s,z^1,\ldots,z^t),$$

where

$$\begin{split} w^i &= \operatorname{Re} w_i + \operatorname{Im} w_i \cdot \operatorname{Re} w_i' + i \operatorname{Im} w_i \cdot \operatorname{Im} w_i', \qquad 1 \leq i \leq s \\ z^i &= z_i + (\operatorname{Im} w_1)^{\frac{b_{1i}}{2}} \dots (\operatorname{Im} w_s)^{\frac{b_{si}}{2}} e^{i \sum_{k=1}^s c_{ki} \operatorname{Im} w_k} z_i', \qquad 1 \leq i \leq t. \end{split}$$

$$\forall (w,z),(w',z') \in \mathbb{H}^s \times \mathbb{C}^t$$
:

$$(w,z)*(w',z')=(w^1,\ldots,w^s,z^1,\ldots,z^t),$$

where

$$\begin{split} w^i &= \operatorname{Re} w_i + \operatorname{Im} w_i \cdot \operatorname{Re} w_i' + i \operatorname{Im} w_i \cdot \operatorname{Im} w_i', \qquad 1 \leq i \leq s \\ z^i &= z_i + (\operatorname{Im} w_1)^{\frac{b_{1i}}{2}} \dots (\operatorname{Im} w_s)^{\frac{b_{si}}{2}} e^{i \sum_{k=1}^s c_{ki} \operatorname{Im} w_k} z_i', \qquad 1 \leq i \leq t. \end{split}$$

We can represent

$$X(K,U) = U \ltimes \mathcal{O}_K \backslash \mathbb{R}^s \ltimes_{\varphi} (\mathbb{R}^s \times \mathbb{C}^t)$$

where

and

$$A_j := e^{\frac{1}{2} \sum_{k=1}^{s} b_{kj} x_k} \cdot e^{i \sum_{k=1}^{s} c_{kj} x_k}$$

General method to prove (non)-existence of special metrics on $\Gamma \setminus G$

General method to prove (non)-existence of special metrics on $\Gamma \setminus G$

Existence of special metric

General method to prove (non)-existence of special metrics on $\Gamma \setminus G$ Existence of special metric

Prove there exists a left-invariant one of this type

General method to prove (non)-existence of special metrics on $\Gamma \setminus G$ Existence of special metric Prove there exists a left-invariant one of this type Use the structure equations of g

Existence of left-invariant metrics

On $\Gamma \backslash G$:

Existence of left-invariant metrics

On $\Gamma \backslash G$:

• (Fino-Grantcharov, '04) If there exists a balanced metric on $\Gamma \setminus G$, there exists a left-invariant balanced metric Ω_0

Existence of left-invariant metrics

On $\Gamma \setminus G$:

- (Fino-Grantcharov, '04) If there exists a balanced metric on $\Gamma \setminus G$, there exists a left-invariant balanced metric Ω_0
- (Ugarte, '07) If there exists a pluriclosed metric on $\Gamma \setminus G$, there exists a left-invariant pluriclosed metric Ω_0

Definition

A metric Ω is balanced if $d\Omega^{n-1} = 0$, equivalently, if $d^*\Omega = 0$.

Averaging procedure

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

• (Ugarte) Let Ω be pluriclosed. Define $\Omega_0(X,Y) = \int_{\Gamma \backslash G} \Omega(X,Y) d \mathrm{vol}, \forall X,Y \in \mathfrak{g}$

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_0(X,Y) = \int_{\Gamma \setminus G} \Omega(X,Y) d \operatorname{vol}, \forall X,Y \in \mathfrak{g}$
- (Fino-Grantcharov)

$$\Omega$$
 balanced $\Leftrightarrow \tilde{\Omega}(n-1,n-1)$ — positive closed form

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_0(X,Y) = \int_{\Gamma \setminus G} \Omega(X,Y) d \operatorname{vol}, \forall X,Y \in \mathfrak{g}$
- (Fino-Grantcharov)

$$\Omega$$
 balanced $\Leftrightarrow \tilde{\Omega}(n-1,n-1)$ — positive closed form

If
$$d\tilde{\Omega}=0$$
 & $(n-1,n-1)$ -positive, define

$$\tilde{\Omega}_0(X_1,\ldots,X_{2n-2})=\int_{\Gamma\setminus\mathcal{G}}\tilde{\Omega}(X_1,\ldots,X_{2n-2})d\mathrm{vol},X_1,\ldots,X_{2n-2}\in\mathfrak{g}$$

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_0(X,Y) = \int_{\Gamma \setminus G} \Omega(X,Y) d \operatorname{vol}, \forall X,Y \in \mathfrak{g}$
- (Fino-Grantcharov)

$$\Omega$$
 balanced $\Leftrightarrow \tilde{\Omega}(n-1,n-1)$ — positive closed form

If
$$d ilde{\Omega}=0$$
 & $(n-1,n-1)$ -positive, define

$$\tilde{\Omega}_0(X_1,\ldots,X_{2n-2})=\int_{\Gamma\setminus\mathcal{G}}\tilde{\Omega}(X_1,\ldots,X_{2n-2})d\mathrm{vol},X_1,\ldots,X_{2n-2}\in\mathfrak{g}$$

original averaging trick: Belgun, 2000, for lcK

Balanced and loc. conf. balanced metrics on X(K, U)

Theorem (-, 2020)

- An Oeljeklaus-Toma manifold X(K, U) does not support balanced metrics.
- **2** Any X(K, U) admits a locally conformally balanced metric.

Balanced and loc. conf. balanced metrics on X(K, U)

Theorem (-, 2020)

- An Oeljeklaus-Toma manifold X(K, U) does not support balanced metrics.
- **2** Any X(K, U) admits a locally conformally balanced metric.

Proof.

• The existence of a balanced metric $\rightsquigarrow \exists \ \Omega_0$ left-invariant balanced. Ω_0 balanced $\Leftrightarrow \Omega$ (n-1,n-1)-form positive & $d\Omega=0$.

2

$$\omega_0 = \mathrm{i} \sum_{i=1}^s \frac{dw_i \wedge d\overline{w}_i}{(\mathrm{Im} \ w_i)^2} + \mathrm{i} \sum_{i=1}^t \prod_{k=1}^s (\mathrm{Im} \ w_k)^{-\frac{b_{ki}}{b_ki}} dz_i \wedge d\overline{z}_i.$$

Balanced and loc. conf. balanced metrics on X(K, U)

Theorem (-, 2020)

- An Oeljeklaus-Toma manifold X(K, U) does not support balanced metrics.
- **2** Any X(K, U) admits a locally conformally balanced metric.

Proof.

• The existence of a balanced metric $\rightsquigarrow \exists \ \Omega_0$ left-invariant balanced. Ω_0 balanced $\Leftrightarrow \Omega$ (n-1,n-1)-form positive & $d\Omega=0$.

2

$$\omega_0 = \mathrm{i} \sum_{i=1}^s \frac{dw_i \wedge d\overline{w}_i}{(\mathrm{Im} \ w_i)^2} + \mathrm{i} \sum_{i=1}^t \prod_{k=1}^s (\mathrm{Im} \ w_k)^{-\frac{b_{ki}}{b_ki}} dz_i \wedge d\overline{z}_i.$$

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

 \bullet X(K, U) admits a pluriclosed metric

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

- \bullet X(K, U) admits a pluriclosed metric
- ② $s \le t$ and after possibly relabeling the embeddings, $|\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$, for any $u \in U$, $1 \le i \le s$ and $|\sigma_{s+j}(u)| = 1$, for any j > s.

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

- **1** X(K, U) admits a pluriclosed metric
- ② $s \le t$ and after possibly relabeling the embeddings, $|\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$, for any $u \in U$, $1 \le i \le s$ and $|\sigma_{s+j}(u)| = 1$, for any j > s.

Proof:

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

- \bullet X(K, U) admits a pluriclosed metric
- ② $s \le t$ and after possibly relabeling the embeddings, $|\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$, for any $u \in U$, $1 \le i \le s$ and $|\sigma_{s+j}(u)| = 1$, for any j > s.

Proof:

• "(2) \Rightarrow (1)" Take:

$$\widetilde{\Omega} := \mathrm{i} \left(\sum_{i=1}^{s} \left(\frac{dw_i \wedge d\overline{w}_i}{\left(\mathrm{Im} w_i \right)^2} + \mathrm{Im} w_i dz_i \wedge d\overline{z}_i \right) + \sum_{i>s} dz_i \wedge d\overline{z}_i \right).$$

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

- **1** X(K, U) admits a pluriclosed metric
- ② $s \le t$ and after possibly relabeling the embeddings, $|\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$, for any $u \in U$, $1 \le i \le s$ and $|\sigma_{s+j}(u)| = 1$, for any j > s.

Proof:

• "(2) \Rightarrow (1)" Take:

$$\widetilde{\Omega} := \mathrm{i} \left(\sum_{i=1}^{s} \left(\frac{dw_i \wedge d\overline{w}_i}{\left(\mathrm{Im} w_i \right)^2} + \mathrm{Im} w_i dz_i \wedge d\overline{z}_i \right) + \sum_{i > s} dz_i \wedge d\overline{z}_i \right).$$

 $\tilde{\Omega}$ is defined on $\mathbb{H}^s \times \mathbb{C}^t$, it is $U \ltimes \mathcal{O}_K$ -invariant and $\partial \overline{\partial}$ -closed

Theorem (-, 2020)

Let X(K, U) be any OT-manifold of type (s, t). The following are equivalent:

- **1** X(K, U) admits a pluriclosed metric
- ② $s \le t$ and after possibly relabeling the embeddings, $|\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$, for any $u \in U$, $1 \le i \le s$ and $|\sigma_{s+j}(u)| = 1$, for any j > s.

Proof:

• "(2) \Rightarrow (1)" Take:

$$\widetilde{\Omega} := \mathrm{i} \left(\sum_{i=1}^{s} \left(\frac{dw_i \wedge d\overline{w}_i}{\left(\mathrm{Im} w_i \right)^2} + \mathrm{Im} w_i dz_i \wedge d\overline{z}_i \right) + \sum_{i>s} dz_i \wedge d\overline{z}_i \right).$$

 $\tilde{\Omega}$ is defined on $\mathbb{H}^s \times \mathbb{C}^t$, it is $U \ltimes \mathcal{O}_K$ -invariant and $\partial \overline{\partial}$ -closed (also left-invariant!).

- "(1) \Rightarrow (2)" Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_0$ left-invariant & pluriclosed.
 - Take $\Omega_0:=\mathrm{i}\sum_{i,j=1}^{s+t}a_{i\overline{j}}\underline{\omega_i}\wedge\overline{\omega_j}$ a positive (1,1)-form, $\partial\overline{\partial}$ -closed

- "(1) \Rightarrow (2)" Existence of Ω pluriclosed $\leadsto \exists \Omega_0$ left-invariant & pluriclosed.
 - Take $\Omega_0:=\mathrm{i}\sum_{i,j=1}^{s+t}a_{i\overline{j}}\omega_i\wedge\overline{\omega}_j$ a positive (1,1)-form, $\partial\overline{\partial}$ -closed
 - \Rightarrow ...[computations]... \Rightarrow

Take
$$\Omega_0:=\mathrm{i}\sum_{i,j=1}^{s+t}a_{i\overline{j}}\underline{\omega_i}\wedge\overline{\omega_j}$$
 a positive $(1,1)$ -form, $\partial\overline{\partial}$ -closed \Rightarrow ...[computations]... \Rightarrow

pluriclosed condition

Take
$$\Omega_0:=\mathrm{i}\sum_{i,j=1}^{s+t}a_{i\bar{j}}\underline{\omega_i}\wedge\overline{\omega_j}$$
 a positive (1,1)-form, $\partial\overline{\partial}$ -closed

$$\Rightarrow$$
 ...[computations]... \Rightarrow

pluriclosed condition

Question: When is this condition satisfied?

Take
$$\Omega_0:=\mathrm{i}\sum_{i,j=1}^{s+t}a_{i\bar{j}}\underline{\omega_i}\wedge\overline{\omega_j}$$
 a positive $(1,1)$ -form, $\partial\overline{\partial}$ -closed

$$\Rightarrow$$
 ...[computations]... \Rightarrow

pluriclosed condition

Question: When is this condition satisfied?

Theorem (Dubickas, 2020)

For any $s \in \mathbb{N}^*$, there exists an Oeljeklaus-Toma manifold of type (s,s) satisfying $\sigma_i(u)|\sigma_{s+i}(u)|^2=1, \forall u \in U$. In particular, there exist pluriclosed OT-manifolds in any even complex dimension.

Take
$$\Omega_0:=\mathrm{i}\sum_{i,j=1}^{s+t}a_{i\overline{j}}\overline{\omega_i}\wedge\overline{\omega_j}$$
 a positive $(1,1)$ -form, $\partial\overline{\partial}$ -closed

$$\Rightarrow$$
 ...[computations]... \Rightarrow

pluriclosed condition

Question: When is this condition satisfied?

Theorem (Dubickas, 2020)

For any $s \in \mathbb{N}^*$, there exists an Oeljeklaus-Toma manifold of type (s,s) satisfying $\sigma_i(u)|\sigma_{s+i}(u)|^2=1, \forall u \in U$. In particular, there exist pluriclosed OT-manifolds in any even complex dimension.

$$b_1(X) = s = \frac{1}{2} \mathrm{dim}_{\mathbb{C}} X$$

Theorem (D. Angella, A. Dubickas, -, J. Stelzig, '21)

An OT manifold of type (s,t) admits a pluriclosed metric if and only if s=t and after possibly relabeling the embeddings, $|\sigma_{s+i}(u)|^2\sigma_i(u)=1$, for any $u\in U,\ 1\leq i\leq s$.

$$|\sigma_{s+1}(u)| = \dots = |\sigma_{s+t}(u)| |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+t}(u)| |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$
 $\Rightarrow \sigma_1(u) = \ldots = \sigma_s(u)$

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+t}(u)| |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$
 $\Rightarrow \sigma_1(u) = \ldots = \sigma_s(u) \Rightarrow s = t = 1.$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless X(K, U) is a surface.

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+t}(u)| |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$
 $\Rightarrow \sigma_1(u) = \ldots = \sigma_s(u) \Rightarrow s = t = 1.$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold X(K, U) admitting a pluriclosed metric has the following topological and complex properties:

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless X(K, U) is a surface.

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+t}(u)| |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$
 $\Rightarrow \sigma_1(u) = \ldots = \sigma_s(u) \Rightarrow s = t = 1.$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold X(K, U) admitting a pluriclosed metric has the following topological and complex properties:

• The third Betti number $b_3(X(K, U)) = \binom{s}{3} + s$.

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless X(K, U) is a surface.

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+t}(u)| |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$
 $\Rightarrow \sigma_1(u) = \ldots = \sigma_s(u) \Rightarrow s = t = 1.$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold X(K, U) admitting a pluriclosed metric has the following topological and complex properties:

- The third Betti number $b_3(X(K, U)) = \binom{s}{3} + s$.

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless X(K, U) is a surface.

$$|\sigma_{s+1}(u)| = \ldots = |\sigma_{s+t}(u)| \\ |\sigma_{s+i}(u)|^2 \sigma_i(u) = 1$$
 $\} \Rightarrow \sigma_1(u) = \ldots = \sigma_s(u) \Rightarrow s = t = 1.$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold X(K, U) admitting a pluriclosed metric has the following topological and complex properties:

- The third Betti number $b_3(X(K, U)) = \binom{s}{3} + s$.

Proof.

Apply the number theoretical description of de Rham and Dolbeault cohomology (Istrati, -,2017, -,Toma, 2018)

Corollary

Let X(K, U) be an OT manifold of complex dimension 4. Then the following are equivalent:

- lacktriangledown X(K,U) admits a pluriclosed metric
- $b_3(X(K, U)) = 2$

There are no astheno-Kähler metrics on X(K, U).

There are no astheno-Kähler metrics on X(K, U).

Definition

A metric Ω is called astheno-Kähler if $dd^c\Omega^{n-2}=0$.

Proof:

There are no astheno-Kähler metrics on X(K, U).

Definition

A metric Ω is called astheno-Kähler if $dd^c\Omega^{n-2}=0$.

Proof: No averaging trick in the astheno-Kähler case!

There are no astheno-Kähler metrics on X(K, U).

Definition

A metric Ω is called astheno-Kähler if $dd^c\Omega^{n-2}=0$.

Proof: No averaging trick in the astheno-Kähler case! Build a semi-positive (2,2) form $dd^c\eta \geq 0$. Then if Ω is astheno-Kähler,

$$0 \leq \int_X dd^c \eta \wedge \Omega^{n-2} = \dots = \int_X \eta \wedge dd^c \Omega^{n-2} = 0.$$

An example

An example when s = 2 (Matei Toma):

• Take the irreducible polynomial $f(x) = x^6 + 2x^3 - x^2 - 2x + 1$

An example when s = 2 (Matei Toma):

• Take the irreducible polynomial $f(x) = x^6 + 2x^3 - x^2 - 2x + 1$ $(= (x^3 - \sqrt{2}x^2 + (1 + \sqrt{2})x - 1)(x^3 + \sqrt{2}x^2 + (1 - \sqrt{2})x - 1))$

- Take the irreducible polynomial $f(x) = x^6 + 2x^3 x^2 2x + 1$ $(= (x^3 - \sqrt{2}x^2 + (1 + \sqrt{2})x - 1)(x^3 + \sqrt{2}x^2 + (1 - \sqrt{2})x - 1))$
- 2 real roots $\alpha, \alpha' \in (\frac{1}{2}, 1)$ and 4 complex roots $\beta, \beta_1, \overline{\beta}, \overline{\beta_1}$

- Take the irreducible polynomial $f(x) = x^6 + 2x^3 x^2 2x + 1$ $(= (x^3 - \sqrt{2}x^2 + (1 + \sqrt{2})x - 1)(x^3 + \sqrt{2}x^2 + (1 - \sqrt{2})x - 1))$
- 2 real roots $\alpha, \alpha' \in (\frac{1}{2}, 1)$ and 4 complex roots $\beta, \beta_1, \overline{\beta}, \overline{\beta_1}$
- Take $K = \mathbb{Q}(\alpha)$. $\sigma_{1,2} : K \hookrightarrow \mathbb{R}$, $\sigma_{3,4,5,6} : K \hookrightarrow \mathbb{C}$

$$\sigma_1(\alpha) = \alpha, \qquad \sigma_2(\alpha) = \alpha_1, \qquad \sigma_3(\alpha) = \beta$$

$$\sigma_4(\alpha) = \overline{\beta}, \qquad \sigma_5(\alpha) = \beta_1, \qquad \sigma_6(\alpha) = \overline{\beta}_1$$

An example when s = 2 (Matei Toma):

- Take the irreducible polynomial $f(x) = x^6 + 2x^3 x^2 2x + 1$ $(= (x^3 - \sqrt{2}x^2 + (1 + \sqrt{2})x - 1)(x^3 + \sqrt{2}x^2 + (1 - \sqrt{2})x - 1))$
- 2 real roots $\alpha, \alpha' \in (\frac{1}{2}, 1)$ and 4 complex roots $\beta, \beta_1, \overline{\beta}, \overline{\beta_1}$
- Take $K = \mathbb{Q}(\alpha)$. $\sigma_{1,2} : K \hookrightarrow \mathbb{R}$, $\sigma_{3,4,5,6} : K \hookrightarrow \mathbb{C}$

$$\sigma_1(\alpha) = \alpha,$$
 $\sigma_2(\alpha) = \alpha_1,$ $\sigma_3(\alpha) = \beta$
 $\sigma_4(\alpha) = \overline{\beta},$ $\sigma_5(\alpha) = \beta_1,$ $\sigma_6(\alpha) = \overline{\beta}_1$

• α is a unit and $\sigma_1(\alpha)\sigma_3(\alpha)\sigma_4(\alpha) = 1$ and $\sigma_2(\alpha)\sigma_5(\alpha)\sigma_6(\alpha) = 1$

- Take the irreducible polynomial $f(x) = x^6 + 2x^3 x^2 2x + 1$ $(= (x^3 - \sqrt{2}x^2 + (1 + \sqrt{2})x - 1)(x^3 + \sqrt{2}x^2 + (1 - \sqrt{2})x - 1))$
- 2 real roots $\alpha, \alpha' \in (\frac{1}{2}, 1)$ and 4 complex roots $\beta, \beta_1, \overline{\beta}, \overline{\beta_1}$
- Take $K = \mathbb{Q}(\alpha)$. $\sigma_{1,2} : K \hookrightarrow \mathbb{R}$, $\sigma_{3,4,5,6} : K \hookrightarrow \mathbb{C}$

$$\sigma_1(\alpha) = \alpha,$$
 $\sigma_2(\alpha) = \alpha_1,$ $\sigma_3(\alpha) = \beta$
 $\sigma_4(\alpha) = \overline{\beta},$ $\sigma_5(\alpha) = \beta_1,$ $\sigma_6(\alpha) = \overline{\beta}_1$

- α is a unit and $\sigma_1(\alpha)\sigma_3(\alpha)\sigma_4(\alpha) = 1$ and $\sigma_2(\alpha)\sigma_5(\alpha)\sigma_6(\alpha) = 1$
- 1α is a unit since $\prod_{i=1}^{6} (\sigma_i(1-\alpha)) = \prod_{i=1}^{6} (1-\sigma_i(\alpha)) = f(1) = 1$.

- Take the irreducible polynomial $f(x) = x^6 + 2x^3 x^2 2x + 1$ $(= (x^3 - \sqrt{2}x^2 + (1 + \sqrt{2})x - 1)(x^3 + \sqrt{2}x^2 + (1 - \sqrt{2})x - 1))$
- 2 real roots $\alpha, \alpha' \in (\frac{1}{2}, 1)$ and 4 complex roots $\beta, \beta_1, \overline{\beta}, \overline{\beta_1}$
- Take $K = \mathbb{Q}(\alpha)$. $\sigma_{1,2} : K \hookrightarrow \mathbb{R}$, $\sigma_{3,4,5,6} : K \hookrightarrow \mathbb{C}$

$$\sigma_1(\alpha) = \alpha,$$
 $\sigma_2(\alpha) = \alpha_1,$ $\sigma_3(\alpha) = \beta$
 $\sigma_4(\alpha) = \overline{\beta},$ $\sigma_5(\alpha) = \beta_1,$ $\sigma_6(\alpha) = \overline{\beta}_1$

- α is a unit and $\sigma_1(\alpha)\sigma_3(\alpha)\sigma_4(\alpha) = 1$ and $\sigma_2(\alpha)\sigma_5(\alpha)\sigma_6(\alpha) = 1$
- 1α is a unit since $\prod_{i=1}^{6} (\sigma_i(1-\alpha)) = \prod_{i=1}^{6} (1-\sigma_i(\alpha)) = f(1) = 1$.
- $(1 \sigma_1(\alpha))(1 \sigma_3(\alpha))(1 \sigma_4(\alpha)) = 1$ and $(1 \sigma_2(\alpha))(1 \sigma_5(\alpha))(1 \sigma_6(\alpha)) = 1$

Can we take $U = \langle \alpha, 1 - \alpha \rangle$?

Can we take $U = \langle \alpha, 1 - \alpha \rangle$? We need to check first that $(\log \sigma_1(\alpha), \log \sigma_2(\alpha))$ and $(\log (1 - \sigma_1(\alpha)), \log (1 - \sigma_2(\alpha)))$ are linearly independent over \mathbb{R} . Can we take $U = \langle \alpha, 1 - \alpha \rangle$? We need to check first that $(\log \sigma_1(\alpha), \log \sigma_2(\alpha))$ and $(\log (1 - \sigma_1(\alpha)), \log (1 - \sigma_2(\alpha)))$ are linearly independent over \mathbb{R} . If not, they would be proportional:

$$C = \frac{\log(1-\alpha)}{\log \alpha} = \frac{\log(1-\alpha_1)}{\log \alpha_1}.$$

Can we take $U = \langle \alpha, 1 - \alpha \rangle$? We need to check first that $(\log \sigma_1(\alpha), \log \sigma_2(\alpha))$ and $(\log (1 - \sigma_1(\alpha)), \log (1 - \sigma_2(\alpha)))$ are linearly independent over \mathbb{R} . If not, they would be proportional:

$$C = \frac{\log(1-\alpha)}{\log \alpha} = \frac{\log(1-\alpha_1)}{\log \alpha_1}.$$

This is impossible: $x \mapsto \frac{\log(1-x)}{\log x}$ is strictly increasing on $(\frac{1}{2},1)$ and $\alpha \neq \alpha_1$.

Can we take $U=\langle \alpha, 1-\alpha \rangle$? We need to check first that $(\log \sigma_1(\alpha), \log \sigma_2(\alpha))$ and $(\log (1-\sigma_1(\alpha)), \log (1-\sigma_2(\alpha)))$ are linearly independent over $\mathbb R$. If not, they would be proportional:

$$C = \frac{\log(1-\alpha)}{\log \alpha} = \frac{\log(1-\alpha_1)}{\log \alpha_1}.$$

This is impossible: $x \mapsto \frac{\log(1-x)}{\log x}$ is strictly increasing on $(\frac{1}{2},1)$ and $\alpha \neq \alpha_1.X(K,U) \rightsquigarrow$ the first example in complex dimension 4 of pluriclosed OT manifold.

Thank you very much for your attention!