Novikov Fundmental group and symplectic isotopies

JFB, A. Gadbled

November 11, 2021

$$\begin{array}{c} \mathsf{Topology} \longleftrightarrow & \mathsf{Geometry/Dynamics} \\ \\ H_*(M) \longleftrightarrow & \mathsf{Morse\ Theory} \\ \\ HF_*(M) \longleftrightarrow & \mathsf{Floer\ Theory} \\ \\ HN_*(M,\alpha) \longleftrightarrow & \mathsf{Morse\ Novikov\ Theory} \\ \\ \mathsf{HNF}_*(M,\alpha) \longleftrightarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{HNF}_*(M,\alpha) \longleftrightarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{Le-Ono]} & \mathsf{Symplectic\ isotopy} \end{array}$$

$$\begin{array}{c} \mathsf{Topology} \longleftrightarrow & \mathsf{Geometry/Dynamics} \\ \\ H_*(M) \longleftrightarrow & \mathsf{Morse\ Theory} \\ \\ HF_*(M) \longleftrightarrow & \mathsf{Floer\ Theory} \\ \\ HM_*(M,\alpha) \longleftrightarrow & \mathsf{Morse\ Novikov\ Theory} \\ \\ \mathsf{HNF}_*(M,\alpha) \longleftrightarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{HNF}_*(M,\alpha) \longleftrightarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{Le-Ono]} & \mathsf{Symplectic\ isotopy} \end{array}$$

$$\begin{array}{c} \mathsf{Topology} \longleftarrow & \mathsf{Geometry/Dynamics} \\ \\ H_*(M) \longleftarrow & \mathsf{Morse\ Theory} \\ \\ HF_*(M) \longleftarrow & \mathsf{Floer\ Theory} \\ \\ HA \longrightarrow & \mathsf{Hamiltonian\ isotopy} \\ \\ HN_*(M,\alpha) \longleftarrow & \mathsf{Morse\ Novikov\ Theory} \\ \\ HNF_*(M,\alpha) \longleftarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{Le-Ono]} & \mathsf{Symplectic\ isotopy} \end{array}$$

$$\begin{array}{c} \mathsf{Topology} \longleftarrow & \mathsf{Geometry/Dynamics} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Morse\ Theory} \\ \\ \mathit{HF}_*(M) \longleftarrow & \mathsf{Floer\ Theory} \\ \\ \mathit{HN}_*(M,\alpha) \longleftarrow & \mathsf{Morse\ Novikov\ Theory} \\ \\ \mathit{HNF}_*(M,\alpha) \longleftarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathit{HNF}_*(M,\alpha) \longleftarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{Le-Ono]} & \mathsf{Symplectic\ isotopy} \end{array}$$

$$\begin{array}{c} \mathsf{Topology} \longleftarrow & \mathsf{Geometry/Dynamics} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Morse\ Theory} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Floer\ Theory} \\ \\ Hamiltonian\ isotopy \\ \\ HN_*(M,\alpha) \longleftarrow & \mathsf{Morse\ Novikov\ Theory} \\ \\ \mathsf{HNF}_*(M,\alpha) \longleftarrow & \mathsf{Floer\ Novikov\ Theory} \\ \\ \mathsf{ILe-Ono]} \\ \end{array}$$

$$\begin{array}{c} \mathsf{Topology} \longleftarrow & \mathsf{Geometry/Dynamics} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Morse\ Theory} \longrightarrow \mathsf{Gradient\ flow} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Floer\ Theory} \longrightarrow \mathsf{Hamiltonian\ isotopy} \\ \\ \pi_1(M,\alpha) \longleftarrow & \mathsf{Morse\ Novikov\ Theory} \longrightarrow \mathsf{Closed\ 1-form\ flow} \\ \\ \mathcal{HNF}_*(M,\alpha) \longleftarrow & \mathsf{Floer\ Novikov\ Theory} \longrightarrow \mathsf{Symplectic\ isotopy} \end{array}$$

$$\begin{array}{c} \mathsf{Topology} \longleftarrow & \mathsf{Geometry/Dynamics} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Morse\ Theory} \\ \\ \pi_1(M) \longleftarrow & \mathsf{Floer\ Theory} \\ \\ \pi_1(M,\alpha) \longleftarrow & \mathsf{Hamiltonian\ isotopy} \\ \\ \pi_1(M,\alpha) \longleftarrow & \mathsf{Morse\ Novikov\ Theory} \\ \\ \end{array} \rightarrow & \mathsf{Closed\ 1-form\ flow} \\ \\ \pi_1(M,\alpha)? \longleftarrow & \mathsf{Symplectic\ isotopy} \\ \end{array}$$

— Morse fundamental group — (generators)

- M closed manifold,
- $M \xrightarrow{f} \mathbb{R}$ Morse function,
- g metric s.t. (f,g) is Morse-Smale.

Suppose f has a single minium which is the base point. Then for each $y \in \operatorname{Crit}_1(f)$, $W^u(y)$ is a based loop (up to a choice of orientation) and :

$$\pi_1(M,f) = \langle y^{\pm 1}, y \in \operatorname{Crit}_1(f) \rangle_{/\sim}$$

In general, $\pi_1(M)$ is generated by concatenation of dim 1 unstable manifolds + base point flow line :

Morse steps:

Morse loops: concatenation of Morse steps

Proposition

The evaluation map $\mathcal{L}(f,g) \longrightarrow \pi_1(M)$ is onto.

Morse loops: concatenation of Morse steps

Proposition

The evaluation map $\mathcal{L}(f,g) \longrightarrow \pi_1(M)$ is onto.

— Floer fundamental group — (generators)

- (M, ω) is a closed monotone symplectic manifold
- (H, J) generic Floer data.

- (M, ω) is a closed monotone symplectic manifold
- (H, J) generic Floer data.

- (M, ω) is a closed monotone symplectic manifold
- (H, J) generic Floer data.

Floer loops: concatenation of Floer steps

Theorem

The evaluation map $\mathcal{L}(H, J) \longrightarrow \pi_1(M)$ is onto.

Floer loops: concatenation of Floer steps

Theorem

The evaluation map $\mathcal{L}(H, J) \longrightarrow \pi_1(M)$ is onto.

Novikov replay...

— Novikov fundamental group —

— Novikov fundamental group —

- M is a closed manifold,
- \bullet α a closed 1-form,
- \widetilde{M} an integration cover for α .

Definition (B,G,G,L)

$$\pi_1(\widetilde{M}, \alpha) = \varprojlim_h \pi_1(\widetilde{M}/\widetilde{M}^{\leq h})$$

— Novikov fundamental group —

- M is a closed manifold,
- \bullet α a closed 1-form,
- \widetilde{M} an integration cover for α .

Definition (B,G,G,L)

$$\pi_1(\widetilde{M}, \alpha) = \varprojlim_h \pi_1(\widetilde{M}/\widetilde{M}^{\leq h})$$

Theorem (B,G,G,L)

 $\pi_1(\widetilde{M}, [\alpha])$ only depends on the cohomology class $[\alpha] \in H^1(M)$ and the choice of integration cover \widetilde{M} .

If (α, g) is Morse-Smale, $\pi_1(\widetilde{M}, [\alpha])$ "is generated" by the (unstable manifolds of the) index 1 critical points of α .

Main ingredients

- Difference of primitives of cohomologous forms are bounded.
- Unstable manifolds of index 1 critical points generate $\pi_1(\widetilde{M}/\widetilde{M}^{\leq h})$.

Theorem (B,G,G,L)

 $\pi_1(\widetilde{M}, [\alpha])$ only depends on the cohomology class $[\alpha] \in H^1(M)$ and the choice of integration cover \widetilde{M} .

If (α, g) is Morse-Smale, $\pi_1(\widetilde{M}, [\alpha])$ "is generated" by the (unstable manifolds of the) index 1 critical points of α .

Main ingredients:

- Difference of primitives of cohomologous forms are bounded.
- Unstable manifolds of index 1 critical points generate $\pi_1(\widetilde{M}/\widetilde{M}^{\leq h})$.

— Floer Novikov fundamental group for small flux — (generators)

- Pick a (non degenerate) symplectic isotopy $\phi = (\phi_t)_{t \in [0,1]}$.
- Let X_t be the vector field generating ϕ .
- Then $\alpha = \int_0^1 \omega(X_t, \cdot) dt$ is a closed 1-form.

Definition

 $[\alpha] \in H^1(M)$ is the flux of ϕ .

Theorem

If $[\alpha]$ is small enough, then the components of the moduli spaces $\mathcal{M}(y,\varnothing)$ for |y|=1 "generate" $\pi_1(M,[\alpha])$.

- Genericity ?
- Gluing?
- Compactness ?

- ✓ Genericity: same as usual.
- Gluing?
- Compactness ?

- ✓ Genericity: same as usual.
- ✓ Gluing: same as usual.
- Compactness ?

- ✓ Genericity: same as usual.
- ✓ Gluing: same as usual.
- **X** Compactness : non compactness of $\widetilde{M} \Rightarrow$ no energy bound...

- ✓ Genericity: same as usual.
- ✓ Gluing: same as usual.
- **X** Compactness : non compactness of $\widetilde{M} \Rightarrow$ no energy bound...

- ✓ Genericity: same as usual.
- ✓ Gluing: same as usual.
- **X** Compactness : non compactness of $\widetilde{M} \Rightarrow$ no energy bound...

- ✓ Genericity: same as usual.
- ✓ Gluing: same as usual.
- **X** Compactness : non compactness of $\widetilde{M} \Rightarrow$ no energy bound...

Let $H_{lpha,t}:\widetilde{M} o\mathbb{R}$ be a Hamiltonian function on \widetilde{M} generating the isotopty

$$dH_{\alpha,t}=-\omega(X_t,\cdot).$$

Action : $\mathcal{A}(\tilde{\gamma}) = -\iint \tilde{\gamma}^* \omega + \int_0^1 H_t(\gamma(t)) dt$ Floer equation for $\mathcal{M}(y, \emptyset)$:

$$\frac{\partial u}{\partial s} + J(u) \left(\frac{\partial u}{\partial t} - \chi(s) X_t(u) \right) = 0$$

$$E(u) = \iint \|\frac{\partial u}{\partial s}\|^2 ds dt$$

$$E(u) = A(y) - \iint_{[-1,1]\times[0,1]} H_t(u(s,t)) |\chi'(s)| ds dt$$

Lemma

If the flux is small enough, then whenever a sequence (u_n) in $\mathcal{M}(y,\emptyset)$ is such that

$$\lim_{n\to+\infty}E(u_n)=+\infty,$$

we have

$$\lim_{n\to+\infty}H(u_n(+\infty))=-\infty$$

Lemma

There is a constant K_1 , such that for every $u \in \mathcal{M}(y,\varnothing)$, there is at least one $s_0 \ge 1$ for which

$$\forall t \in \mathbb{S}^1, H_t(u(s_0, t)) \leq \mathcal{A}(y) - E(u)/2 + K_1.$$

Sketch of proof:

- $\bar{H}(s) = \int_0^1 H_t(u(s,t))dt$ has to be low on a large annulus (Cauchy-Schwarz).
- ② if the magnitude is large for each s, we can find many disjoint discs with large derivative at center, which contain a lot of energy.

Number of "slices" $N \sim \frac{h}{\|[\alpha]\|}$, and $E(u) \geq Na_0$, so $h \lesssim \frac{\|[\alpha]\|}{a_0} E(u)$:

$$\bar{H}(+\infty) \lesssim A(y) - \left(\frac{1}{2} - \frac{\|\alpha\|}{a_0}\right) E(u)$$

If the flux is small engough:

$$\lim_{n\to+\infty} E(u_n) = +\infty \quad \Longrightarrow \quad \lim_{n\to+\infty} H(u_n(+\infty)) = -\infty$$

i.e. the moduli spaces $\mathcal{M}(y,\varnothing)$ are "compact above every level".

- ► Can define "Floer loops above level h".
- Compare with Morse loops (requires hybrid moduli spaces M(→→(□))).
- ► Floer loops "generate" $\pi_1(\widetilde{M}, \alpha)$.

