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The stochastic MAB model

K unknown reward distributions ν1, . . . , νK called arms

a each time t, select an arm At and observe a reward Xt ∼ νAt

Objective: find a sequential sampling strategy A = (At) that
maximizes the sum of rewards ⇔ minimize the regret

RT (A) = µ?T − E

[
T∑
t=1

Xt

]

[Robbins, 52] [Lattimore and Csepesvari 20]
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(Don’t) Follow The Learder

A very simple algorithm exploiting the current knowledge:

At+1 = arg max
a∈[K ]

µ̂a(t)

where

Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Properties:

- a simple, non-parametric algorithm

, achieves linear regret

Ü need for an exploration/exploitation trade-off
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Smarter algorithms: Two dominant families

Upper Confidence Bound
(UCB)

0
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At+1 = argmax
a∈[K ]

UCBa(t)

where UCBa(t) is an UCB on
the unknown mean µa

Thompson Sampling
(TS)
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At+1 = argmax
a∈[K ]

µ̃a(t)

where µ̃a(t) is a sample from
a posterior distribution on µa

Ü both approaches can be tuned to achieve optimality
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(Problem dependent, asymptotic) optimality

[Lai and Robbins 1985]: for simple∗ parametric arms distributions

RT (A) ≥

( ∑
a:µa<µ?

µ? − µa
kl(µa, µ?)

)
log(T )

for T large enough.

Observation: UCB and TS need to know which distributions they
are facing in order to match the lower bound

Wanted: a single algorithm that can be simultaneously
asymptotically optimal for different classes of distributions

∗ distribution continuously parameterized by their means, typically one-parameter

exponential family (Bernoulli, Gaussian with known variances, Poisson...)
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Recent work on non-parameteric methods

Perturbed History Exploration [Kveton et al. 19]

Ü standard non-parametric bootstrap does not work
Ü a fix by adding fake samples in the history of rewards
Ü logarithmic regret for bounded distribution (not optimal)

Non Parametric Thompson Sampling [Riou and Honda 20]

Ü instead of the empirical mean, compute a random reweighting
of the history (+ an upper bound on the support)

Ü optimal regret for bounded distribution

From re-sampling to sub-sampling
[Baransi et al. 14], [Chan 20]
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Subsampling Duelling Algorithms

A round-based approach

1 Find the leader : arm with largest number of observations

2 Organize K − 1 duels: leader vs challengers.

3 Draw a set of arms: winning challengers xor leader .

How do duels work?
Idea: a fair comparison of two arms with different history size

challenger: compute µ̂c , the empirical mean

leader: compute µ̃`, the mean of a sub-sample of the same
size as the history of the challenger.

challenger wins if µ̂c ≥ µ̃`
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Illustration of a round
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Possible Sub-Sampling Schemes

Input of SDA: how to sub-sample n elements from N?

Sampling Without Replacement (SW-SDA): pick a random
subset of size n in [1,N]

(as in BESA [Baransi et al. 14], analyzed for 2 arms)

Random-Block Sampling (RB-SDA): return a block of size n
starting from random n0 ∼ U([1,N − n])

Last Block Sampling (LB-SDA): return {N − n, . . . ,N}

Remark: SSMC [Chan 20] uses data-dependent sub-sampling
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Regret of SDA algorithms

SDA algorithms are round-based

Ar : set of arms that are sampled in round r

rT (random) number of rounds before T samples are collected

RT (A) = E

[
T∑
t=1

(µ? − µAt )

]
≤ E

[
rT∑
s=1

K∑
k=1

(µ? − µk)1(k ∈ As)

]

≤ E

[
T∑
s=1

K∑
k=1

(µ? − µk)1(k ∈ As)

]

=
K∑

k=1

(µ? − µk)E [Nk(T )]

Nk(t) =
∑t

s=1 1(k ∈ As): number of draws of k in t rounds
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First ingredient: Concentration

Yk,n: n-th observation from arm k

Y k,S = 1
|S|
∑

i∈S Yk,i for S ⊆ [m]

Srk(m, n) ⊆ [m] sub-sample used in round r if arm k is the
challenger and Nk(r) = n, with n ≤ m

Definition (Block Sampler)

A block sampler always outputs a sequence of consecutive
observations in the rewards history.

↪→ Random Block and Last Block are block samplers, not SWR.

Lemma (concentration of a sub-sample)

Let s ≤ r and Ms = {n0 ≤ Nb(s) ≤ Na(s) ≤ r}. Under a block
sampler, for any ξ ∈ (µa, µb) it holds that

r∑
s=1

P
(
Ȳa,Na(s)≥ Ȳb,Ss

b
(Nb(s),Na(s)),Ms

)
≤

r∑
j=n0

P
(
Ȳa,j ≥ ξ

)
+ r

r∑
j=n0

P
(
Ȳb,j ≤ ξ

)



15/21

First ingredient: Concentration

Assumption 1: (arm concentration)

∀x > µk , P
(
Ȳk,n ≥ x

)
≤ e−nIk (x)

∀x < µk , P
(
Ȳk,n ≤ x

)
≤ e−nIk (x) .

for some rate function Ik(x) (1-d exp. families: Ik (x) = kl(x , µk ))

Lemma (for SDA using a block sampler)

Under Assumption 1, for every ε > 0, there exists a constant
Ck(ν, ε) with ν = (ν1, . . . , νk) such that

E[Nk(T )] ≤ 1 + ε

I1(µk)
log(T ) + 32

T∑
r=1

P
(
N1(r) ≤ (log(r))2

)
+ Ck(ν, ε)

Proof: exploits only concentration (and how the algorithm works)
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Two extra ingredients

To upper bound
∑T

r=1 P
(
N1(r) ≤ (log(r))2

)
, we further need:

À Diversity: the sub-sampler produces a variety of independent
sub-samples when being called a lot of time

Xm,H,j := number of mutually non-overlapping sets when we draw
m sub-samples of size j in a history of size H. Under RB sampling,

T∑
r=1

(log r)2∑
j=1

P
(
XNr ,Nr ,j < γ

r

(log r)2

)
= o(logT ) .

for Nr = O(r/ log2(r)) and some γ ∈ (0, 1)
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Two extra ingredients

To upper bound
∑T

r=1 P
(
N1(r) ≤ (log(r))2

)
, we further need:

Á a Balance condition: the optimal arm (arm 1) is not likely to
loose many duels based on independent sub-samples

Introducing the balance function of arm k of cdf FK ,

αk(M, j) := EX∼ν1,j

[
(1− Fνk,j (X ))M

]
we need, that each arm k 6= 1 satisfy the balance condition :

∀β ∈ (0, 1),
T∑
t=1

b(log t)2c∑
j=1

αk(
⌊
βt/(log t)2

⌋
, j) = o(logT ) .

Ü an assumption on the arms’ distributions
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Final results

General Theorem [Baudry et al., 20]

If all arms satisfy assumption 1and the sub-optimal arms satisfy
the balance condition, RB-SDA satisfies, for all sub-optimal arm k ,

E[Nk(T )] ≤ 1 + ε

I1(µk)
log(T ) + oε(logT ) .

One-parameter exponential families:

satisfy Assumption 1 and I1(x) = kl(x , µk)

Bernoulli, Gaussian and Poisson distributions satisfy the
balance condition (with fr = 1, i.e. without forced exploration)

any exponential family satisfy the relaxed balance condition
with fr =

√
log(r)

Ü RB-SDA is asymptotically optimal for different exponential
family bandit models (possibly with unbounded support)
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Works very well in practice!

Average Regret on N = 10000 random instances with K = 10

Bernoulli arms

T TS IMED PHE SSMC RB-SDA

100 13.8 15.1 16.7 16.5 14.8
1000 27.8 31.9 39.5 34.2 31.8
10000 45.8 51.2 72.3 55.0 51.1
20000 52.2 57.6 85.6 61.9 57.7

Gaussian arms

T TS IMED SSMC RB-SDA

100 41.2 45.1 40.6 38.1
1000 76.4 82.1 76.2 70.4
10000 118.5 124.0 120.1 111.8
20000 132.6 138.1 135.1 125.7

many more experiments in [Baudry et al. 20]
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Conclusion

Subsampling Duelling Algorithms

An alternative to UCB or Thompson Sampling that can be
asymptotically optimal without prior knowledge on the type of
distributions of the arms

Follow-up works:

an analysis of LB-SDA and its potential for non-stationary
bandits [Baudry et al., AISTATS 21]

Dirichlet Sampling, a non-parametric algorithm under weaker
assumptions on the arms [Baudry et al., NeurIPS 21]

Future works:

precisely characterize the class of distributions for which SDA
algorithms can be used

extensions to more complex models (e.g., linear bandits,
reinforcement learning)?
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