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Free Discontinuity Problems

Variational model in Image Segmentation and Edge Detection introduced by
Mumford and Shah, CPAM '89: g € L*°(,[0,1]) blurred image,

ue CHQ\ K), KCQcR? compact.

A smoothed version of g is obtained by minimizing

(u, K) = E(u, K) +a/ lu— g dx,
Q\K
where

E(u,K) ::/ |Vul? dx + H'(K) < 400
Q\K



Existence of minimizing couples

Main difficulty: find a topology on closed subsets of Q ensuring at the same
time compactness of minimizing sequences and l.s.c. of K — H*(K).

Two approaches:

» De Giorgi and Ambrosio’s weak formulation thanks to the introduction of
the (G)SBYV functional setting (Atti Accad. Naz. Lincei '88)

» Dal Maso, Morel and Solimini in 2d (Acta '92), Maddalena and Solimini in
general (AIHP '01, ARMA '01) proved for K the so called uniform
concentration property

In both cases Tonelli's Direct method then work.
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Two approaches:

» De Giorgi and Ambrosio’s weak formulation thanks to the introduction of
the (G)SBYV functional setting (Atti Accad. Naz. Lincei '88)

» Dal Maso, Morel and Solimini in 2d (Acta '92), Maddalena and Solimini in
general (AIHP '01, ARMA '01) proved for K the so called uniform
concentration property

In both cases Tonelli's Direct method then work.
Ahlfors regularity is a first mild regularity property of K: 3C > 1 s.t.
C'r <HY(KNB/(x) < Cr

for all x € K, B,(x) C € (see De Giorgi, Carriero and Leaci, ARMA '89),
Carriero and Leaci, Nonlinear Anal. '90)



Regularity: scaling of the energy and Local Minimizers

(u, K) admissible couple on B,(x), set
Ur(y): r—l/Zu(X+ry)7 Kr:r_l(K_X)
then (ur, K;) admissible on By, and if u and g € L*(£,]0,1])
1
(& K, B(x) +/ lu—gldz)
r Br(x)
:g(uf7Kf'7Bl)+r2 |uf—gf|2dy
—_————

=0(1) —_—
M(Q) is the class of local minimizers, i.e. if {v# u} U(KAJ)CCQ

E(u,K) < E(v,J)



Euler Lagrange equations |
(u, K) e M(Q)
» Outer Variations: Yo € C}(Q)

Vu-Vedx =0 (OUT-VAR)
Q\K

> Inner Variations: ¥n € C}(Q,R?)
/ (|Vu|2div77+2VTu- Dn-Vu)dx = f/ e’ -Dn-edH'
Q\K K
(IN-VAR)

e: K — S! Borel vector field tangent to K



Euler Lagrange equations Il

(u, K) € M(R), in any open set A in which K is a smooth graph then

» Quter Variations equivalent to

Au=0 on A\ K
Ou=0 on ANK

» Inner Variations equivalent to
k=—|(Vu)" P+ |(Vu)" on ANK

e : K — S' Borel vector field tangent to K N A, k curvature of KN A



Example of local minimizers

Alberti, Bouchitté and Dal Maso (Calc. Var. '03)
» Harmonic functions: (u, 0)
» Pure Jump: u is locally constant on B, \ K, and K is a diameter
» Triple Junction: u is locally constant on B \ K, and K is equal to three
half lines meeting at equal angles in the origin (a propeller)
are local minimizers in Q = B, for r sufficiently small
Bonnet and David (Astérisque '01)
» Crack-tips: up to rotations, translations and addition of a constant

V/2pcos (°2), p >0, 0 € (0,2), K = [0,00) x {0}

...actually it is the only known (and conjectured) global minimizer!
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The Mumford and Shah conjecture

Conjecture (Mumford and Shah, CPAM '89)
If (u, K) € M(Q), Q C R?, then 3 (at most) countably many injective C* arcs
Yi - [a,-, b,‘] — Q s.t.
K = Uienvi([ai, bi])
(c1) Any compact set E C Q intersects at most finitely many arcs;

(c2) Two arcs can have at most an endpoint p in common, and if this is the
case, then p is in fact the endpoint of three arcs, forming equal angles of

27r/3
If the conjecture holds, then K in B.(x), x € K and r > 0 small, is close to one
among
(a) a diameter of B.(x)
(b) a radius of B,(x)

(c) a propeller centered in x, i.e. the union of three radii of B.(x) forming
equal angles of 27/3
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...Regularity theory establishes a partial strong converse!



e-regularity theory

Theorem (Ambrosio, Fusco and Pallara, Ann. Sc. Norm. Pisa '97)
Let (u,K) € M(Q), then 3X C K relatively closed in Q s.t.

HY(Z) =0, and K\ X is locally a C** arc.



e-regularity theory
Theorem (Ambrosio, Fusco and Pallara, Ann. Sc. Norm. Pisa '97)
Let (u, K) € M(RQ), then 3X C K relatively closed in 2 s.t.
HY () =0, and K\ X is locally a C*" arc.
Moreover, 3¢ > 0 s.t.
Y={xeK: Iirg'iom‘(@(x7 r) + Zeo(x,r)) > eo},

where

D(x,r)= r_l/ |Vul*dy
B (x)

oo (x,7) = r ' min sup dist(y, L)
L line KNB,(x)

In addition, in 2d David (SIAM'96) proved that dimy ¥ < 1.



e-regularity theory

Y={xeK: Iirm)nf (2(x,r) + Hoo(x,r)) > €0},
then
r=x0uzPux®,
where
s = {xex: Irifo] PD(x,r) =0} (triple junctions)
¥@ = (xex: lr'fg oo (x,r) = 0} (crack-tips)

y® = {xex: liminf 7(x, r) > 0, liminf /o (x, r) > 0}

according to the MS conjecture ¥ = ()



The set T = {x € ¥ : lim, ;o 2(x, r) = 0}

Theorem (David, SIAM '96)
Je>0,ce(0,1) st if(u,K) e M(Q), ze K, B(z) CQ

r_l/ |VulPdx+r~" min  sup dist(y,P)<e,
B (z)

P propeller KNB(z)
then 3% a propeller, 3& Cl-diffeomorphism s.t.
KN By(z) =9 (%) N Ba(2)



The set T = {x € ¥ : lim, ;o 2(x, r) = 0}

Theorem (David, SIAM '96)
Je>0,ce(0,1) st if(u,K) e M(Q), ze K, B(z) CQ

r_l/ |VulPdx+r~" min  sup dist(y,P)<e,
B/ (2) P propeller KNB(z)
then 3% a propeller, 3& Cl-diffeomorphism s.t.

K N BCr(Z) =0 ((g) N Bcr(Z)

Actually,
» the second summand is not needed in the e-regularity criterion if x € ¥

> Y@ is countable thanks to Moore's triod theorem



The set @) = {x € ¥ : lim,j0 % (x,p) = 0}
Theorem (Bonnet and David, Astérisque '01)
Veo > 03de >0 s.t. if (u,K) € M(Q) and
r~tdisty (K N B.(2),0) < e

for some radius o of B,(z) C Q, then 3y, € B.,,(z) and some smooth
~v:(0,7/2) = R s.t.

K N B.ux(z) = {yo + p(cos7(p),sin () }

and
sup p|y'(p) <o limpry/(p) =0
(0,7/2) 0



The set Y?) = {x € ¥ : lim,}o #(x, p) = 0}

Theorem (Bonnet and David, Astérisque '01)
Veo >0 3de > 0s.t. if (u, K) € M(Q) and

r~tdisty (K N B.(2),0) < ¢

for some radius o of B,(z) C Q, then 3y, € B.,,(z) and some smooth
~v:(0,72) = R s.t.

K N B.(2) = {y0 + p(cosv(p),sinv(p)) }

and
sup p[y'(p)| <eo  limpy/(p) =0
©.7/2) P40

K might not be C* up to the tip!
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The set Y?) = {x € ¥ : lim,}o #s(x, p) = 0}

Theorem (Andersson and Mikayelyan preprint ArXiv '17,
De Lellis, F. and Ghinassi, JMPA '21)

Je,a > 0 s.t. if (u,K) € M(B:(z2)) with
rdistu (K N B.(z),0) < ¢
where o = z + rey, then 3ys € B.e(2), ¥ € C>*([0,7/4], [0, /8]) s.t.
KO Bu(0) = {0+ (6.6(8)) : £ € 0,7/} 1 Bu(0)

and 1" (07) = 0. In particular, the curvature at the tip vanishes.



The set Y?) = {x € ¥ : lim,}o #s(x, p) = 0}

Theorem (Andersson and Mikayelyan preprint ArXiv '17,
De Lellis, F. and Ghinassi, JMPA '21)

de,a > 0 s.t. if (u, K) € M(B,(z)) with
rdistu (K N B.(z),0) < ¢
where o = z + rey, then 3ys € B.e(2), ¥ € C>*([0,7/4], [0, /8]) s.t.
KN Biu(yo) = {yo+ (t,%(t)) : t € [0,7/a]} N Bu(v0)
and 1" (07) = 0. In particular, the curvature at the tip vanishes.

Actually, it is true V(u, K) critical point of the Mumford-Shah functional,
i.e. s.t. (OUT-VAR) and (IN-VAR) hold, provided it is a smooth connected arc
with an end-point in B;



Main ideas of the proof

(a)
(b)
(c) Linearization
(d)
(e)

Harmonic conjugate

Reparametrization

d

e

Singular inner variations

Decay properties of solutions to the linearized system and of the nonlinear
one



Harmonic conjugate

(u, K) critical point in Bz, then by (OUT-VAR)

Vu-Vedx =0 Vo€ CH(B1) < cur(Vu") =0 D'(B)
Q\K
Then 3w € Hp(B1) st
(i) w is harmonic on Bi \ K, and Vw = Vu*
(i) we C2/(By) and

loc
p ) =W
Ay x—yl2
(iii) w is constant on each connected component of K

(iv) w is unique up to addition of a constant



Reparametrization

Following L. Simon (Ann. Math., '83), for (u, K) critical point in B; set
0(t) = ("), f(¢,1) = e"w(p+0(t),e7"), isa(¢) := \/2/rsin(¢/2)

Lemma
Then

fro — fi + g + fop + (lé‘f¢+1§‘2f¢¢ 72191‘;4; 71§f¢) =0

f(0,8) = f(2m, t) =0 (NON-LIN)

b
(1+ 92y

= f;(2m, t) — £3(0, t)

and Vo, > 0, Vk € N if g is small enough

191l ek ((o,00p + I1f = 180l ck(o,2n) x[or,00)) < O



Linearization

Theorem
Let T >0, (uj, Kj) be critical points in By with ~;(1) = 9;(0) = 0 and

sup (r|7j(r)| + |5 (n)]) ~ fgg(lf’j(t)\ +19(t)]) < e0(j) L O

re(0,1]

Set

8 = |If; — isall me(po,2x)x o, 77 + 1931l 0,7
vi(@,t) =6 M hi(d, ) N(t) =67 9(t)
then, up to subsequences,
(a) v; converges weakly in H*([0,27] x [0, T]) and uniformly to some v;
(b) Aj converges uniformly to some X in [0, T];

(c) the above convergences are in C*” on [0,27] x [0, T — o] and [0, T — o]
respectively, Yo € (0, ) and V3 € (0,1)
Moreover...



Linearization
...Moreover, the pair (v, \) solves in [0,27] x [0, T]
vtt—vt+%+v¢¢+()-\—.).\)isq¢=0
v(0,t) = v(2m,t) =0

A1) = X(1) = /2 (%(0,£) + vo(2r, 1))
A(0) =0

(LIN)



Linearization
...Moreover, the pair (v, \) solves in [0,27] x [0, T]
vtt—vt+%+v¢¢+()-\—.).\)isq¢=0
v(0,t) = v(2m,t) =0

A1) = X(1) = /2 (%(0,£) + vo(2r, 1))
A(0) =0

(LIN)

and satisfies Vt € (0, T)

/Ozw [(% = ve) (&, t) (cos 32 + cos &) + vy(o, t) (sin 2 +sin £)] do

+/3\ 0 =0 (VAR)



Singular inner variations

Theorem (De Lellis, F., Ghinassi, JMPA '21)
Let (u, K) be a critical point in By and y € B, then

/ (|Vu|2div77—2VuT-D7]-Vu)+/ e’ -Dn-edH'
Br(y)\K

Br(y)NK

:/BB( v (\Vu\zn-y—2%n~Vu> dH' + Z e(x) - n(x)
r\y

xEKNOB,(y)

fora.e. r € (0,1 — |y|) and ¥n € C'(B,,R?), where v(x) =

X:ﬁ‘, e is tangent
to K, le] =1 and e(x) - v(x) > 0.

|x

If n(x) = x, one gets back the David-Léger-Maddalena-Solimini formula.



Spectral analysis of the linearized system

V(9,1) = S (V{6 1) + (2 — 6,1))
V(9.1) = 5 (v(6,) — v(2m — 6,1)

(1) = v(6:8) = MeJisay (1) = v7(n1) = 5 cos S

Lemma
(v, \) € H* x H® solves (LIN) iff v¢, ¢ € H? are resp. even and odd s.t.

vft—vf—i—v;d)—&—%vezo
ve(0,t) = v®(2m,t) =0

et — G+ Coo + 3¢ =0
C6(0,) + 5 (3¢(0,1) + (ps(0,£)) =0
¢(0,0)=0

C(Oz t) = _\A/%



Spectral analysis of the linearized system

Ve(¢7 t) = (V(¢7 t) + V(27T - ()b’ t))

1
>
V(6 1) = 3 (W(6,8) — V(2 — 6,1))

C((b: t) = Vo(¢7 t) - A(t)ischp(t) = Vo(¢7 t) -

Lemma
(v, \) € H? x H® solves (LIN) iff v¢, ¢ € H? are resp. even and odd s.t.

vft—vf—i—v;(b—&—%vezo
ve(0,t) = v®(2m,t) =0

Ceoo — Ce + Coo + 3¢ =0
C(ﬁ)(()v t) + % (%C(O/ t) + C(fldﬁ(oa t)) =0

¢(0,0)=0
C(07 t) = 7M

V2



The linear three annuli property

Theorem
3n >0, Z(v,\a,b) st V(v,\ a,b), a< b, solution of (LIN) and (VAR)

b
Z(v, X a,b) ~ / (Vs O)oamy + 32(8) + X2(8)) dt
and

ZL(v,\, T,2T) > (1 —n)ZL(v,),0,T)
= Z(v,\,2T,3T) > (14 n)ZL(v,\, T,2T)



The nonlinear three annuli property

Theorem
36 >0, Z(f,0,a,b) s.t. V(f,9,a,b), a< b, solution of (NON-LIN)

b . .
L(F.0,2,b) ~ / (17 O)omy + 02(2) + 92(1)) dt

s.t.
if |f —isallwe(o omi x k7, (k1) 71) + 1M e, ey py < 0, K EN,
then

L(F0, (k+1)T, (k+2)T) > (1 = /2).L(F, 9, kT, (k + 1) T)
= L(F.0,(k+2)T,(k+3)T) > (L+1).2(f,9,(k+1)T,(k+2)T)

where 11 > 0 is the constant of the linear three annuli property



Consequences of the nonlinear three annuli property

> either Z(f, 0, kT, (k+1)T) < (1 - 2)*2(f,9,0,T)  Vk
> or ko s.t. L(f, 0, kT, (k+1)T) > L(f, 0, koT, (ko + 1) T)(1 + L)<

The second alternative is however incompatible with the fact that

,!'TTO (I — isalleqo.2mx fer (ks 1y 1)) + ”19”H1([kT,(k+1)T])) -0
=
> 37,6 >0 s.t. [V, ernymy) < e~ (19K Vk

> as r = e going back to v: |k(r)| < Cr° vre (0,1]



Thank you for your attention!



