Non-Parametric Exploration in Multi-Armed Bandits

Emilie Kaufmann,

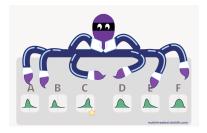
based on joint works with Dorian Baudry and Odalric-Ambrym Maillard

Ínaía -

Banff Workshop December 1st, 2021

The stochastic MAB model

- *K* unknown reward distributions ν_1, \ldots, ν_K called arms
- a each time t, select an arm A_t and observe a reward $X_t \sim \nu_{A_t}$



Objective: find a sequential sampling strategy $\mathcal{A} = (\mathcal{A}_t)$ that maximizes the sum of rewards \Leftrightarrow minimize the *regret*

$$\mathcal{R}_{\mathcal{T}}(\mathcal{A}) = \mu^{\star}\mathcal{T} - \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}}X_{t}
ight]$$

[Robbins, 52] [Lattimore and Csepesvari 20]

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

4 Practical Performance

(Don't) Follow The Learder

A very simple algorithm exploiting the current knowledge:

$$egin{aligned} & A_{t+1} = rg\max_{a \in [\mathcal{K}]} \hat{\mu}_a(t) \end{aligned}$$

where

N_a(t) = ∑^t_{s=1} 1(A_s = a) is the number of selections of arm a
 µ̂_a(t) = 1/N_a(t) ∑^t_{s=1} X_s1(A_s = a) is the empirical mean of the rewards collected from arm a

A very simple algorithm exploiting the current knowledge:

```
A_{t+1} = \underset{a \in [K]}{\operatorname{arg max}} \hat{\mu}_a(t)
```

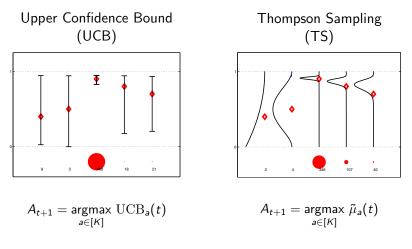
where

N_a(t) = ∑^t_{s=1} 1(A_s = a) is the number of selections of arm a
 μ̂_a(t) = 1/N_a(t) ∑^t_{s=1} X_s1(A_s = a) is the empirical mean of the rewards collected from arm a

Properties:

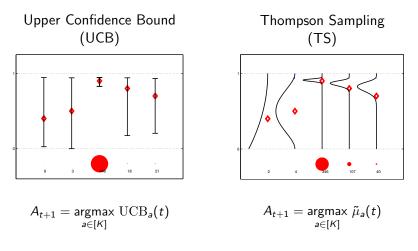
- 🖒 a simple, non-parametric algorithm
- $\mathbf{\nabla}$ achieves linear regret
- ightarrow need for an exploration/exploitation trade-off

Smarter algorithms: Two dominant families



where $UCB_a(t)$ is an UCB on the unknown mean μ_a where $\tilde{\mu}_a(t)$ is a sample from a posterior distribution on μ_a

Smarter algorithms: Two dominant families



where $UCB_a(t)$ is an UCB on the unknown mean μ_a where $\tilde{\mu}_a(t)$ is a sample from a posterior distribution on μ_a

→ both approaches can be tuned to achieve optimality

[Lai and Robbins 1985]: for simple* parametric arms distributions

$$\mathcal{R}_{\mathcal{T}}(\mathcal{A}) \geq \left(\sum_{\boldsymbol{a}: \mu_{\boldsymbol{a}} < \mu_{\star}} \frac{\mu_{\star} - \mu_{\boldsymbol{a}}}{\operatorname{kl}(\mu_{\boldsymbol{a}}, \mu_{\star})}\right) \log(\mathcal{T})$$

for T large enough.

Observation: UCB and TS need to know which distributions they are facing in order to match the lower bound

Wanted: a single algorithm that can be simultaneously asymptotically optimal for different classes of distributions

* distribution continuously parameterized by their means, typically one-parameter exponential family (Bernoulli, Gaussian with known variances, Poisson...)

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

Recent work on non-parameteric methods

- Perturbed History Exploration [Kveton et al. 19]
 - → standard non-parametric bootstrap does not work
 - → a fix by adding fake samples in the history of rewards
 - → logarithmic regret for bounded distribution (not optimal)
- Non Parametric Thompson Sampling [Riou and Honda 20]
 - → instead of the empirical mean, compute a random reweighting of the history (+ an upper bound on the support)
 - → optimal regret for bounded distribution

Recent work on non-parameteric methods

- Perturbed History Exploration [Kveton et al. 19]
 - → standard non-parametric bootstrap does not work
 - → a fix by adding fake samples in the history of rewards
 - → logarithmic regret for bounded distribution (not optimal)
- Non Parametric Thompson Sampling [Riou and Honda 20]
 - → instead of the empirical mean, compute a random reweighting of the history (+ an upper bound on the support)
 - → optimal regret for bounded distribution

From re-sampling to sub-sampling

[Baransi et al. 14], [Chan 20]

Subsampling Duelling Algorithms

A round-based approach

- Find the *leader*: arm with largest number of observations
- **2** Organize K 1 duels: leader vs challengers.
- Oraw a set of arms: *winning challengers* xor *leader*.

Subsampling Duelling Algorithms

A round-based approach

- Find the *leader*: arm with largest number of observations
- **2** Organize K 1 duels: leader vs challengers.
- Oraw a set of arms: *winning challengers* xor *leader*.

How do duels work?

Idea: a fair comparison of two arms with different history size

- challenger: compute $\hat{\mu}_c$, the empirical mean
- leader: compute μ
 _ℓ, the mean of a *sub-sample* of the same size as the history of the challenger.
- challenger wins if $\hat{\mu}_{c} \geq \tilde{\mu}_{\ell}$

Illustration of a round

In this example the leader is *blue*: *green* wins against *blue*, *red* loses \Rightarrow only *green* is drawn at the end of the round.

Possible Sub-Sampling Schemes

Input of SDA: how to sub-sample *n* elements from *N*?

- Sampling Without Replacement (SW-SDA): pick a random subset of size n in [1, N]
 (as in BESA [Baransi et al. 14], analyzed for 2 arms)
- Random-Block Sampling (RB-SDA): return a block of size n starting from random n₀ ∼ U([1, N − n])

7.6	-4	0.7	1.4	3.1	0.1	-1.2
-----	----	-----	-----	-----	-----	------

• Last Block Sampling (LB-SDA): return $\{N - n, \dots, N\}$

Remark: SSMC [Chan 20] uses data-dependent sub-sampling

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

Regret of SDA algorithms

SDA algorithms are round-based

- A_r : set of arms that are sampled in round r
- r_T (random) number of rounds before T samples are collected

$$\begin{aligned} \mathcal{R}_{T}(\mathcal{A}) &= \mathbb{E}\left[\sum_{t=1}^{T}(\mu_{\star}-\mu_{A_{t}})\right] \leq \mathbb{E}\left[\sum_{s=1}^{r_{T}}\sum_{k=1}^{K}(\mu_{\star}-\mu_{k})\mathbb{1}(k\in\mathcal{A}_{s})\right] \\ &\leq \mathbb{E}\left[\sum_{s=1}^{T}\sum_{k=1}^{K}(\mu_{\star}-\mu_{k})\mathbb{1}(k\in\mathcal{A}_{s})\right] \\ &= \sum_{k=1}^{K}(\mu_{\star}-\mu_{k})\mathbb{E}\left[N_{k}(T)\right] \end{aligned}$$

 $N_k(t) = \sum_{s=1}^t \mathbb{1}(k \in \mathcal{A}_s)$: number of draws of k in t rounds

First ingredient: Concentration

- $Y_{k,n}$: *n*-th observation from arm k
- $\overline{Y}_{k,\mathcal{S}} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} Y_{k,i}$ for $\mathcal{S} \subseteq [m]$
- S^r_k(m, n) ⊆ [m] sub-sample used in round r if arm k is the challenger and N_k(r) = n, with n ≤ m

Definition (Block Sampler)

A *block sampler* always outputs a sequence of *consecutive observations* in the rewards history.

 \hookrightarrow Random Block and Last Block are block samplers, not SWR.

Lemma (concentration of a sub-sample)

Let $s \leq r$ and $\mathcal{M}_s = \{n_0 \leq N_b(s) \leq N_a(s) \leq r\}$. Under a block sampler, for any $\xi \in (\mu_a, \mu_b)$ it holds that

$$\sum_{s=1}^{r} \mathbb{P}\left(\bar{Y}_{a,N_{a}(s)} \geq \bar{Y}_{b,\mathcal{S}_{b}^{s}(N_{b}(s),N_{a}(s))},\mathcal{M}_{s}\right) \leq \sum_{j=n_{0}}^{r} \mathbb{P}\left(\bar{Y}_{a,j} \geq \xi\right) + r \sum_{j=n_{0}}^{r} \mathbb{P}\left(\bar{Y}_{b,j} \leq \xi\right)$$

Assumption 1: (arm concentration)

$$\begin{aligned} \forall x > \mu_k, \quad \mathbb{P}\left(\bar{Y}_{k,n} \ge x\right) &\leq e^{-nl_k(x)} \\ \forall x < \mu_k, \quad \mathbb{P}\left(\bar{Y}_{k,n} \le x\right) &\leq e^{-nl_k(x)} \end{aligned}$$

for some rate function $I_k(x)$ (1-d exp. families: $I_k(x) = kl(x, \mu_k)$)

Lemma (for SDA using a block sampler)

Under Assumption 1, for every $\varepsilon > 0$, there exists a constant $C_k(\boldsymbol{\nu},\epsilon)$ with $\boldsymbol{\nu} = (\nu_1,\ldots,\nu_k)$ such that

$$\mathbb{E}[N_k(T)] \leq \frac{1+\epsilon}{l_1(\mu_k)} \log(T) + 32 \sum_{r=1}^T \mathbb{P}\left(N_1(r) \leq (\log(r))^2\right) + C_k(\boldsymbol{\nu}, \epsilon)$$

Proof: exploits only concentration (and how the algorithm works)

Assumption 1: (arm concentration)

$$\begin{aligned} \forall x > \mu_k, \quad \mathbb{P}\left(\bar{Y}_{k,n} \ge x\right) &\leq e^{-nl_k(x)} \\ \forall x < \mu_k, \quad \mathbb{P}\left(\bar{Y}_{k,n} \le x\right) &\leq e^{-nl_k(x)} \end{aligned}$$

for some rate function $I_k(x)$ (1-d exp. families: $I_k(x) = kl(x, \mu_k)$)

Lemma (for SDA using a block sampler)

Under Assumption 1, for every $\varepsilon > 0$, there exists a constant $C_k(\boldsymbol{\nu},\epsilon)$ with $\boldsymbol{\nu} = (\nu_1,\ldots,\nu_k)$ such that

$$\mathbb{E}[N_k(T)] \leq \frac{1+\epsilon}{I_1(\mu_k)} \log(T) + 32 \sum_{r=1}^T \mathbb{P}\left(N_1(r) \leq (\log(r))^2\right) + C_k(\boldsymbol{\nu}, \epsilon)$$

Proof: exploits only concentration (and how the algorithm works)

To upper bound $\sum_{r=1}^{T} \mathbb{P}(N_1(r) \le (\log(r))^2)$, we further need:

① Diversity: the sub-sampler produces a variety of *independent* sub-samples when being called a lot of time

 $X_{m,H,j}$:= number of mutually non-overlapping sets when we draw m sub-samples of size j in a history of size H. Under RB sampling,

$$\sum_{r=1}^{T} \sum_{j=1}^{(\log r)^2} \mathbb{P}\left(X_{N_r,N_r,j} < \gamma \frac{r}{(\log r)^2}\right) = o(\log T).$$

for $N_r = O(r/\log^2(r))$ and some $\gamma \in (0,1)$

Two extra ingredients

To upper bound $\sum_{r=1}^{T} \mathbb{P}(N_1(r) \le (\log(r))^2)$, we further need:

② a Balance condition: the optimal arm (arm 1) is not likely to loose many duels based on *independent* sub-samples

Introducing the balance function of arm k of cdf F_K ,

$$\alpha_k(M,j) := \mathbb{E}_{X \sim \nu_{1,j}} \left[(1 - F_{\nu_{k,j}}(X))^M \right]$$

we need, that each arm $k \neq 1$ satisfy the balance condition :

$$\forall \beta \in (0,1), \quad \sum_{t=1}^{T} \sum_{j=1}^{\lfloor (\log t)^2 \rfloor} \alpha_k(\lfloor \beta t/(\log t)^2 \rfloor, j) = o(\log T) \; .$$

➔ an assumption on the arms' distributions

Two extra ingredients

To upper bound $\sum_{r=1}^{T} \mathbb{P}(N_1(r) \le (\log(r))^2)$, we further need:

② a Balance condition: the optimal arm (arm 1) is not likely to loose many duels based on *independent* sub-samples

Introducing the balance function of arm k of cdf F_K ,

$$\alpha_k(M,j) := \mathbb{E}_{X \sim \nu_{1,j}} \left[(1 - F_{\nu_{k,j}}(X))^M \right]$$

we need, that each arm $k \neq 1$ satisfy the balance condition :

$$orall eta \in (0,1), \ \ \sum_{t=1}^{\mathcal{T}} \sum_{j=f_t^*}^{\lfloor (\log t)^2
floor} lpha_k (\left\lfloor eta t / (\log t)^2
floor, j) = o(\log \mathcal{T}) \ .$$

(* relaxed balance condition if the algorithm adds forced exploration of level f_r)

➔ an assumption on the arms' distributions

General Theorem [Baudry et al., 20]

If all arms satisfy assumption 1 and the sub-optimal arms satisfy the balance condition, RB-SDA satisfies, for all sub-optimal arm k,

$$\mathbb{E}[\mathsf{N}_k(\mathsf{T})] \leq rac{1+arepsilon}{I_1(\mu_k)}\log(\mathsf{T}) + o_arepsilon(\log\mathsf{T}) \;.$$

One-parameter exponential families:

- satisfy Assumption 1 and $I_1(x) = \operatorname{kl}(x, \mu_k)$
- Bernoulli, Gaussian and Poisson distributions satisfy the balance condition (with $f_r = 1$, i.e. without forced exploration)
- any exponential family satisfy the relaxed balance condition with $f_r = \sqrt{\log(r)}$
- → RB-SDA is asymptotically optimal for *different* exponential family bandit models (possibly with unbounded support)

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

Works very well in practice!

Average Regret on N = 10000 random instances with K = 10

Bernoulli arms

Т	TS	IMED	PHE	SSMC	RB-SDA
100	13.8	15.1	16.7	16.5	14.8
1000	27.8	31.9	39.5	34.2	31.8
10000	45.8	51.2	72.3	55.0	51.1
20000	52.2	57.6	85.6	61.9	57.7

• Gaussian arms

Т	TS	IMED	SSMC	RB-SDA
100	41.2	45.1	40.6	38.1
1000	76.4	82.1	76.2	70.4
10000	118.5	124.0	120.1	111.8
20000	132.6	138.1	135.1	125.7

many more experiments in [Baudry et al. 20]

Subsampling Duelling Algorithms

An alternative to UCB or Thompson Sampling that can be asymptotically optimal without prior knowledge on the type of distributions of the arms

Follow-up works:

- an analysis of LB-SDA and its potential for non-stationary bandits [Baudry et al., AISTATS 21]
- Dirichlet Sampling, a non-parametric algorithm under weaker assumptions on the arms [Baudry et al., NeurIPS 21]

Future works:

- precisely characterize the class of distributions for which SDA algorithms can be used
- extensions to more complex models (e.g., linear bandits, reinforcement learning)?

References

- Baransi et al., Sub-sampling for multi-armed bandits, ECML 2014
- Baudry et al., *Sub-sampling for Efficient Non-Parametric Bandit Exploration*, NeurIPS 2020
- Baudry et al., On limited-memory subsampling strategies for Bandits, ICML 2021
- Baudry et al., From Optimality to Robustness: Dirichlet Sampling Strategies in Stochastic Bandits, NeurIPS 2021
- Hock Peng Chan. The multi-armed bandit problem: An efficient nonparametric solution. The Annals of Statistics, 2020
- Kveton et al. Garbage in, reward out: Bootstrapping exploration in multi-armed bandits. ICML, 2019
- Tor Lattimore and Csaba Szepesvari. *Bandit Algorithms*. Cambridge University Press, 2019
- Lai and Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 1985
- Riou and Honda. Bandit algorithms based on Thompson Sampling for bounded reward distributions. ALT, 2020.
- Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 1952