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Main Results

Taming LCS

Compact complex curves are all projective, therefore have a lot of
holomorphic objects, admit a Kähler metric.
In dimension 2, situation changes: some K3 surfaces have no
holomorphic foliation, Inoue-Bombieri have no curves. Some
Inoue-Bombieri have no LCK structure.

Is there a structure common for all compact complex surfaces, in
particular for non Kähler surfaces ?
S = (M4, J) compact complex surface.

Definition (Taming LCS)

A taming LCS structure is ω ∈ Ω2(M) s.t.

(ω)1,1 > 0, dαω := dω − α ∧ ω = 0, dα = 0.

α is called the Lee form.
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Main Results

First existence result

Example (LCK structures)

A LCK structure is a LCS structure ω s.t. ω = ω1,1;
conformal Kähler structure is a LCK with α = df .

Theorem 1 (Apostolov-D 2016)

Any compact complex surface S admits taming LCS.

Remark
• (Siu, 80’s; Buchdahl and Lamari 2000’s) S supports a Kähler

metric ([α] = 0 ∈ H1
dR(M)) iff b1(S) is even.

• (Belgun, 98) ∃ non-Kähler surfaces with no LCK structures.
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First existence result

Theorem (Eliashberg–Murphy)

Any compact almost complex manifold M2n with b1(M) 6= 0
admits LCS structure.

It is a different family of LCS structures
Cannot tame because of rational curves. Many non-Kähler surfaces
do admit rational curves. For example Kato surfaces.
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Moduli space of LCS taming

Theorem 2 (Apostolov-D. 2019)

Suppose S with b1(S) = 1 (e.g. Class VII). Then

τ(S) :=
{

[α] ∈ H1
dR(M) |αLee form of a taming LCS

}
is either an open subset of ]−∞, 0[⊂ R ' H1

dR(S) or is a single
point {pt} in ]−∞, 0[. In the latter case S is obtained by
blow-ups of an Inoue-Bombieri surface.



Main Results

Context for Theorems 1 and 2
Class VII surfaces: b1(S) = 1 and dimC

(
H0(S ,K⊗mS )

)
= 0 for

all m ∈ N?.

• The other complex surfaces with b1(S)-odd (non-kahlerian)
are classified by K.Kodaira and LCK are constructed by
Belgun, Vaisman, Tricerri.

• (GSS conjecture) Class VII are NOT classified yet!

Conjecture (GSS Conjecture)

Any minimal S ∈ Class VII, different from Inoue–Bombieri,
contains a global spherical shell
i.e. ∃ S3 ⊂ U ⊂ S s.t. S \ S3 is connected and
(S3 ⊂ U, J) ∼= S3 ⊂ U0 ⊂ C2. (Ma.Kato)
When b2(S) > 0 a minimal surface with a GSS is called Kato
surface
If true ⇒ end of Kodaira classification ⇒ up to finite cover
S ∼= (S1 × S3)k]CP1.
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Context for Theorems 1 and 2

A.Teleman proved that for b2 = 1, 2, 3 there is at least one rational
curve, so it ends the classification for b2(S) = 1.
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Ideas for the proof of Theorem 1 & 2

Question
Is it possible to construct other objects with these LCS taming
structures ? LCK ? currents ? psh functions ?

Theorem (M.Brunella)

Every Kato surface admits a LCK structure.
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Ideas for the proof of Theorem 1 & 2
Sketch of proof:
1. Flat (holomorphic) line bundles and degree
• α ∈ Ω1(M), dα = 0 and Lα := R×M with ∇α := d + α a

flat connection:

αUi
= dfi ⇒ (Ui , e

−fi ) parallel sections of Lα.
Lα ∼= Lβ iff [α] = [β] ∈ H1

dR(M).
• Lα = C×M with holomorphic structure from ∇α. For the

hermitian structure | · | on C×M the Chern curvature

ρα = −1

2
ddc log e−2fi = dJα ∈ Ω1,1(M, J).

• (Gauduchon) (L, h) holomorphic Hermitian line bundle and g
Hermitian metric on S such that F = g(J., .) satisfies
ddcF = 0 (aways exists) ⇒

degg (L) =
1

2π

∫
S
ρ∇

h ∧ F

independent of the Chern connection ∇h on L.
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Ideas for the proof of Theorem 1 and 2

1. Flat (holomorphic) line bundles and degree
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1

2π

∫
S

(dJα) ∧ F =
1

2π

∫
S
〈dJα,F 〉gdVg

= − 1

2π

∫
S
〈α, Jd∗gF 〉gdVg = − 1

2π

∫
S
〈αh, (Jd

∗
gF )h〉gdVg .
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Ideas for the proof of Theorem 1

1. Flat (holomorphic) line bundles and degree

• α ∈ Ω1(M), dα = 0 and Lα := R×M with ∇α := d + α a
flat connection;

• Lα = C×M with holomorphic structure from ∇α.

• ∀ g Hermitian metric with ddcF = 0.

degg (Lα) = − 1

2π

∫
S
〈αh, (Jd

∗
gF )h〉gdVg = − 1

2π

∫
S
〈αh, θh〉gdVg .

• (Gauduchon) (Jd∗gF )h = 0⇔ b1(S) even.

Conclusion: If b1(S) = 1 then sign(degg (Lα)) does not depend
on the Gauduchon metric and degg (Lα) = 0 iff [α] = 0.

⇒
induced orientation on H1

dR(S) ∼= R.
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Ideas for the proof of Theorems 1 & 2
If a ∈ τ(S), let α ∈ a such that F = ω(1,1) is Gauduchon and
g = F (., J) then for Lα,

degg (Lα) = − 1

2π

∫
M
‖αh‖2vg < 0

Remark: We have an isomorphism of complexes between

· · · dα→ Ek−1(M,R)
dα→ Ek(M,R)

dα→ · · ·

and

· · ·
dL−α→ Ek−1(M, L−α)

dL−α→ Ek(M, L−α)
dL−α→ · · ·

ω → (e−fiω|Ui
) therefore

Hk
α(M,R) ' Hk

dL−α
(M, L−α)

It explains the title “twisted geometry”
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Ideas for the proof of Theorems 1 & 2

2. Taming LCS and the degree:

Lemma 1
let ω a LCS which tames S and F = ω(1,1), then

dαd
c
αF = 0

Proof: develop dαω with ω = F + ω(2,0) + ω(0,2).

Lemma 2

dαd
c
αF = 0 ⇐⇒ d∗g (θ − α) + g(θ − α, α) = 0

Proof: Take Hodge ? of dαd
c
αF .
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Ideas for the proof of Theorems 1 & 2

Lemma 3
S = (M, J), a ∈ H1

dR(M,R), c = [g ] conformal class and g
Gauduchon. We have equivalence:
(i) ∀g̃ ∈ c , ∃α̃ ∈ a s.t. dα̃d

c
α̃F̃ = 0,

(ii) ∃ψ > 0 on M which satisfies

Lg ,a(ψ) = ∆g (ψ)− g(θg − 2agh , dψ) + g(θg − agh , a
g
h ) = 0

Proof: Write α = agh − d logψ, where ψ > 0 in lemma 2.
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Ideas for the proof of Theorems 1 & 2

Lemma 4
For every smooth ψ > 0,∫

M

Lg ,a(ψ)

ψ
vg =

∫
M
g(θgh , a

g
h )−

∫
M

(‖agh‖
2 +

1

ψ2
‖dψ‖2g )vg

In particular if ψ is a solution∫
M
g(agh , θ

g
h )vg =

∫
M

(‖agh‖
2
g +

1

ψ2
‖dψ‖2)vg > 0

Proof: difficult part, elliptic but not self-adjoint differential
equation.
(Perron’s principle): ∃ solution L(ψ) = 0 with ψ > 0 iff the
principal eigenvalue λ(L) = 0;
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Ideas for the proof of Theorems 1 & 2

For b1(S) = 1,
τ(S) ⊂]−∞, 0[

Moreover, H1
dR(M,R) ' R may be endowed with the order relation

a > b ⇐⇒ degg (Lα⊗L?β) = degg (La−b) = degg (Lα)−degg (Lβ) > 0

Corollary

If α is a Lee form of a taming LCS and [α] 6= 0 ⇒ H0(S ,Lα) = 0.

Proposition

For S ∈ VII+0 , τ(S) is an open not empty subset of ]−∞, 0[.

Proof: deformation of the structure of Goto type.



Main Results

Ideas for the proof of Theorems 1 & 2

For b1(S) = 1,
τ(S) ⊂]−∞, 0[

Moreover, H1
dR(M,R) ' R may be endowed with the order relation

a > b ⇐⇒ degg (Lα⊗L?β) = degg (La−b) = degg (Lα)−degg (Lβ) > 0

Corollary

If α is a Lee form of a taming LCS and [α] 6= 0 ⇒ H0(S ,Lα) = 0.

Proposition

For S ∈ VII+0 , τ(S) is an open not empty subset of ]−∞, 0[.

Proof: deformation of the structure of Goto type.



Main Results

From LCS to twisted currents

How to use these LCS taming structures to obtain new
objects ?

Let D′k(M,R) be the currents of dimension k on M.

dα : D′k(M,R)→ D′k−1(M,R)

is defined by

∀φ ∈ Ek−1(M,R), dαT (φ) := (−1)k−1T (dαφ)

If φ is a (k − 1)-form and ψ a (2n − k)-form we have

d(φ ∧ ψ) = dαφ ∧ ψ + (−1)k−1φ ∧ d−αψ
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From LCS to twisted currents

Recall:

Proposition

For S ∈ VII+0 . We have an equivalence between the following two
conditions:

• Let 0 6= a ∈ H1
dR(M,R). For any α ∈ a, there exists a

Hermitian metric g s.t.

dαd
c
αF = 0.

• Let 0 6= a ∈ H1
dR(M,R). For any α ∈ a, there exists a LCS

taming ω s.t.
dαω = 0.



Main Results

From LCS to twisted currents

We have a proposition of Harvey-Lawson or Otiman type:

Proposition

Let S whose minimal model is in VII+0 .

• Let β ∈ H1
dR(M,R) s.t. ∃τ ≤ 0 of degree zero, with

T = dβd
c
βτ ≥ 0. Then b ∈]−∞, 0[ and τ(S) ⊂]−∞, b[.

• Conversely if τ(S) ⊂]−∞, b[ for some b < 0, then for each
β ∈ b, there exists τ ≤ 0 with 0 6= T = dβd

c
βτ ≥ 0.

Proof: (⇓) A computation gives

(dβd
c
βτ)(F ) =

t(t − 1)

2
|α|2gF ∧ F

Let a ∈ τ(S). As dimH1
dR(M,R) = 1, b = ta, β = tα.
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Main Results

From LCS to twisted currents

We apply T to both members

0 < T (F ) = (dβd
c
βτ)(F ) = τ(dβd

c
βF ) =

t(t − 1)

2
τ(|α|2gF ∧ F )︸ ︷︷ ︸

<0

therefore t ∈]0, 1[ and a = b/t < b (because b < 0 !).
(⇑) Hahn-Banach
There is a similar result for τ ≥ 0.



Main Results

From twisted currents to automorphic psh functions
Consider the kernel H of

π1(S)→ π1(S)

[π1(S), π1(S)]
' H1(S ,Z) ' Z

and
Ŝ → S

the covering associated to H, then the fiber is Z.
Let ĝ : Ŝ → Ŝ the automorphism (up to inverse) such that

S ' Ŝ/〈ĝp〉

Proposition

S admits a closed 1-form β and τ ≤ 0 of degree 0 such that
T = dβd

c
βτ ≥ 0 ⇐⇒ Ŝ admits û < 0 PSH and automorphic i.e.

û ◦ ĝ = Cû for C > 0.
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Main Results

From twisted currents to automorphic psh functions

We have a similar result with τ ≥ 0.

Proof: τ is a function in L1loc , and we consider lifts τ̂ and β̂ which

are invariant by ĝ . On Ŝ , there is a smooth function f̂ such that
β̂ = df̂ . There is a constant C such that

f̂ ◦ ĝ = f̂ + C

where C ∈ R? and may be supposed positive (change ĝ into ĝ−1).
We have

ddc(e f̂ τ) = e f̂ (dβd
c
βτ) = e f̂ T ≥ 0.
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Main Results

Examples

Primary Hopf surfaces are defined by a contraction

F (z1, z2) = (az1 + tzm2 , bz2), 0 < |a| ≤ |b| < 1, t(a− bm) = 0.

Let û(z1, z2) = log |z2| then û ◦ ĝ = û + log |b|

û is PSH and PH outside the polar set.
T̂ = ddc û is invariant by ĝ therefore induces an exact current T
on S supported by the elliptic curve E defined by z2 = 0.
Lelong number

ν(û, p) := lim inf
z→p

û(z)

log |z − p]

is equal to 1. We recover E by Siu theorem:
Ê = {p ∈ Ŝ | ν(û, p) > 0}.
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û is PSH and PH outside the polar set.
T̂ = ddc û is invariant by ĝ therefore induces an exact current T
on S supported by the elliptic curve E defined by z2 = 0.
Lelong number
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Main Results

Examples

Enoki surfaces are defined by the contraction

F (z1, z2) = (tnz1z
n
2 + P(z2), tz2) 0 < |t| < 1

where P is a polynomial of degree n = b2(S).

û = log |z2| is automorphic additive.
We recover the cycle of rational curves induced by z2 = 0 by Siu
theorem as before. The current T is exact as for Hopf surfaces

Intermediate Kato surfaces defined by a contraction of type

F (z1, z2) = (λz1z
s
2+P(z2), zk2 ), λ ∈ C?, deg(P) ≤ s, |z2| < 1

Now û(z1, z2) = log |z2| is automorphic multiplicative.
We have û ◦ ĝ(z1, z2) = log |zk2 | = k log |z2| = kû.
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Main Results

Examples

The current T̂ = ddc û does not induce a current on S . If we
want an additive PSH function we may consider the function

v̂(z1, z2) = − log(−û)

which is PSH automorphic additive but all Lelong numbers are
zero. Therefore it is not possible to recover curves by Siu theorem.



Main Results

Characterization by application of Siu theorem
Recall: Let T ≥ 0 a closed (1, 1)-current. For c > 0

Ec(T ) = {x ∈ S | ν(T , x) ≥ c}

is an analytic set.

Since S contains at most a finite number of curves the
1-dimensional part C of

E+(T ) =
⋃
c>0

Ec(T )

is a curve. We may suppose that the irreducible components of C
are all rational (or is empty !)
For Ci an irreducible component

ν(T ,Ci ) = inf
x∈Ci

ν(T , x)
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Main Results

Characterization by application of Siu theorem

Define
R := T −

∑
i

ν(T ,Ci )[Ci ]

Ec(R) is composed of at most a finite number of points.

Theorem
Let S ∈ VII0. S is Hopf or Enoki ⇐⇒ there exists T ≥ 0, exact
(1, 1)-current such that C is not empty.

Proof: (=⇒) see Examples.
(⇐=) If there is a rational curve A such that A2 = 0 it is a rational
curve with double point and S is a Enoki surface, therefore we may
suppose that C 2

i ≤ −2. T is exact, [Ci ] are closed, therefore
R ≥ 0 is closed. Since S ∈ VII0, R is exact by Lamari, hence
[C ] =

∑
i ν(T ,Ci )[Ci ] is exact and C 2 = 0.
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Main Results

Need to twist to have other surfaces

Theorem (Brunella)

Let S ∈ VII and Ŝ → S its cyclic covering. Then, the following
conditions are equivalent:
(i) The minimal model of S is a hyperbolic Kato surface (resp. a
Inoue-Bombieri surface).
(ii) Ŝ admits a negative (resp. positive) PSH τ ≤ 0 such that
T = ddcτ ≥ 0 and the support of T is an analytic set of
dimension 1 (resp. empty).

Proposition

Let S whose minimal model is in VII+0 .

• Let β ∈ H1
dR(M,R) s.t. ∃τ ≤ 0 of degree zero, with

T = dβd
c
βτ ≥ 0. Then b ∈]−∞, 0[ and τ(S) ⊂]−∞, b[.

• Conversely if τ(S) ⊂]−∞, b[ for some b < 0, then for each
β ∈ b, there exists τ ≤ 0 with 0 6= T = dβd

c
βτ ≥ 0.



Main Results

Need to twist to have other surfaces

Theorem (Brunella)
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Main Results

Need to twist to have other surfaces

There is a gap with Brunella’s theorem : L1loc → PH !
Conjecture: VII0 is divided

• Hopf and Enoki

• Inoue-Bombieri and hyperbolic Kato



Main Results

Foliations

How to obtain PSH functions, PH outside polar set ?
We suppose that there exists on S a twisted logarithmic 1-form

ω ∈ H0(S ,Ω(− logD)⊗ L), L ∈ H1(S ,C?)

where L is a topologically trivial flat line bundle. Let F be the
associated foliation.

All known surfaces in class VII0 have such a 1-form.

• If L = O then S is Hopf or Enoki

• If S ∈ VII+0 , not Enoki, D polar, then D contains a cycle of
rational curves (Steenbrink & Van Stratten)

• By [D- Complex manifolds, 2021; 8:208–222] as application of
the Donaldson trivialization theorem of the intersection form,
the maximal divisor looks like the one of a Kato surface (two
cycles or one cycle with possible branches)
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Foliations

• all intersection points are singularities of the foliation F .
Locally

ehθ = θ0 + g1(z)
dz1
z1

+ g2(z)
dz2
z2

then λ1 = g1(0) 6= 0, λ2 = g2(0) 6= 0. These constants give
the value of the residue along each curve. In fact we have the
exact sequence

0→ Ω1
S ⊗ L → Ω1

S(logD)⊗ L Res→ OD̃ ⊗ L → 0

with D̃ the normalization of D. But the restriction of L to Di

is trivial, therefore we have

H0(S ,Ω1
S(logD)⊗ L)→

p⊕
i=0

H0(Di ,ODi
) ' Cp
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Foliations

• For each singular point p of F , λ(p) = λ1
λ2

is real. In fact, the
holonomy group is generated by h(x) = µx where
µ = exp(2πiλ(p)).
For λ(p) = a + ib, µ = exp(2πia) exp(−2πb). h is a
contraction if b 6= 0.

Therefore a leaf L , accumulates on the
divisor and is closed outside D.
Intersection matrix is negative definite, therefore D contracts
onto a normal isolated point n : S → S̄ . The singular point
has H1({n(D)}) = 0 zero Hausdorff measure. Apply
Remmert-Stein-Shiffman extension theorem: n(L) is analytic.
Hence L ⊂ n−1(n(L)) should be analytic. Contradiction.

• As current ∂̄αTθ = 2πiResα(θ)TD . Replacing θ by a suitable
complex multiple, Resα(θ)|Di

are real Re(Tθ) = dατ .
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