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LCK structures. Definition I

(M, I, g) Hermitian manifold, dimCM = n > 1, (I2 = −1, integrable),
ω(x, y) = g(Ix, y).

dω = θ ∧ ω, dθ = 0

(θ is called Lee form, after H.-C. Lee, A kind of even-dimensional differential
geometry and its application to exterior calculus, Amer. J. Math. 65, (1943), 433–438.)
Usually, we suppose θ non-exact.

Forget the complex structure: (M, ω) is LCS.

Conformal invariance of the notion: if g is LCK, then ef g is LCK.

Complex submanifolds in LCK are LCK.
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Characterization in terms of currents

(M, I, θ) complex manifold, dimCM ≥ 2, equipped with a closed 1-form.

Then M admits an LCK metric with Lee form θ if and only if there are no
non-trivial positive currents which are (1, 1) components of dθ-boundaries
(here dθ = d − θ∧). (Otiman)
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Open question: LCS versus LCK

Find compact LCS manifolds which do not admit LCK structure.

Solved only in real dimension 4 using the classification of compact complex
surfaces (Bande-Kotschik, Marrero & collaborators).
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LCK structures. Definition II

Let (M, I) be a complex manifold covered by an atlkas {Uα, φα} endowed
with Kähler forms ωα, s.t. the transition functions φαφ

−1
β are homotheties

with respect to ωβ .

An LCK form on (M, {Uα, ωα}) is a Hermitian form ω which is conformally
equivalent with each ωα.
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LCK structures. Definition III
(M, I) such that its universal cover π : M̃ → M is equipped with a Kähler
form ω̃, and the deck transform group Γ acts on (M̃, ω̃) by Kähler
homotheties.

Definitions I-III appear in Vaisman’s papers, starting with 1976.

Recently extended to complex spaces by Preda-Stanciu.

The homothety character is χ : Γ :→ R>0, χ(γ) = γ∗ω̃
ω̃ .

Since Γ is a quotient group of π1(M), we can consider χ as a character on
π1(M).

The minimal cover of an LCK manifold corresponds to a Γ on which χ is
injective (Γ does not contain ω̃-isometries).

The rank of Im(χ) is the LCK rank of (M, I, ω).
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LCK structures. The weight bundle

Let L be the local system corresponding to the character χ.

Then θ is a flat connection form in L and Im(χ) its monodromy.

Call α ∈ Λ∗M̃ automorphic if γ∗α = χ(γ)α.

Automorphic forms on M̃ are identified with L-valued forms on M.

The Morse-Novikov (twisted) cohomology of (M, ω, θ) is the cohomology of
the complex (Λ∗M, dθ := d − θ∧).
It corresponds to the cohomology H∗(M, L) of the local system L and is
finite dimensional.
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Examples
Almost all (known) non-Kähler compact complex surfaces (Vaisman,
Gauduchon-O, Belgun, Brunella).
Particular examples and results on LCK surfaces: Apostolov, Dloussky, Fujiki,
Gauduchon, Otiman, Pontecorvo…

Hopf manifolds: (Cn \ 0)/⟨A⟩, A ∈ GL(n,C) with eigenvalues of absolute
value > 1

.

Some Oeljeklaus-Toma manifolds, generalization in higher dimensions of
Inoue surfaces of type S0.

Kato manifolds, generalization in higher dimensions of Kato surfaces, i.e.
surfaces with global spherical shell (Istrati, Otiman, Pontecorvo).

Some “toric Kato manifolds”, generalization in higher dimensions of Kato
surfaces, i.e. surfaces with global spherical shell (Istrati, Otiman,
Pontecorvo, Ruggiero).
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Kähler versus LCK

K LCK
Blow up at points pre-
serves the class

Yes (Tricerri, Vuletescu)

Blow up along submani-
folds preserves the class

No (Yes, if and only if the submanifold has induced
K structure, Verbitsky-Vuletescu-O)

Stability at small defor-
mations

No (Inoue surfaces, Belgun). Yes for some particu-
lar subclass (LCK with potential, Verbitsky-O)

Killing fields are holo-
morphic on compact
mfds

Yes, on compact mfds which are neither Hopf, nor
have hyperkähler universal cover (Moroianu-Pilca)

Even odd betti numbers No. There are examples with all bk even (in dimC =
3, by Oeljeklaus-Toma)

Compact LCK manifolds cannot be Einstein
(Madani-Moroianu-Pilca)

An LCK metric on a compact K manifold is automatically GCK (Vaisman)
(proven for LCK spaces with singularities by Preda-Stanciu)
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Vaisman manifolds: definition

(M, I, gM) is LCK

∇gMθ = 0

The condition is not conformally invariant. A Vaisman metric is Gauduchon
(d∗θ = 0).
On compact manifolds, a Vaisman metric, if it exists, is unique up to
homothety in its conformal class.
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Vaisman manifold: Examples

Diagonal Hopf manifolds (Cn \ 0)/⟨A⟩, A ∈ GL(n,C) diagonalizable,
with eigenvalues of absolute value > 1;

All compact complex submanifolds of a Vaisman manifold are Vaisman;

Non-Kähler elliptic surfaces;

Some (but not all) small deformations of a compact Vaisman mfd are of
Vaisman type.

Non-Vaisman: Non-diagonal Hopf manifolds, Inoue surfaces, Kato
manifolds, Oeljeklaus-Toma manifolds, blow-ups of LCK.
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Vaisman manifolds: the canonical foliation

θ♯ and Iθ♯ are commuting, Killing and real holomorphic vector fields.

Let Σ := ⟨θ♯, Iθ♯⟩ be the foliation they generate. It is Riemannian and
totally geodesic.
Regular: the leaf space is a manifold (projective).
Quasi-regular: compact leaves. The leaf space is an orbifold (projective).

On compact Vaisman, Σ only depends on the complex structure and has at
least 1 compact leaf (Tsukada).

Compact complex subvarieties are tangent to Σ.

One has dcθ = ω − θ ∧ Iθ. Moreover, Σ = Ker(dcθ) and dcθ is positive
definite on Σ⊥.
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Characterization in terms of holomorphic flow

Let (M, ω, θ) be an LCK manifold equipped with a holomorphic and
conformal C-action without fixed points, which lifts to non-isometric
homotheties on the Kähler cover M̃. Then (M, ω, θ) is conformally
equivalent with a Vaisman manifold. (Kamishima-O)
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A structure theorem
A compact Vaisman manifold of LCK rank 1 is biholomorphic isometric to a
complex manifold obtained by the following receipe:

Take (S, gS, η) a compact Sasakian manifold;

Let (C(S) := S × R>0, g := dt ⊗ dt + t2gS) be its Kähler cone;

Let q be a non-trivial holomorphic homothety of C(S) (along the
generators).

Then the compact complex manifold M = C(S)/⟨q⟩ is Vaisman.

Not restrictive since: Let (M, θ, ω) be a compact Vaisman manifold. Then
ω can be approximated by a sequence of Hermitian forms which are
conformally equivalent to Vaisman metrics of LCK rank 1. (Verbitsky-O)

Topology of compact Vaisman mfds: b1 is odd, H∗(M, L) = 0 (de Leon et
al. for LCS admitting a metric for which the Lee form is parallel.)
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A structure theorem for q-r Vaisman

There exists a negative holomorphic orbifold line bundle L over X , such that
M is biholomorphic to a Z-quotient of the space Tot◦(L) of non-zero vectors
in L.
The leaves of the canonical foliation are compact, and their preimages in
Tot◦(L) coincide with the fibers of L.

Not restrictive since: Any compact Vaisman manifold (M, I) admits a
complex deformation (M, I′) which is Vaisman and quasi-regular. Moreover,
I′ can be chosen arbitrarily close to I. (Verbitsky-O)
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Sufficient conditions for compact LCK to be
of Vaisman type

Einstein-Weyl LCK metrics are Vaisman. (Gauduchon)

Existence of a parallel vector field. (Moroianu, Madani-Moroianu-Pilca)

Pluricanonical LCK metric: (∇θ)1,1 = 0. (Moroianu-Moroianu)

Existence of a compact torus T of biholomorphic transformations, such that
Lie(T ) ∩ I Lie(T ) = {0}. (Istrati)

Homogeneous LCK. (Hasegawa-Kamishima, Gauduchon-Moroianu-O)
Compact homogeneous Vaisman are regular and have b1 = 1.

LCK nilmanifolds, solvmanifolds. (Sawai)

The vector field θ♯ is holomorphic + |θ| = const. or θ corresponds to a
Gauduchon metric. (Moroianu-Moroianu-O)

Toric LCK are Vaisman (Istrati). Toric Vaisman have b1 = 1 and kod = −∞
(Madani-Moroianu-Pilca).
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(Madani-Moroianu-Pilca).
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LCK manifolds with potential. Definition
A Kähler cover Γ−→ (M̃, ω̃)

π−→ (M, ω, θ) admits strictly positive and
automorphic global potential:

ω̃ = ddcφ, γ∗φ = χ(γ)φ

In this case π∗θ = d logφ and π∗ω = ddcφ
φ .

There exist LCK manifolds with ω̃ = ddcφ, but φ not automorphic:
Oeljeklaus-Toma examples.

There exist LCK manifolds with ω̃ = ddcφ, with φ automorphic, but not
positive. In this case (M, I) also admits a positive LCK potential
(Verbitsky-O).

Equivalent definitions on (M):
1 ω = dθdcθφ0, where φ0 : M−→ R>0.
2 dcθ = ω − θ ∧ Iθ
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LCK manifolds with potential. Examples

Vaisman manifolds. Here φ = ∥π∗θ∥ω̃ .

Non-Vaisman: Non-diagonal Hopf manifolds: (Cn \ 0)/⟨A⟩, A ∈ GL(n,C)
non-diagonalizable.

If M compact and (M, I, ω) is LCK with potential, then any small
deformation (M, It) admits LCK metrics with potential. (Verbitsky-O)

Compact LCK not admitting LCK potential: Inoue surfaces (Otiman),
Oeljeklaus-Toma manifolds (Kasuya, Otiman).
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The Kähler cover of LCK manifolds with proper potential

An LCK potential is proper if and only if Γ ∼= Z (i.e. the LCK rank is 1).
The Z-cover of an LCK manifold with proper potential, dimC ≥ 3 can be
completed with only 1 point to a Stein variety (in general non-smooth).

The restriction on dimension: we use a theorem of Rossi-Andreotti, Siu: Let
S be a compact strictly pseudoconvex CR-manifold, dimR S ≥ 5, and let
H0(OS)b the ring of bounded CR-holomorphic functions. Then S is the
boundary of a Stein variety M with isolated singularities, such that
H0(OS)b = H0(OM)b, where H0(OM)b denotes the ring of bounded
holomorphic functions. Moreover,M is defined uniquely:
M = Spec(H0(OS)b).
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The Kähler cover of LCK manifolds with proper potential

The Z cover has the structure of a closed algebraic cone, id est an affine
variety C admitting a C∗-action ρ with a unique fixed point x0, called the
origin, and satisfying the following:

C is smooth outside of x0,

ρ acts on the Zariski tangent space Tx0C with all eigenvalues |αi| < 1.

A compact LCK manifold with potential (M, I, ω, θ) can be deformed to
(M, I, ω′, θ′) with proper potential. (Verbitsky-O)
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Embedding LCK manifold with proper potential into Hopf
manifolds

A compact manifold (M, I, ω, θ) with potential, dimCM ≥ 3, admits a
holomorphic embedding into a (linear) Hopf manifold.

Extension to LCS of type I: David Martinez Torres & collaborators.

(M, I), dimCM ≥ 3, is of Vaisman type if and only if it can be
holomorphically embedded in a diagonal Hopf manifold.

A compact Sasakian manifold admits a CR embedding into a diffeomorphism
sphere, preserving the Reeb fields (Verbitsky-O).

Compact LCK with potential, dimC ≥ 3, can be deformed to Vaisman
manifolds. In particular, they have the same topology as Vaisman manifolds.
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A criterion for the existence of LCK metrics with potential
metrics

(M, I, ω, θ) compact, admits a holomorphic S1 action which lifts to an action
by homotheties (and not only isometries) of the Kähler cover. (Verbitsky-O)

The converse is also true: use embedding in Hopf and logarithm of the
monodromy.
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The set of Lee classes
For (M, I) of LCK type, let

L = {[θ] ; θ is a Lee form for an LCK metric on M} ⊂ H1(M,R)

For M of Vaisman type, L is a half-space (Tsukada).
The same holds for LCK with potential of dimC ≥ 3 (Verbitsky-O).
In particular, H∗(M, L) = 0, as for Vaisman manifolds.

Follows from:

Let (M, θ, ω) be a compact LCK manifold with potential, and H1,0(M) denote
the space of holomorphic 1-forms on M. Then
H1(M,C) = H1,0(M)⊕ H1,0(M)⊕ ⟨θ⟩.
If [θ] corresponds to an LCK metric with potential on (M, I), −[θ] cannot be
the Lee class of an LCK metric on (M, I).

Sharp contrast with Inoue surfaces where L is a single point.
(Apostolov-Dloussky, Otiman)
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