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Symplectic

Symplectic: (M,w), w € Q*(M)
@ Closed dw =10
e Non-degenerate (,w: TM = T*M

Darboux Theorem: Locally

w=dxg Ady; + -+ dx, Ady,
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Conformal Symplectic

Conformal symplectic transformation:
f:(M,w) — (N,w') such that

frw' = ew,

with ¢ locally constant.

dim > 4: The equation itself automatically implies c is locally
constant.
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Globally conformal symplectic

Globally conformal symplectic (GCS): Equivalence
classes under (M,w) ~ (M, ew) with ¢ locally constant.

We lose a sense of scale/volume, e.g.

(CP”, wFs) ~ (CP”, IOOOwFS)

(Naive embedding problems don't make sense.)

Kevin Sackel LCS - Topological Aspects 4/33



Non-gluing
factor.

Cannot glue GCS on open sets; might come back with scale

Solution: Sheafify!
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Locally conformal symplectic, definition 1

LCS manifold: (M,U = {(U,,wa)})
e Cover: {U,} open cover of M
e Locally symplectic: w, € Q%(U,) symplectic
e Conformality: identity on overlaps are conformal
symplectic, i.e.

8
__C
WalUanus = €= wslu,nu;,

for locally constant functions c”.

e Maximality: & maximal with these properties (or
alternatively, equivalence classes)
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Comparisons with symplectic

Locally, LCS = GCS, i.e. symplectic but forgetting scale.

Takeaway

Any symplectic definition or theorem which is R*-equivariant
and can be stated/proved in a local-to-global manner is likely
true for LCS manifolds.
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Lee class

The ¢ are Cech cocyle with respect to open cover: obtain
element of H1(M;R), called the Lee class.

Geometrically: walk around M along loops, and symplectic
form scales. Lee class is negative of holonomy in

Hom(m (M), R) = H*(M; R).

GCS iff Lee class = 0.
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Locally conformal symplectic, definition 2

Glue (U,,wa) and (U, ws) on regions where w, = wg.

An LCS manifold is a flat principal R*-bundle with an
R*-equivariant leafwise symplectic form.
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LCS via differential forms

Pick a section s of the principal bundle: connection form is
Lee form 1 € Z!(M) representing the Lee class. Recover
tautological w € Q*(M) with

wp = (Wa)p, s(p) € Ua.

Locally
wl|y, = €% w,

with 1|y, = dg..

dpw == dw —nAw=0.
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Locally conformal symplectic, definition 3

Strict LCS Manifold: (M,n,w)
e Flatness of twisting: n € Z}(M) (closed)
o Non-degenerate: w € Q?(M) is non-degenerate
e Twisted-closedness:

dyw = dw —nAw =0.

LCS manifold: Strict LCS manifold up to gauge equivalence

(n,w) ~ (n + df , e'w).
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Lichnerowicz-de Rham differential

Operator d,, = d — 1A on differential forms builds a cochain
complex. (See [Haller-Rybicki '99].)

e Cohomology: H;(M) (finite-dimensional)

o Functoriality: For ¢: M — N, ¢*: H¥(N) — H}., (M)
Cup product: H)(M) & H (M) — HJ (M).

n+n’
Kiinneth: Hj(M) @ H),(M') = H ey (M x M),

Hodge theory:
QX (M) = d, (2 (M) @ d; (Q“TH(M)) & HE(M).
e Poincaré duality: If M closed, oriented,

(Hi(M))™ = HAmM=i ().
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Comparing definitions

Guiding principles
@ Principal bundle (or Atlas):
e on-the-nose symplectic geometry built-in

o Lee class is topological (negative holonomy)
e topologically conceptual

e Differential forms:
e twisted symplectic geometry
o Lee class is geometric (represented by Lee form)
e computational
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© Examples
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Twisted cotangent bundles

Let B € ZY(X), 7: T*X = X, A= p;dg;.
o n="1"p
ew=dA=d\—nAA

Obtain LCS manifold TEX.

When w = d,A, we call LCS structure exact.
o Atlas: w, = d\,,

B
Aa|Uanus = € Agluanu;-

@ Principal bundle: Leaves are equivariantly exact
symplectic
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L CS-ification

(Y, & = ker ) contact
(R x Y, d(etar)) symplectization

LCS-ification: LCS structure on R/TZ x Y
o Atlas of open sets in R x Y which inject under projection
o (n,w) = (—dt,dt Na+ da)

This example is exact: w = d, . In fact,

H W (R/TZ x Y) =0,

so exactness was automatic.
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Covering maps, generally

More generally, if
p: X—=Y

is a covering map, can pull back LCS structure on Y.
Conversely, (X,w) symplectic with deck transformations
conformal symplectic, we obtain an LCS structure on Y.

LCS on M is GCS on M with conformal symplectic deck
transformations.

Don't need to take I\7I just M. LCS structure on Y is exact
if and only if the GCS structure on My, is exact.

Kevin Sackel LCS - Topological Aspects 16 /33



Non-exact examples

@ GCS structure associated to any non-exact symplectic
manifold (e.g. any closed symplectic manifold)

e [Banyaga '07]: Certain solvmanifolds

@ LCS structures with S% ‘L.CS submanifold’

o [Apostolov-Dloussky '16]: Any compact complex surface
has an LCS structure taming the complex structure;
hence any compact complex surface with a rational curve
has a non-exact LCS structure

e h-principle: in dim > 6, suffices to find homotopy class
[¢: S? — M] with ¢*[w] #0 € Hz*n(52) =7Z.
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© Isomorphisms and the Moser trick

o 5 = Ha
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Isomorphism of LCS

Isomorphism: Diffeomorphism s.t.
@ Atlas: On charts, conformal symplectic.

@ Principal bundle: bundle isomorphism preserving leafwise
symplectic form.

e Forms: (¢™1/, ¢p*w') ~ (n,w) (gauge-equivalence)

Everything is determined by the diffeomorphism itself, even if
we have a principal bundle, because we have to send leaves to
leaves.

Lee class is topological: ¢*[1'] = [n]. l
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Lie algebra of automorphisms

Which vector fields generate LCS automorphisms?

Differential form perspective:

piw = eftw

{¢’{n =n+dg:

Derivatives:
LYw = (dyix + ixd,)w = cxw

for cx locally constant.
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Extended Lee homomorphism

Lyw =|dyixw = cxw

Assignment shymp — H°(M) given by X — cx is the
extended Lee homomorphism (independent under gauge
equivalence, homomorphism of Lie algebras).

On (M, w) legitimately (globally conformal) symplectic,
ﬁg&j = Cxcv.

The sign of cx tells whether you move up or down in the
R*-fibers of the principal bundle.
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Three flavors of infinitesimal automorphisms

e shmp: general cx
o symp™t: cx =0, i.e. ixw is d,-closed
o Kernel of extended Lee homomorphism
o Preserves leaves in the principal bundle

@ ham: ixw is d,-exact, i.e. ix,w = d,H.
e X; = Lee vector field (not gauge-invariant!)
o If [n] # 0, then H,OI(M) =0, so Xy determines H
unambiguously.

These are Lie algebras of corresponding (infinite-dimensional
‘regular’ Frechet) Lie groups. (See [Haller-Rybicki '99] or
[Haller "02].)
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Erlangen-type results

Theorem (Haller-Rybicki '99)

For a closed LCS manifold:
o [symp,symp] = [ham, ham] = ham
@ Ham is simple

Furthermore, if we have two LCS structures:
@ a Lie algebra isomorphism between ham is the derivative
of an LCS-isomorphism
e a Lie group isomorphism between Symp, Symp™®, or
Ham comes from intertwining with an LCS-isomorphism

v
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Exploring the extended Lee homomorphism

If cx # 0 (on every component), then LCS is exact:
ixw
—d, (X2
= ()

Exact LCS if and only if extended Lee homomorphism is
surjective if and only if

Proposition

H(M) = symp/sympat,

Closed GCS manifold (not exact) has extended Lee
homomorphism = 0.
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More on exactness

If w=d,\, the vector field Z, with
I'Z)\(,d =\
is the Liouville vector field of A. (It is legitimately so when

we work with atlases/principal bundles/universal covers, so
this has a gauge-invariant formulation.)

@ 7, hasc=1.

@ M connected: symp = sympflat @ (Z)).

Kevin Sackel LCS - Topological Aspects 24 /33



Exact Examples

LCS-ification (M =R/TZ x Y, —dt,dt AN o + da):
e Liouville: Z, = 0,
@ Lee: X; =R,
e Because H3(M) = 0, symp™ = ham.

TiM = (T*M, 7 3, dp- s \):

e Liouville: Z, = po,
o Lee: X; = —((0y) - 0,
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Refinement of Tischler

For exact LCS (7, d,A), the form d\ (not gauge-invariant)
either has kernel of dim 0 or 2; in the latter case, n # 0 and

ker(d)\) = span(Zy, X1).

If d)\ degenerate everywhere (LCS structure of the first
kind), then M admits nowhere zero closed 1-form 7.

Theorem (Tischler '70)

A closed manifold with a nowhere zero closed 1-form fibers
over St.

Theorem (Bazzoni—Marrero '06)

If (M, n, d,\) is closed of the first kind and kern has a closed
leaf L, then (M, n, d,\) is a mapping torus of (L, \|.) with
monodromy a strict contactomorphism.
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Towards the Moser trick

The Moser trick still works as usual, so long as you know the
analogue for ‘cohomologous symplectic forms':

Exact homotopy of LCS structures on M:

o Differential forms: (n;,w;) with n, = 1o + df, and

4 (e'w,) is dy,-exact.
@ Principal bundle: Homotopy of leafwise symplectic form
w; with itwt — ciwy exact with respect to the leafwise

differential for some locally constant functions ¢; on M.
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Moser trick

Theorem (Bande—Kotschick '09, rephrased)

Exact homotopies of LCS structures M on a closed manifold
M can be realized by a family of LCS isomorphisms

¢t: M[) ;Mt

with ¢o = id.

They work with differential forms; could also use equivariant
standard Moser trick (WLOG may assume ¢; = 0 using
fiberwise translation in principal bundle).
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Submanifolds and neighborhoods

Isotropic, Lagrangian, coisotropic, symplectic, contact-type
submanifolds: all make sense in LCS geometry (their
definitions are invariant under scaling the symplectic form).

(Relative) Moser trick gives neighborhood theorems. (See
[LE-Oh '16] and [Otiman—Stanciu '17])

Example: Lagrangian neighborhood theorem

Suppose L C (M, n,w) is a Lagrangian submanifold of an LCS
manifold. Let 5 =n|,. Then

OPM(L) = OPT;L(L)-
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General homotopies?

Can we homotope the Lee class? If we have a homotpy
(n¢, we) of strict LCS forms, then

d
0=—d,w
dr e

= dp,we — N A\ Wy

Obstruction: [1; A w] = [:] A [we] € HE (M).
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Extra Slide 1

Thank you! Questions?

o & = = DA
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