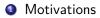
Toric Kato manifolds

Nicolina Istrati (joint with A. Otiman, M. Pontecorvo and M. Ruggiero)

University of Marburg

Locally Conformal Symplectic Manifolds: Interactions and Applications Banff, November 7-12 2021

Plan of talk



Plan of talk

- Motivations
- Ø Kato manifolds

Plan of talk

- Motivations
- Acto manifolds
- Oric constructions

Definition

A locally conformally Kähler (LCK) metric on a complex manifold X is a Hermitian metric Ω so that

$$d\Omega = \theta \wedge \Omega, \quad \theta \in \mathcal{C}^{\infty}(T^*X), \ d\theta = 0$$

Definition

 A locally conformally Kähler (LCK) metric on a complex manifold X is a Hermitian metric Ω so that

$$d\Omega = \theta \wedge \Omega, \quad \theta \in \mathcal{C}^{\infty}(T^*X), \ d\theta = 0$$

• LCK structure \equiv global Kähler metric ω on the u.c. \tilde{X} on which $\pi_1(X)$ acts by homotheties

 \underline{Q} : How close are LCK manifolds to Kähler, for e.g. cohomologically?

- $\underline{Q}:$ How close are LCK manifolds to Kähler, for e.g. cohomologically?
 - If X compact Kählerian $\Rightarrow \partial \overline{\partial}$ -lemma \Rightarrow Hodge decomposition + symmetry:

$$H^k(X) = \bigoplus_{p+q=k} H^{p,q}(X), \ H^{p,q}(X) \cong \overline{H^{q,p}(X)}$$

- \underline{Q} : How close are LCK manifolds to Kähler, for e.g. cohomologically?
 - If X compact Kählerian $\Rightarrow \partial \overline{\partial}$ -lemma \Rightarrow Hodge decomposition + symmetry:

$$H^k(X) = \bigoplus_{p+q=k} H^{p,q}(X), \ H^{p,q}(X) \cong \overline{H^{q,p}(X)}$$

• Vaisman '80: strict compact LCK's X don't satisfy this:

 $b_1(X) < 2h^{0,1}(X)$

- \underline{Q} : How close are LCK manifolds to Kähler, for e.g. cohomologically?
 - If X compact Kählerian $\Rightarrow \partial \overline{\partial}$ -lemma \Rightarrow Hodge decomposition + symmetry:

$$H^k(X) = \bigoplus_{p+q=k} H^{p,q}(X), \ H^{p,q}(X) \cong \overline{H^{q,p}(X)}$$

• Vaisman '80: strict compact LCK's X don't satisfy this:

$$b_1(X) < 2h^{0,1}(X)$$

• In all known cases, LCK's satisfy Hodge decomposition:

$$b_k = \sum_{p+q=k} h^{p,q}$$

surfaces \checkmark Vaisman manifolds (Tsukada) \checkmark OT manifolds (Otiman-Toma) \checkmark Q: Is this true for all LCK's?

- \underline{Q} : How close are LCK manifolds to Kähler, for e.g. cohomologically?
 - If X compact Kählerian $\Rightarrow \partial \overline{\partial}$ -lemma \Rightarrow Hodge decomposition + symmetry:

$$H^k(X) = \bigoplus_{p+q=k} H^{p,q}(X), \ H^{p,q}(X) \cong \overline{H^{q,p}(X)}$$

• Vaisman '80: strict compact LCK's X don't satisfy this:

$$b_1(X) < 2h^{0,1}(X)$$

• In all known cases, LCK's satisfy Hodge decomposition:

$$b_k = \sum_{p+q=k} h^{p,q}$$

surfaces \checkmark Vaisman manifolds (Tsukada) \checkmark OT manifolds (Otiman-Toma) \checkmark <u>Q</u>: Is this true for all LCK's? \rightsquigarrow need more higher-dimensional examples

Global spherical shells

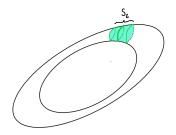
Definition

A **spherical shell** in a complex *n*-dimensional manifold X is an open subset $S \subset X$ which is biholomorphic to a neighbourhood of \mathbb{S}^{2n-1} in $\mathbb{C}^n - \{0\}$.

Global spherical shells

Definition

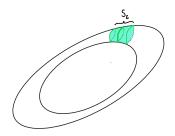
A spherical shell in a complex *n*-dimensional manifold X is an open subset $S \subset X$ which is biholomorphic to a neighbourhood of \mathbb{S}^{2n-1} in $\mathbb{C}^n - \{0\}$. S is called global (GSS) when X - S is connected.



Global spherical shells

Definition

A spherical shell in a complex *n*-dimensional manifold X is an open subset $S \subset X$ which is biholomorphic to a neighbourhood of \mathbb{S}^{2n-1} in $\mathbb{C}^n - \{0\}$. S is called global (GSS) when X - S is connected. A compact complex manifold with $n \ge 2$ containing a GSS is called a Kato manifold.

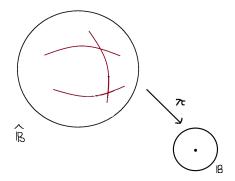


Construction of Kato manifolds (Kato, '77)

Construction of Kato manifolds (Kato, '77)

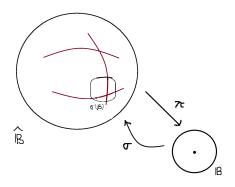
Any Kato manifold can be obtained as follows. Let $\mathbb{B} = \{z \in \mathbb{C}^n, ||z|| < 1\}.$

• Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a proper modification at a finite number of points $p_1, \ldots, p_s \in \mathbb{B}$, with exceptional divisor E.



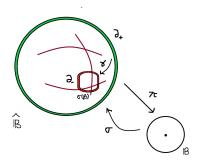
Construction of Kato manifolds (Kato, '77)

- Let $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ be a proper modification at a finite number of points $p_1, \ldots, p_s \in \mathbb{B}$, with exceptional divisor E.
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.



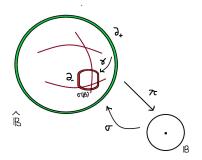
Construction of Kato manifolds (Kato, '78)

- Let $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ be a proper modification at a finite number of points $p_1, \ldots, p_s \in \mathbb{B}$, with exceptional divisor E.
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Put $\gamma := \sigma \circ \pi|_{\partial_+} : \partial_+ \to \partial_-$, $\partial_+ := \partial \hat{\mathbb{B}}$, $\partial_- := \partial \sigma(\mathbb{B})$.



Construction of Kato manifolds (Kato, '78)

- Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a proper modification at a finite number of points $p_1, \ldots, p_s \in \mathbb{B}$, with exceptional divisor E.
- Let $\sigma : \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Put $\gamma := \sigma \circ \pi|_{\partial_+} : \partial_+ \to \partial_-$, $\partial_+ := \partial \hat{\mathbb{B}}$, $\partial_- := \partial \sigma(\mathbb{B})$.

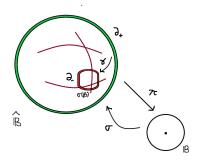


$$X(\pi,\sigma) := \hat{\mathbb{B}} - \sigma(\mathbb{B})/_{\sim\gamma}$$

Construction of Kato manifolds (Kato, '78)

Any Kato manifold can be obtained as follows. Let $\mathbb{B} = \{z \in \mathbb{C}^n, ||z|| < 1\}.$

- Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a proper modification at a finite number of points $p_1, \ldots, p_s \in \mathbb{B}$, with exceptional divisor E.
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Put $\gamma := \sigma \circ \pi|_{\partial_+} : \partial_+ \to \partial_-$, $\partial_+ := \partial \hat{\mathbb{B}}$, $\partial_- := \partial \sigma(\mathbb{B})$.



$$X(\pi,\sigma) := \hat{\mathbb{B}} - \sigma(\mathbb{B})/_{\sim\gamma}$$

 $(\pi,\sigma)=$ Kato data

• If $\pi=\mathrm{id}$ then $X(\pi,\sigma)$ is a Hopf manifold, i.e. has universal cover $\mathbb{C}^n-\{0\}$

- If $\pi=\mathrm{id}$ then $X(\pi,\sigma)$ is a Hopf manifold, i.e. has universal cover $\mathbb{C}^n-\{0\}$
- If $\sigma(\{p_1,\ldots,p_s\})\cap E=\varnothing$ then $X(\pi,\sigma)$ is a modification of a Hopf manifold

- If $\pi = id$ then $X(\pi, \sigma)$ is a Hopf manifold, i.e. has universal cover $\mathbb{C}^n \{0\}$
- If $\sigma(\{p_1,\ldots,p_s\})\cap E=\varnothing$ then $X(\pi,\sigma)$ is a modification of a Hopf manifold
- **Thm [Kato '77]**: Any Kato manifold is deformation equivalent to a proper modification of a Hopf manifold.

- If $\pi = id$ then $X(\pi, \sigma)$ is a Hopf manifold, i.e. has universal cover $\mathbb{C}^n \{0\}$
- If $\sigma(\{p_1,\ldots,p_s\})\cap E=\varnothing$ then $X(\pi,\sigma)$ is a modification of a Hopf manifold
- **Thm [Kato '77]**: Any Kato manifold is deformation equivalent to a proper modification of a Hopf manifold.
- $\pi_1(X(\pi,\sigma)) = \mathbb{Z}$

$$\widetilde{X(\pi,\sigma)} = \bigsqcup_{m \in \mathbb{Z}} W_m / \partial_- W_m \sim \gamma \partial_+ W_{m+1}$$
$$W_m = \widehat{\mathbb{B}} - \sigma(\mathbb{B})$$



A Kato manifold $X = X(\pi, \sigma)$ admits an LCK metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is Kähler, if and only if \tilde{X} is Kähler.

A Kato manifold $X = X(\pi, \sigma)$ admits an LCK metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is Kähler, if and only if \tilde{X} is Kähler.

• e.g: if π =composition of smooth blow-ups \leadsto LCK

A Kato manifold $X = X(\pi, \sigma)$ admits an LCK metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is Kähler, if and only if \tilde{X} is Kähler.

- e.g: if π =composition of smooth blow-ups \leadsto LCK
- $\hat{\mathbb{B}}$ is not always Kähler: Hironaka counter-examples

A Kato manifold $X = X(\pi, \sigma)$ admits an LCK metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is Kähler, if and only if \tilde{X} is Kähler.

- e.g: if π =composition of smooth blow-ups \leadsto LCK
- $\hat{\mathbb{B}}$ is not always Kähler: Hironaka counter-examples
- if $\pi \neq id$, then $X(\pi, \sigma)$ admits no LCK with potential/Vaisman metric

Proof of existence (sketch)

• Let ω be a Kähler metric on $\hat{\mathbb{B}}$

- Let ω be a Kähler metric on $\hat{\mathbb{B}}$
- On $\sigma(\mathbb{B}) \ \omega$ has a potential: $\sigma^* \omega = i \partial \overline{\partial} f$

- Let ω be a Kähler metric on $\hat{\mathbb{B}}$
- On $\sigma(\mathbb{B}) \; \omega$ has a potential: $\sigma^* \omega = i \partial \overline{\partial} f$
- Interpolate between f and $c||z||^2$ for well-chosen $c \in \mathbb{R}_{>0} \rightsquigarrow$ new metric ω_1 with $\omega_1|_{\sigma(\mathbb{B}_r)} = c\sigma_*\omega_{std}$ for some $r \leq 1$

- Let ω be a Kähler metric on $\hat{\mathbb{B}}$
- On $\sigma(\mathbb{B}) \; \omega$ has a potential: $\sigma^* \omega = i \partial \overline{\partial} f$
- Interpolate between f and $c||z||^2$ for well-chosen $c \in \mathbb{R}_{>0} \iff$ new metric ω_1 with $\omega_1|_{\sigma(\mathbb{B}_r)} = c\sigma_*\omega_{std}$ for some $r \leq 1$
- Near $\partial \hat{\mathbb{B}}_r$, ω_1 has a potential \rightsquigarrow do the same \rightsquigarrow metric ω_2 with $\omega_2 = C \pi^* \omega_{std}$ near $\partial \hat{\mathbb{B}}_r$

- Let ω be a Kähler metric on $\hat{\mathbb{B}}$
- On $\sigma(\mathbb{B}) \; \omega$ has a potential: $\sigma^* \omega = i \partial \overline{\partial} f$
- Interpolate between f and $c||z||^2$ for well-chosen $c \in \mathbb{R}_{>0} \iff$ new metric ω_1 with $\omega_1|_{\sigma(\mathbb{B}_r)} = c\sigma_*\omega_{std}$ for some $r \leq 1$
- Near $\partial \hat{\mathbb{B}}_r$, ω_1 has a potential \rightsquigarrow do the same \rightsquigarrow metric ω_2 with $\omega_2 = C \pi^* \omega_{std}$ near $\partial \hat{\mathbb{B}}_r$
- Replace initial fundamental domain by $\hat{\mathbb{B}}_r \sigma(\mathbb{B}_r)$
- Since $\gamma^*(\omega_2|_{\partial_-}) = \frac{c}{C} \cdot \omega_2|_{\partial_+} \rightsquigarrow \mathsf{LCK}$ structure

Toric Kato manifolds

We call a Kato manifold X toric Kato if it admits a *toric Kato data* (π, σ) :

Toric Kato manifolds

We call a Kato manifold X toric Kato if it admits a *toric Kato data* (π, σ) :

• the extension of $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ to $\hat{\mathbb{C}}^n \to \mathbb{C}^n$ is a toric modification, i.e. $\hat{\mathbb{C}}^n$ is a toric variety and π is $(\mathbb{C}^*)^n$ -equivariant

- the extension of $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ to $\hat{\mathbb{C}}^n \to \mathbb{C}^n$ is a toric modification, i.e. $\hat{\mathbb{C}}^n$ is a toric variety and π is $(\mathbb{C}^*)^n$ -equivariant
- $\sigma: \mathbb{B} \to \hat{\mathbb{B}}$ is equivariant, i.e. $\exists \nu \in \operatorname{Aut}_{gp}((\mathbb{C}^*)^n)$ s.t.

$$\sigma(tz) = \nu(t)\sigma(z), \ t \in (\mathbb{C}^*)^n, \ z \in \mathbb{B}.$$

- the extension of $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ to $\hat{\mathbb{C}}^n \to \mathbb{C}^n$ is a toric modification, i.e. $\hat{\mathbb{C}}^n$ is a toric variety and π is $(\mathbb{C}^*)^n$ -equivariant
- $\sigma: \mathbb{B} \to \hat{\mathbb{B}}$ is equivariant, i.e. $\exists \nu \in \operatorname{Aut}_{gp}((\mathbb{C}^*)^n)$ s.t.

$$\sigma(tz) = \nu(t)\sigma(z), \ t \in (\mathbb{C}^*)^n, \ z \in \mathbb{B}.$$

• Eg: π =composition of blow-ups at $(\mathbb{C}^*)^n$ fixed points, σ =toric chart.

- the extension of $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ to $\hat{\mathbb{C}}^n \to \mathbb{C}^n$ is a toric modification, i.e. $\hat{\mathbb{C}}^n$ is a toric variety and π is $(\mathbb{C}^*)^n$ -equivariant
- $\sigma: \mathbb{B} \to \hat{\mathbb{B}}$ is equivariant, i.e. $\exists \nu \in \operatorname{Aut}_{gp}((\mathbb{C}^*)^n)$ s.t.

$$\sigma(tz) = \nu(t)\sigma(z), \ t \in (\mathbb{C}^*)^n, \ z \in \mathbb{B}.$$

• Eg: π =composition of blow-ups at $(\mathbb{C}^*)^n$ fixed points, σ =toric chart. • For n = 2: toric Kato manifolds = diagonal Hopf+Inoue surfaces with $b_2 > 0$

- the extension of $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ to $\hat{\mathbb{C}}^n \to \mathbb{C}^n$ is a toric modification, i.e. $\hat{\mathbb{C}}^n$ is a toric variety and π is $(\mathbb{C}^*)^n$ -equivariant
- $\sigma: \mathbb{B} \to \hat{\mathbb{B}}$ is equivariant, i.e. $\exists \nu \in \operatorname{Aut}_{gp}((\mathbb{C}^*)^n)$ s.t.

$$\sigma(tz) = \nu(t)\sigma(z), \ t \in (\mathbb{C}^*)^n, \ z \in \mathbb{B}.$$

- Eg: π =composition of blow-ups at $(\mathbb{C}^*)^n$ fixed points, σ =toric chart.
- \bullet For n=2: toric Kato manifolds = diagonal Hopf+Inoue surfaces with $b_2>0$

• Some special cases of toric Kato manifolds were constructed by Tsuchihashi '87

Theorem (-, Otiman, Pontecorvo, Ruggiero)

Let X be a toric Kato manifold. Then there exists a uniquely associated toric variety (of non finite type) $X(\tilde{\Sigma})$ and a group $\mathbb{Z} \cong \Gamma \subset \operatorname{Aut}(X(\tilde{\Sigma}))$ so that the universal cover \tilde{X} is a Γ -invariant open subset of $X(\tilde{\Sigma})$ and $X = \tilde{X}/\Gamma$.

• Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$

- Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$,

- Let (π, σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$, where $A := (v_1 \cdots v_n) = (a_{jk}) \in \mathrm{GL}(n, \mathbb{Z})$ and

$$\varphi_A(z) = (z_1^{a_{11}} \cdots z_n^{a_{1n}}, \dots, z_1^{a_{n1}} \cdots z_n^{a_{nn}})$$

is the associated toric chart $\varphi_A : \mathbb{C}^n \to \hat{\mathbb{C}}^n = X(\hat{\Sigma})$

- Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$, where $A := (v_1 \cdots v_n) = (a_{jk}) \in \mathrm{GL}(n, \mathbb{Z})$ and

$$\varphi_A(z) = (z_1^{a_{11}} \cdots z_n^{a_{1n}}, \dots, z_1^{a_{n1}} \cdots z_n^{a_{nn}})$$

is the associated toric chart $\varphi_A:\mathbb{C}^n\to \hat{\mathbb{C}}^n=X(\hat{\Sigma})$

۲

$$\tilde{\Sigma} := \{ A^m \nu \mid m \in \mathbb{Z}, \nu \in \hat{\Sigma} - \alpha \}$$

- Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$, where $A := (v_1 \cdots v_n) = (a_{jk}) \in \mathrm{GL}(n, \mathbb{Z})$ and

$$\varphi_A(z) = (z_1^{a_{11}} \cdots z_n^{a_{1n}}, \dots, z_1^{a_{n1}} \cdots z_n^{a_{nn}})$$

is the associated toric chart $\varphi_A:\mathbb{C}^n\to \hat{\mathbb{C}}^n=X(\hat{\Sigma})$

$$\begin{split} \tilde{\Sigma} &:= \{A^m \nu \mid m \in \mathbb{Z}, \nu \in \hat{\Sigma} - \alpha\} \\ \bullet \ A \in \operatorname{Aut}(\tilde{\Sigma}) & \rightsquigarrow \ F_A \in \operatorname{Aut}(X(\tilde{\Sigma})) \end{split}$$

- Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$, where $A := (v_1 \cdots v_n) = (a_{jk}) \in \mathrm{GL}(n, \mathbb{Z})$ and

$$\varphi_A(z) = (z_1^{a_{11}} \cdots z_n^{a_{1n}}, \dots, z_1^{a_{n1}} \cdots z_n^{a_{nn}})$$

is the associated toric chart $\varphi_A:\mathbb{C}^n\to \hat{\mathbb{C}}^n=X(\hat{\Sigma})$

$$\tilde{\Sigma} := \{ A^m \nu \mid m \in \mathbb{Z}, \nu \in \hat{\Sigma} - \alpha \}$$

$$A \in \operatorname{Aut}(\tilde{\Sigma}) \quad \rightsquigarrow \quad F_A \in \operatorname{Aut}(X(\tilde{\Sigma}))$$

$$\gamma := \underline{\lambda} \circ F_A \quad \rightsquigarrow \Gamma := \langle \gamma \rangle \subset \operatorname{Aut}(X(\tilde{\Sigma}))$$

- Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$, where $A := (v_1 \cdots v_n) = (a_{jk}) \in \mathrm{GL}(n, \mathbb{Z})$ and

$$\varphi_A(z) = (z_1^{a_{11}} \cdots z_n^{a_{1n}}, \dots, z_1^{a_{n1}} \cdots z_n^{a_{nn}})$$

is the associated toric chart $\varphi_A:\mathbb{C}^n\to \hat{\mathbb{C}}^n=X(\hat{\Sigma})$

$$\tilde{\Sigma} := \{ A^m \nu \mid m \in \mathbb{Z}, \nu \in \hat{\Sigma} - \alpha \}$$

• $A \in \operatorname{Aut}(\tilde{\Sigma}) \rightsquigarrow F_A \in \operatorname{Aut}(X(\tilde{\Sigma}))$

•
$$\gamma := \underline{\lambda} \circ F_A \rightsquigarrow \Gamma := \langle \gamma \rangle \subset \operatorname{Aut}(X(\tilde{\Sigma}))$$

• Take $U := \{ z \in (\mathbb{C}^*)^n \mid \exists \lim_{m \to \infty} ||\gamma^m(z)|| = 0 \}$

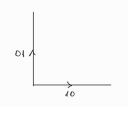
- Let (π,σ) be a toric Kato data for X, let $\hat{\Sigma}$ be the fan of $\hat{\mathbb{C}}^n$
- There exists an *n*-dim cone $\alpha = \langle v_1, \ldots, v_n \rangle \in \hat{\Sigma}$ and $\underline{\lambda} \in (\mathbb{C}^*)^n$ s.t. $\sigma = \underline{\lambda} \circ \varphi_A$, where $A := (v_1 \cdots v_n) = (a_{jk}) \in \mathrm{GL}(n, \mathbb{Z})$ and

$$\varphi_A(z) = (z_1^{a_{11}} \cdots z_n^{a_{1n}}, \dots, z_1^{a_{n1}} \cdots z_n^{a_{nn}})$$

is the associated toric chart $\varphi_A:\mathbb{C}^n\to \hat{\mathbb{C}}^n=X(\hat{\Sigma})$

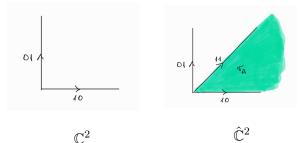
$$\begin{split} \tilde{\Sigma} &:= \{A^m \nu \mid m \in \mathbb{Z}, \nu \in \hat{\Sigma} - \alpha\} \\ \bullet \ A \in \operatorname{Aut}(\tilde{\Sigma}) &\rightsquigarrow F_A \in \operatorname{Aut}(X(\tilde{\Sigma})) \\ \bullet \ \gamma &:= \underline{\lambda} \circ F_A \quad \rightsquigarrow \Gamma := \langle \gamma \rangle \subset \operatorname{Aut}(X(\tilde{\Sigma})) \\ \bullet \ \mathsf{Take} \ U &:= \{z \in (\mathbb{C}^*)^n \mid \exists \lim_{m \to \infty} ||\gamma^m(z)|| = 0\} \\ \bullet \ \mathsf{Then} \ \tilde{X} &= \operatorname{Int}(\overline{U}^{X(\tilde{\Sigma})}) \text{ and } X = \tilde{X}/\Gamma. \end{split}$$

•
$$\pi: \hat{\mathbb{C}}^2 \to \mathbb{C}^2$$
 blow-up at 0

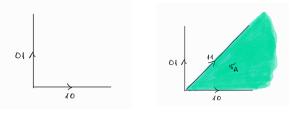


 \mathbb{C}^2

•
$$\pi : \hat{\mathbb{C}}^2 \to \mathbb{C}^2$$
 blow-up at 0
• $\sigma = (1, \lambda) \circ \varphi_A$, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $|\lambda| < 1$



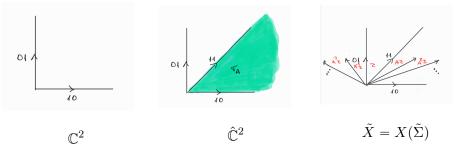
•
$$\pi : \hat{\mathbb{C}}^2 \to \mathbb{C}^2$$
 blow-up at 0
• $\sigma = (1, \lambda) \circ \varphi_A$, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $|\lambda| < 1$
• $\gamma(z_1, z_2) = (z_1 z_2, \lambda z_2)$



 \mathbb{C}^2

$$\hat{\mathbb{C}}^2$$

•
$$\pi : \hat{\mathbb{C}}^2 \to \mathbb{C}^2$$
 blow-up at 0
• $\sigma = (1, \lambda) \circ \varphi_A$, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $|\lambda| < 1$
• $\gamma(z_1, z_2) = (z_1 z_2, \lambda z_2)$



Let X^n be a toric Kato manifold with matrix A. Let $P(A) \in \operatorname{GL}(k, \mathbb{Z})$ be the maximal permutation submatrix of A. Call X of **parabolic type** if k = n - 1, and of **hyperbolic type** if $k \leq n - 2$. Let X^n be a toric Kato manifold with matrix A. Let $P(A) \in \operatorname{GL}(k, \mathbb{Z})$ be the maximal permutation submatrix of A. Call X of **parabolic type** if k = n - 1, and of **hyperbolic type** if $k \leq n - 2$. Let X^n be a toric Kato manifold with matrix A. Let $P(A) \in GL(k, \mathbb{Z})$ be the maximal permutation submatrix of A. Call X of **parabolic type** if k = n - 1, and of **hyperbolic type** if $k \leq n - 2$.

Proposition (-, Otiman, Pontecorvo, Ruggiero)

• X is a Hopf manifold iff any T-invariant curve is elliptic;

Let X^n be a toric Kato manifold with matrix A.

Let $P(A) \in GL(k, \mathbb{Z})$ be the maximal permutation submatrix of A. Call X of **parabolic type** if k = n - 1, and of **hyperbolic type** if $k \leq n - 2$.

Proposition (-, Otiman, Pontecorvo, Ruggiero)

- X is a Hopf manifold iff any T-invariant curve is elliptic;
- X is of hyperbolic type iff any T-invariant curve is rational;

Let X^n be a toric Kato manifold with matrix A.

Let $P(A) \in GL(k, \mathbb{Z})$ be the maximal permutation submatrix of A. Call X of **parabolic type** if k = n - 1, and of **hyperbolic type** if $k \leq n - 2$.

Proposition (-, Otiman, Pontecorvo, Ruggiero)

- X is a Hopf manifold iff any T-invariant curve is elliptic;
- X is of hyperbolic type iff any T-invariant curve is rational;
- X is of parabolic type iff X contains a unique T-invariant elliptic curve E and at least one T-invariant rational curve $\checkmark \Rightarrow$ all other T-invariant curves are rational.

Theorem (-, Otiman, Pontecorvo, Ruggiero)

We have the following invariants:

 $\operatorname{kod}(X) = -\infty$

$$h^{p,0}(X) = 0$$
 for all $p \ge 1$.

Theorem (-, Otiman, Pontecorvo, Ruggiero)

We have the following invariants:

$$\operatorname{kod}(X) = -\infty$$

$$h^{p,0}(X) = 0$$
 for all $p \ge 1$.

If moreover X is of hyperbolic type, or of parabolic type with $|\underline{\lambda}|$ is small enough, then:

$$\begin{aligned} h^{0,0}(X) &= h^{0,1}(X) = 1, \ h^{0,p}(X) = 0, \ p \ge 2 \\ h^{1,p}(X) &= 0, \ p \ne 1 \\ e^{1,1}(X) &= b_2 = \#\{\text{irreducible components of } D\} > 0 \end{aligned}$$

• Compute the cohomology of Ω^q_X as $\Gamma\text{-equivariant}$ cohomology on $\tilde X$ using toric geometry

• Compute the cohomology of Ω^q_X as Γ -equivariant cohomology on \tilde{X} using toric geometry Problem: \tilde{X} , $X(\tilde{\Sigma})$ non-compact, so no GAGA theorem

- Compute the cohomology of Ω^q_X as Γ-equivariant cohomology on X
 using toric geometry
 Problem: X
 , X(Σ
) non-compact, so no GAGA theorem
- Degenerate X to a singular, but "easier" space + semi-continuity

Theorem (Nakamura; Tsuchihashi; -, Otiman, Pontecorvo, Ruggiero)

Let X be a toric Kato manifold. Then there exists a flat holomorphic proper family $p: \mathcal{X} \to \Delta$, where $1 \in \Delta \subset \mathbb{C}$ is an open disk, s.t.

- $\mathcal{X}_1 \cong X$
- $\mathcal{X}_0 = Y/_{E' \sim H'}$ where Y is a toric compact algebraic variety and E', H' are irreducible invariant hypersurfaces.

Theorem (Nakamura; Tsuchihashi; -, Otiman, Pontecorvo, Ruggiero)

Let X be a toric Kato manifold. Then there exists a flat holomorphic proper family $p: \mathcal{X} \to \Delta$, where $1 \in \Delta \subset \mathbb{C}$ is an open disk, s.t.

- $\mathcal{X}_1 \cong X$
- $\mathcal{X}_0 = Y/_{E' \sim H'}$ where Y is a toric compact algebraic variety and E', H' are irreducible invariant hypersurfaces.

If moreover X is of hyperbolic type then $\forall t \in \Delta^*, \mathcal{X}_t \cong X$.

Betti numbers

Let X be a toric Kato manifold obtained from $\pi : \hat{\mathbb{C}}^n \to \mathbb{C}^n$. Denote by a_j the number of j-dim cones of the fan of $\hat{\mathbb{C}}^n$.

Theorem (-, Otiman, Pontecorvo, Ruggiero)

 \boldsymbol{X} has the following Betti numbers:

$$b_0(X) = b_1(X) = b_{2n-1}(X) = b_{2n}(X) = 1$$

$$b_{2j+1}(X) = 0, \quad 1 \le j \le n-2$$

$$b_{2j}(X) = -1 + \sum_{s=j}^n (-1)^{s-j} \binom{s}{j} \left(a_{n-s} + \binom{n}{s+1}\right), \quad 1 \le j \le n-1.$$

In particular, we have

$$b_2(X) = \#D, \quad \chi(X) = a_n - 1.$$

Thank you for your attention.