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The stochastic MAB model

@ K unknown reward distributions v, ..., vk called arms

@ a each time t, select an arm A; and observe a reward X; ~ v4,

mulithreaded sitchfccom

Objective: find a sequential sampling strategy A = (A;) that
maximizes the sum of rewards < minimize the regret

T

>x

t=1

Rr(A)=pw'T-E

[Robbins, 52] [Lattimore and Csepesvari 20]



@ Optimal solutions and their limitation



(Don't) Follow The Learder

A very simple algorithm exploiting the current knowledge:
Atr1 = argmax [i,(t)
aclK]
where
o N,(t) =Yt 1(As = a) is the number of selections of arm a

® [i,(t)= ﬁ S E_ L Xs1(As = a) is the empirical mean of the
rewards coliected from arm a



(Don't) Follow The Learder

A very simple algorithm exploiting the current knowledge:
Atr1 = argmax [i,(t)
ac[K]
where
o N,(t) =Yt 1(As = a) is the number of selections of arm a

® [i,(t)= % S E_ L Xs1(As = a) is the empirical mean of the

N,
rewards collected from arm a

Properties:
) a simple, non-parametric algorithm
L) achieves linear regret

=» need for an exploration/exploitation trade-off



Smarter algorithms: Two dominant families

Upper Confidence Bound Thompson Sampling
(UCB) (TS)

. | .. @ -

A¢r1 = argmax UCB,(t) A¢r1 = argmax fia(t)
a€[K] a€[K]
where UCB,(t) is an UCB on where fi,(t) is a sample from

the unknown mean p, a posterior distribution on g



Smarter algorithms: Two dominant families

Upper Confidence Bound Thompson Sampling
(UCB) (TS)
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A¢r1 = argmax UCB,(t) A¢r1 = argmax fia(t)
a€[K] ac[K]
where UCB,(t) is an UCB on where fi,(t) is a sample from
the unknown mean p, a posterior distribution on g

=» both approaches can be tuned to achieve optimality



(Problem dependent, asymptotic) optimality

[Lai and Robbins 1985]: for simple* parametric arms distributions

R1(A) > ( L’%) log(T)

— kl(ﬂaa Hox

for T large enough.

Observation: UCB and TS need to know which distributions they
are facing in order to match the lower bound

Wanted: a single algorithm that can be simultaneously
asymptotically optimal for different classes of distributions

* distribution continuously parameterized by their means, typically one-parameter

exponential family (Bernoulli, Gaussian with known variances, Poisson...)



© Sub-Sampling Duelling Algorithms (SDA)



Recent work on non-parameteric methods

@ Perturbed History Exploration [Kveton et al. 19|
=» standard non-parametric bootstrap does not work
=¥ a fix by adding fake samples in the history of rewards
=» logarithmic regret for bounded distribution (not optimal)

@ Non Parametric Thompson Sampling [Riou and Honda 20
=¥» instead of the empirical mean, compute a random reweighting
of the history (4+ an upper bound on the support)
=¥ optimal regret for bounded distribution



Recent work on non-parameteric methods

@ Perturbed History Exploration [Kveton et al. 19|

=» standard non-parametric bootstrap does not work
=¥ a fix by adding fake samples in the history of rewards
=» logarithmic regret for bounded distribution (not optimal)

@ Non Parametric Thompson Sampling [Riou and Honda 20]

=¥» instead of the empirical mean, compute a random reweighting
of the history (4+ an upper bound on the support)
=¥ optimal regret for bounded distribution

From re-sampling to sub-sampling
[Baransi et al. 14], [Chan 20]



Subsampling Duelling Algorithms

A round-based approach
@ Find the leader: arm with largest number of observations
@ Organize K — 1 duels: leader vs challengers.

© Draw a set of arms: winning challengers xor leader.



Subsampling Duelling Algorithms

A round-based approach
@ Find the leader: arm with largest number of observations
@ Organize K — 1 duels: leader vs challengers.

© Draw a set of arms: winning challengers xor leader.

How do duels work?
Idea: a fair comparison of two arms with different history size

@ challenger: compute [ic, the empirical mean

@ leader: compute jig, the mean of a sub-sample of the same
size as the history of the challenger.

@ challenger wins if fic > fig




[llustration of a round

Sub-sample used
against green
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Sub-sample used
against red

In this example the leader is blue: green wins against blue, red loses
= only green is drawn at the end of the round.



Possible Sub-Sampling Schemes

Input of SDA: how to sub-sample n elements from N? )

e Sampling Without Replacement (S\W-SDA): pick a random
subset of size nin [1, N]
(as in BESA [Baransi et al. 14], analyzed for 2 arms)

e Random-Block Sampling (RB-SDA): return a block of size n
starting from random ng ~ U([1, N — n])

o Last Block Sampling (LB-SDA): return {N —n, ..., N}

Remark: SSMC [Chan 20| uses data-dependent sub-sampling



© Analysis of RB-SDA



Regret of SDA algorithms

SDA algorithms are round-based
@ A,: set of arms that are sampled in round r

@ rr (random) number of rounds before T samples are collected

T rr K
R1(A) = [Z —pa)| SE{D D (us keAs)]
t;—l p s=1 k=1
< [ZZ — ik ﬂ(keAs)]
s=1 1

= Z(M* — i) E [N (T)]

k=1

Ni(t) = S°L_, 1(k € As): number of draws of k in t rounds



First ingredient: Concentration

® Yy n: n-th observation from arm k

*] Yk’g = ﬁ ZIGS Yk,,' for S g [m]

e S/(m,n) C [m] sub-sample used in round r if arm k is the
challenger and Ni(r) = n, with n < m

Definition (Block Sampler)

A block sampler always outputs a sequence of consecutive
observations in the rewards history.

< Random Block and Last Block are block samplers, not SWR.

Lemma (concentration of a sub-sample)

Let s < r and Ms = {ng < Np(s) < N,(s) < r}. Under a block
sampler, for any & € (ua, up) it holds that

r
ZP( Yo na(s) 2 Yb,55(Ny(s), Na(s) ) Z]P’ 2 28 +r Y P(Yp;<8)

J=no J=no




First ingredient: Concentration

Assumption 1: (arm concentration)

Vx >k, P (Yin>x) < e~ (x)
Vx < pg, P (Vk,n < x) < e h(x)

for some rate function /i (x)

Lemma (for SDA using a block sampler)

Under Assumption 1, for every € > 0, there exists a constant
Ci(v,e€) with v = (v1,. .., ) such that

)
E[N(T)] < % l08(T) +32 3" P (M(r) < (Iog(r)?) + G(v,¢)

(1-d exp. families: l¢(x) = kl(x, p))

Proof: exploits only concentration (and how the algorithm works)

v
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Two extra ingredients

To upper bound ZrTzllP’ (Ni(r) < (log(r))?), we further need:

@ Diversity: the sub-sampler produces a variety of independent
sub-samples when being called a lot of time

Xm,H,j = number of mutually non-overlapping sets when we draw
m sub-samples of size j in a history of size H. Under RB sampling,

T (logr)®
r
Z Z (XN,,N,,j < 7@) = O(lOg T) .

r=1 j=1

for N, = O(r/log?(r)) and some ~ € (0,1)



Two extra ingredients

To upper bound ZrTzllP’ (Ni(r) < (log(r))?), we further need:

@ a Balance condition: the optimal arm (arm 1) is not likely to
loose many duels based on independent sub-samples

Introducing the balance function of arm k of cdf Fy,
k(M) = Exteny, [(1 = Fop, (O]

we need, that each arm k # 1 satisfy the balance condition :

T [(logt)?]

VB € (0,1), Z Z ak(|Bt/(log t)?| ,j) = o(log T) .

t=1 j=1

=» an assumption on the arms’ distributions



Two extra ingredients

To upper bound ZrT:1P (Ni(r) < (log(r))?), we further need:

@ a Balance condition: the optimal arm (arm 1) is not likely to
loose many duels based on independent sub-samples

Introducing the balance function of arm k of cdf Fg,
k(M) = Exeun, [(1 = Fop )]

we need, that each arm k # 1 satisfy the balance condition :

T [(logt)?]
Vg € (0,1), Z Z ax(|Bt/(log t)?|,j) = o(log T) .
=1 j=f

(* relaxed balance condition if the algorithm adds forced exploration of level f)

=» an assumption on the arms’ distributions



Final results

General Theorem

If all arms satisfy assumption land the sub-optimal arms satisfy
the balance condition, RB-SDA satisfies, for all sub-optimal arm k,

E[Ni(T)] < -~ log(T) + o:(log T)

/()

One-parameter exponential families:
e satisfy Assumption 1 and /1(x) = kl(x, px)
@ Bernoulli, Gaussian and Poisson distributions satisfy the
balance condition (with f, = 1, i.e. without forced exploration)
@ any exponential family satisfy the relaxed balance condition
with f, = /log(r)

=» RB-SDA is asymptotically optimal for different exponential
family bandit models (possibly with unbounded support)



@ Practical Performance



Works very well in practice!

Average Regret on N = 10000 random instances with K = 10

@ Bernoulli arms

T TS

IMED

PHE

SSMC | RB-SDA

100 13.
1000 | 27.
10000 | 45.
20000 | 52.

8| 151
8319
8512
2| 57.6

16.7 | 16.5
395 | 34.2
72.3 | 55.0
85.6 | 61.9

14.8
31.8
51.1
57.7

o Gaussian arms

T

TS

IMED

SSMC

RB-SDA

100
1000
10000
20000

41.2
76.4
118.5
132.6

45.1
82.1
124.0
138.1

40.6
76.2
120.1
135.1

38.1
70.4
111.8
125.7

many more experiments in [Baudry et al. 20]



Conclusion

Subsampling Duelling Algorithms

An alternative to UCB or Thompson Sampling that can be
asymptotically optimal without prior knowledge on the type of
distributions of the arms

Follow-up works:

@ an analysis of LB-SDA and its potential for non-stationary
bandits [Baudry et al., AISTATS 21]

@ Dirichlet Sampling, a non-parametric algorithm under weaker
assumptions on the arms [Baudry et al., NeurlPS 21]

Future works:

@ precisely characterize the class of distributions for which SDA
algorithms can be used

@ extensions to more complex models (e.g., linear bandits,
reinforcement learning)?
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