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Symplectic

Symplectic: (M , ω), ω ∈ Ω2(M)

Closed dω = 0

Non-degenerate ι•ω : TM
∼−→ T ∗M

Darboux Theorem: Locally

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn
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Conformal Symplectic

Conformal symplectic transformation:
f : (M , ω)→ (N , ω′) such that

f ∗ω′ = ecω,

with c locally constant.

Remark
dim ≥ 4: The equation itself automatically implies c is locally
constant.
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Globally conformal symplectic

Globally conformal symplectic (GCS): Equivalence
classes under (M , ω) ∼ (M , ecω) with c locally constant.

Remark
We lose a sense of scale/volume, e.g.

(CPn, ωFS) ∼ (CPn, 1000ωFS).

(Naive embedding problems don't make sense.)
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Non-gluing

Cannot glue GCS on open sets; might come back with scale
factor.

Solution: Shea�fy!
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Locally conformal symplectic, de�nition 1

LCS manifold: (M ,U = {(Uα, ωα)})
Cover: {Uα} open cover of M

Locally symplectic: ωα ∈ Ω2(Uα) symplectic

Conformality: identity on overlaps are conformal
symplectic, i.e.

ωα|Uα∩Uβ
= ec

β
αωβ|Uα∩Uβ

for locally constant functions cβα .

Maximality: U maximal with these properties (or
alternatively, equivalence classes)
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Comparisons with symplectic

Locally, LCS = GCS, i.e. symplectic but forgetting scale.

Takeaway

Any symplectic de�nition or theorem which is R+-equivariant
and can be stated/proved in a local-to-global manner is likely
true for LCS manifolds.
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Lee class

The cβα are �ech cocyle with respect to open cover: obtain
element of H1(M ;R), called the Lee class.

Geometrically: walk around M along loops, and symplectic
form scales. Lee class is negative of holonomy in

Hom(π1(M),R) ∼= H1(M ;R).

GCS i� Lee class = 0.
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Locally conformal symplectic, de�nition 2

Glue (Uα, ωα) and (Uβ, ωβ) on regions where ωα = ωβ.

An LCS manifold is a �at principal R+-bundle with an
R+-equivariant leafwise symplectic form.
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LCS via di�erential forms

Pick a section s of the principal bundle: connection form is
Lee form η ∈ Z1(M) representing the Lee class. Recover
tautological ω ∈ Ω2(M) with

ωp := (ωα)p, s(p) ∈ Uα.

Locally
ω|Uα = egαωα

with η|Uα = dgα.

dηω := dω − η ∧ ω = 0.
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Locally conformal symplectic, de�nition 3

Strict LCS Manifold: (M , η, ω)

Flatness of twisting: η ∈ Z1(M) (closed)

Non-degenerate: ω ∈ Ω2(M) is non-degenerate

Twisted-closedness:

dηω := dω − η ∧ ω = 0.

LCS manifold: Strict LCS manifold up to gauge equivalence

(η, ω) ∼ (η + df , e f ω).
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Lichnerowicz-de Rham di�erential

Operator dη = d − η∧ on di�erential forms builds a cochain
complex. (See [Haller-Rybicki '99].)

Cohomology: H∗η (M) (�nite-dimensional)

Functoriality: For φ : M → N , φ∗ : H∗η (N)→ H∗φ∗η(M)

Cup product: H i
η(M)⊗ H j

η′(M)→ H i+j
η+η′(M).

Künneth: H i
η(M)⊗ H j

η′(M
′) ∼= H i+j

(π∗η+(π′)∗η′)(M ×M ′).

Hodge theory:

Ωk(M) = dη
(
Ωk−1(M)

)
⊕ d∗η

(
Ωk+1(M)

)
⊕Hk

η(M).

Poincaré duality: If M closed, oriented,

(H i
η(M))∗ ∼= HdimM−i

−η (M).
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Comparing de�nitions

Guiding principles

Principal bundle (or Atlas):
on-the-nose symplectic geometry built-in
Lee class is topological (negative holonomy)
topologically conceptual

Di�erential forms:
twisted symplectic geometry
Lee class is geometric (represented by Lee form)
computational
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Twisted cotangent bundles

Let β ∈ Z1(X ), π : T ∗X → X , λ =
∑

pjdqj .

η = π∗β

ω = dηλ = dλ− η ∧ λ

Obtain LCS manifold T ∗βX .

Remark
When ω = dηλ, we call LCS structure exact.

Atlas: ωα = dλα,

λα|Uα∩Uβ
= ec

β
αλβ|Uα∩Uβ

.

Principal bundle: Leaves are equivariantly exact
symplectic
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LCS-i�cation

(Y , ξ = kerα) contact

(R× Y , d(etα)) symplectization

LCS-i�cation: LCS structure on R/TZ× Y

Atlas of open sets in R× Y which inject under projection

(η, ω) = (−dt, dt ∧ α + dα)

Remark
This example is exact: ω = dηα. In fact,

H∗−dt(R/TZ× Y ) = 0,

so exactness was automatic.
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Covering maps, generally

More generally, if
p : X → Y

is a covering map, can pull back LCS structure on Y .
Conversely, (X , ω) symplectic with deck transformations
conformal symplectic, we obtain an LCS structure on Y .

De�nition 4

LCS on M is GCS on M̃ with conformal symplectic deck
transformations.

Remark

Don't need to take M̃ , just M[η]. LCS structure on Y is exact
if and only if the GCS structure on M[η] is exact.
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Non-exact examples

GCS structure associated to any non-exact symplectic
manifold (e.g. any closed symplectic manifold)

[Banyaga '07]: Certain solvmanifolds

LCS structures with S2 `LCS submanifold'
[Apostolov-Dloussky '16]: Any compact complex surface
has an LCS structure taming the complex structure;
hence any compact complex surface with a rational curve
has a non-exact LCS structure
h-principle: in dim ≥ 6, su�ces to �nd homotopy class
[φ : S2 → M] with φ∗[ω] 6= 0 ∈ H2

φ∗η(S
2) = Z.
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Isomorphism of LCS

Isomorphism: Di�eomorphism s.t.

Atlas: On charts, conformal symplectic.

Principal bundle: bundle isomorphism preserving leafwise
symplectic form.

Forms: (φ∗η′, φ∗ω′) ∼ (η, ω) (gauge-equivalence)

Remark
Everything is determined by the di�eomorphism itself, even if
we have a principal bundle, because we have to send leaves to
leaves.

Remark
Lee class is topological: φ∗[η′] = [η].
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Lie algebra of automorphisms

Which vector �elds generate LCS automorphisms?

Di�erential form perspective:{
φ∗tη = η + dgt

φ∗tω = egtω

Derivatives:

Lη
Xω := (dηiX + iXdη)ω = cXω

for cX locally constant.
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Extended Lee homomorphism

Lη
Xω = dηiXω = cXω

Assignment symp→ H0(M) given by X 7→ cX is the
extended Lee homomorphism (independent under gauge
equivalence, homomorphism of Lie algebras).

On (M̃ , ω̃) legitimately (globally conformal) symplectic,

LX̃ ω̃ = cX ω̃.

The sign of cX tells whether you move up or down in the
R+-�bers of the principal bundle.
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Three �avors of in�nitesimal automorphisms

symp: general cX

symp�at: cX = 0, i.e. iXω is dη-closed
Kernel of extended Lee homomorphism
Preserves leaves in the principal bundle

ham: iXω is dη-exact, i.e. iXH
ω = dηH .

X1 = Lee vector �eld (not gauge-invariant!)
If [η] 6= 0, then H0

η (M) = 0, so XH determines H
unambiguously.

These are Lie algebras of corresponding (in�nite-dimensional
`regular' Frechet) Lie groups. (See [Haller-Rybicki '99] or
[Haller '02].)
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Erlangen-type results

Theorem (Haller-Rybicki '99)

For a closed LCS manifold:

[symp, symp] = [ham, ham] = ham

Ham is simple

Furthermore, if we have two LCS structures:

a Lie algebra isomorphism between ham is the derivative

of an LCS-isomorphism

a Lie group isomorphism between Symp, Symp�at, or

Ham comes from intertwining with an LCS-isomorphism
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Exploring the extended Lee homomorphism

If cX 6= 0 (on every component), then LCS is exact:

ω = dη

(
iXω

cX

)
.

Proposition

Exact LCS if and only if extended Lee homomorphism is
surjective if and only if

H0(M) ∼= symp/symp�at.

Example

Closed GCS manifold (not exact) has extended Lee
homomorphism = 0.
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More on exactness

If ω = dηλ, the vector �eld Zλ with

iZλ
ω = λ

is the Liouville vector �eld of λ. (It is legitimately so when
we work with atlases/principal bundles/universal covers, so
this has a gauge-invariant formulation.)

Zλ has c ≡ 1.

M connected: symp = symp�at ⊕ 〈Zλ〉.

Kevin Sackel LCS - Topological Aspects 24 / 33



Exact Examples

LCS-i�cation (M = R/TZ× Y ,−dt, dt ∧ α + dα):

Liouville: Zα = ∂t

Lee: X1 = Rα

Because H2
η (M) = 0, symp�at = ham.

T ∗βM = (T ∗M , π∗β, dπ∗βλ):

Liouville: Zλ = p∂p

Lee: X1 = −β(∂q) · ∂p
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Re�nement of Tischler

For exact LCS (η, dηλ), the form dλ (not gauge-invariant)
either has kernel of dim 0 or 2; in the latter case, η 6= 0 and

ker(dλ) = span〈Zλ,X1〉.

If dλ degenerate everywhere (LCS structure of the �rst
kind), then M admits nowhere zero closed 1-form η.

Theorem (Tischler '70)

A closed manifold with a nowhere zero closed 1-form �bers

over S1.

Theorem (Bazzoni�Marrero '06)

If (M , η, dηλ) is closed of the �rst kind and ker η has a closed

leaf L, then (M , η, dηλ) is a mapping torus of (L, λ|L) with

monodromy a strict contactomorphism.

Kevin Sackel LCS - Topological Aspects 26 / 33



Towards the Moser trick

The Moser trick still works as usual, so long as you know the
analogue for `cohomologous symplectic forms':

Exact homotopy of LCS structures on M :

Di�erential forms: (ηt , ωt) with ηt = η0 + dft and
d
dt

(e ftωt) is dηt -exact.

Principal bundle: Homotopy of leafwise symplectic form
ωt with d

dt
ωt − ctωt exact with respect to the leafwise

di�erential for some locally constant functions ct on M .
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Moser trick

Theorem (Bande�Kotschick '09, rephrased)

Exact homotopies of LCS structuresMt on a closed manifold

M can be realized by a family of LCS isomorphisms

φt : M0
∼−→Mt

with φ0 = id.

They work with di�erential forms; could also use equivariant
standard Moser trick (WLOG may assume ct ≡ 0 using
�berwise translation in principal bundle).
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Submanifolds and neighborhoods

Isotropic, Lagrangian, coisotropic, symplectic, contact-type
submanifolds: all make sense in LCS geometry (their
de�nitions are invariant under scaling the symplectic form).

(Relative) Moser trick gives neighborhood theorems. (See
[Lê�Oh '16] and [Otiman�Stanciu '17])

Example: Lagrangian neighborhood theorem

Suppose L ⊂ (M , η, ω) is a Lagrangian submanifold of an LCS
manifold. Let β = η|L. Then

OpM(L) ∼= OpT∗βL
(L).
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General homotopies?

Can we homotope the Lee class? If we have a homotpy
(ηt , ωt) of strict LCS forms, then

0 =
d

dt
dηtωt

= dηt ω̇t − η̇t ∧ ωt

Obstruction: [η̇t ∧ ωt ] = [η̇t ] ∧ [ωt ] ∈ H3
ηt (M).
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Extra Slide 1

Thank you! Questions?
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