Thermality of circular motion

Jorma Louko

School of Mathematical Sciences, University of Nottingham
Quantum Foundations, Gravity, and Causal Order Banff International Research Station, 3 June 2021

Biermann et al. PRD 102, 085006 (2020) [arXiv:2007.09523]

Plan

1. Unruh effect

- Relativistic spacetime and analogue spacetime

2. "Quantum dot"

- Unruh-DeWitt

3. Circular motion

- Wightman function: $3+1$ and $2+1$

4. Results

- Ratio $T_{\text {circular }} / T_{\text {linear }}$

5. Summary and outlook

1. Unruh effect

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2 \pi}$

Unruh 1976

- Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$
\frac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{\mathrm{gap}} / T}
$$

1. Unruh effect

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2 \pi}$

Unruh 1976

- Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$
\frac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{\mathrm{gap}} / T}
$$

Can cook a steak!

1. Unruh effect

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2 \pi} \times \frac{\hbar}{c k_{\mathrm{B}}}: 1 \mathrm{~K} \leftrightarrow 10^{20} \mathrm{~m} / \mathrm{s}^{2} \quad$ Unruh 1976
- Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$
\frac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{\mathrm{gap}} / T}
$$

Can cook a steak!

1. Unruh effect

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2 \pi} \times \frac{\hbar}{c k_{\mathrm{B}}}: 1 \mathrm{~K} \leftrightarrow 10^{20} \mathrm{~m} / \mathrm{s}^{2} \quad$ Unruh 1976
- Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$
\frac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{\mathrm{gap}} / T}
$$

Can cook a steak!

Uniform circular motion?

- Long time in finite size lab!
- Accelerator storage rings

Bell and Leinaas 1983,...

- Analogue spacetime: BEC, ${ }^{4} \mathrm{He}, \ldots$. Weinfurtner talk (Friday)

1. Unruh effect

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2 \pi} \times \frac{\hbar}{c k_{\mathrm{B}}}: 1 \mathrm{~K} \leftrightarrow 10^{20} \mathrm{~m} / \mathrm{s}^{2} \quad$ Unruh 1976
- Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$
\frac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{\mathrm{gap}} / T}
$$

Can cook a steak!

Uniform circular motion?

- Long time in finite size lab!
- Accelerator storage rings Bell and Leinaas 1983,...
- Analogue spacetime: BEC, ${ }^{4} \mathrm{He}, \ldots$ Weinfurtner talk (Friday)

Sense of "temperature" ?

Aims

Why now

What today

What not today

Aims

Why now

- Analogue spacetime experiment proposal Gooding et al. 2020
- Finite size lab
- Time dilation \leftrightarrow time-independent energy scaling

What today

What not today

Aims

Why now

- Analogue spacetime experiment proposal Gooding et al. 2020
- Finite size lab
- Time dilation \leftrightarrow time-independent energy scaling

What today

- "Quantum dot"
- Weak coupling, long time, negligible switching effects
- Sense of temperature
- Relativistic spacetime versus analogue spacetime
- $3+1$ versus $2+1$

What not today

Aims

Why now

- Analogue spacetime experiment proposal Gooding et al. 2020
- Finite size lab
- Time dilation \leftrightarrow time-independent energy scaling

What today

- "Quantum dot"
- Weak coupling, long time, negligible switching effects
- Sense of temperature
- Relativistic spacetime versus analogue spacetime
- $3+1$ versus $2+1$

What not today

- "Quantum dot" \rightarrow actual experiment?

2. "Quantum dot" (relativistic) Unruh(1976)-DeWitt(1979)

Quantum field
D spacetime dimension
$\phi \quad$ real scalar field
|0〉 Minkowski vacuum

Two-state detector (atom)
$\| 0\rangle$ state with energy 0
$\| 1\rangle\rangle \quad$ state with energy E
$\times(\tau)$ detector worldline, τ proper time

2. "Quantum dot" (relativistic) Unruh(1976)-DeWitt(1979)

Quantum field
D spacetime dimension
$\phi \quad$ real scalar field
|0〉 Minkowski vacuum

Two-state detector (atom)
\|0》) state with energy 0
$\| 1\rangle\rangle \quad$ state with energy E
$\times(\tau)$ detector worldline, τ proper time

Interaction

$$
H_{\text {int }}(\tau)=c \chi(\tau) \mu(\tau) \phi(\times(\tau))
$$

c coupling constant
χ switching function, C_{0}^{∞}, real-valued
μ detector's monopole moment operator

Probability of transition

$$
\| 0\rangle\rangle \otimes|0\rangle \longrightarrow \| 1\rangle\rangle \otimes \mid \text { anything }\rangle
$$

in first-order perturbation theory:

$$
\begin{gathered}
P(E)=c^{2} \underbrace{}_{\left.\begin{array}{c}
\text { detector internals only: } \\
\text { drop! }
\end{array} \right\rvert\,\left\langle\left.\langle 0\|\mu(0)\| 1\rangle\right|^{2}\right.} \times \underbrace{F_{\chi}(E)}_{\begin{array}{c}
\text { trajectory and }|0\rangle: \\
\text { response function }
\end{array}} \\
F_{\chi}(E)=\int \mathrm{d} \tau^{\prime} \mathrm{d} \tau^{\prime \prime} \mathrm{e}^{-i E\left(\tau^{\prime}-\tau^{\prime \prime}\right)} \chi\left(\tau^{\prime}\right) \chi\left(\tau^{\prime \prime}\right) W\left(\tau^{\prime}, \tau^{\prime \prime}\right) \\
W\left(\tau^{\prime}, \tau^{\prime \prime}\right)=\langle 0| \phi\left(\times\left(\tau^{\prime}\right)\right) \phi\left(\times\left(\tau^{\prime \prime}\right)\right)|0\rangle \quad \begin{array}{c}
\text { Wightman function } \\
\text { (distribution) }
\end{array}
\end{gathered}
$$

- Stationary motion:

$$
W\left(\tau^{\prime}, \tau^{\prime \prime}\right)=W\left(\tau^{\prime}-\tau^{\prime \prime}, 0\right)
$$

- Transition rate in the long time limit:

$$
\begin{gathered}
\frac{F_{\chi}(E)}{\Delta \tau} \underset{\Delta \tau \rightarrow \infty}{ } \\
F(E)=\int_{-\infty}^{\infty} \mathrm{d} s \mathrm{e}^{-i E s} W(s, 0) \\
\text { stationary response function }
\end{gathered}
$$

- Temperature via detailed balance:

$$
T=\frac{E}{\ln \left(\frac{F(-E)}{F(E)}\right)}
$$

- Stationary motion:

$$
W\left(\tau^{\prime}, \tau^{\prime \prime}\right)=W\left(\tau^{\prime}-\tau^{\prime \prime}, 0\right)
$$

- Transition rate in the long time limit:

$$
\begin{aligned}
\frac{F_{\chi}(E)}{\Delta \tau} \xrightarrow[\Delta \tau \rightarrow \infty]{ } & F(E)=\int_{-\infty}^{\infty} \mathrm{d} s \mathrm{e}^{-i E s} W(s, 0) \\
& \text { stationary response function }
\end{aligned}
$$

- Temperature via detailed balance:

$$
T=\frac{E}{\ln \left(\frac{F(-E)}{F(E)}\right)}
$$

- For uniform linear acceleration, $T_{\text {lin }}=\frac{a}{2 \pi} \quad$ Unruh 1976 (genuine KMS state)
- For other uniform motions, T depends also on E

Letaw 1981,... . Good et al. 2020

3. Circular motion

- Metric: $\quad d s^{2}=-d t^{2}+\left(d x^{1}\right)^{2}+\cdots+\left(d x^{D-1}\right)^{2}$
- Trajectory: $\quad \times(\tau)=(\gamma \tau, R \cos (\gamma \Omega \tau), R \sin (\gamma \Omega \tau), \cdots)$

$$
R>0 \text { radius, } 0<R \Omega<1 \text { orbital velocity, } \gamma=1 / \sqrt{1-(R \Omega)^{2}}
$$

- Wightman:

3. Circular motion

- Metric: $\quad d s^{2}=-d t^{2}+\left(d x^{1}\right)^{2}+\cdots+\left(d x^{D-1}\right)^{2}$
- Trajectory: $\quad \times(\tau)=(\gamma \tau, R \cos (\gamma \Omega \tau), R \sin (\gamma \Omega \tau), \cdots)$

$$
R>0 \text { radius, } 0<R \Omega<1 \text { orbital velocity, } \gamma=1 / \sqrt{1-(R \Omega)^{2}}
$$

- Wightman: (massless field; $\epsilon \rightarrow 0^{+}$)

$$
\begin{aligned}
& D=3+1: W(s, 0)=\frac{1}{4 \pi^{2}[\times(s-i \epsilon)-\times(0)]^{2}} \\
& D=2+1: W(s, 0)=\frac{1}{4 \pi \sqrt{[x(s-i \epsilon)-\times(0)]^{2}}}
\end{aligned}
$$

3. Circular motion

- Metric: $\quad d s^{2}=-d t^{2}+\left(d x^{1}\right)^{2}+\cdots+\left(d x^{D-1}\right)^{2}$
- Trajectory: $\quad x(\tau)=(\gamma \tau, R \cos (\gamma \Omega \tau), R \sin (\gamma \Omega \tau), \cdots)$

$$
R>0 \text { radius, } 0<R \Omega<1 \text { orbital velocity, } \gamma=1 / \sqrt{1-(R \Omega)^{2}}
$$

- Wightman: (massless field; $\epsilon \rightarrow 0^{+}$)

$$
\begin{aligned}
& D=3+1: W(s, 0)=\frac{1}{4 \pi^{2}[\times(s-i \epsilon)-\times(0)]^{2}} \\
& D=2+1: W(s, 0)=\frac{1}{4 \pi \sqrt{[\times(s-i \epsilon)-\times(0)]^{2}}}
\end{aligned}
$$

Now examine:

- Relativistic spacetime: $\frac{T_{\text {circ }}}{T_{\text {lin }}}$ (for same proper acceleration)
- Analogue spacetime: similarly

3. Circular motion

- Metric: $\quad d s^{2}=-d t^{2}+\left(d x^{1}\right)^{2}+\cdots+\left(d x^{D-1}\right)^{2}$
- Trajectory: $\quad x(\tau)=(\gamma \tau, R \cos (\gamma \Omega \tau), R \sin (\gamma \Omega \tau), \cdots)$

$$
R>0 \text { radius, } 0<R \Omega<1 \text { orbital velocity, } \gamma=1 / \sqrt{1-(R \Omega)^{2}}
$$

- Wightman: (massless field; $\epsilon \rightarrow 0^{+}$)
$D=3+1: \quad W(s, 0)=\frac{1}{4 \pi^{2}[\times(s-i \epsilon)-\times(0)]^{2}} \quad$ real for $s \neq 0$
$D=2+1: W(s, 0)=\frac{1}{4 \pi \sqrt{[\times(s-i \epsilon)-\times(0)]^{2}}}$ imaginary for $s \neq 0$
Now examine:
- Relativistic spacetime: $\frac{T_{\text {circ }}}{T_{\text {lin }}}$ (for same proper acceleration)
- Analogue spacetime: similarly

4a. Relativistic spacetime

4a. Relativistic spacetime
 $T_{\text {rat }}:=T_{\text {circ }} / T_{\text {lin }}, \quad E_{\text {red }}:=E / a$

$3+1$ dimensions

$2+1$ dimensions

4a. Relativistic spacetime
 $T_{\text {rat }}:=T_{\text {circ }} / T_{\text {lin }}, \quad E_{\text {red }}:=E / a$

$3+1$ dimensions

$2+1$ dimensions

Not constant!

4a. Relativistic spacetime

$T_{\text {rat }}:=T_{\text {circ }} / T_{\text {lin }}, \quad E_{\text {red }}:=E / a$

4a. Relativistic spacetime
 $T_{\text {rat }}:=T_{\text {circ }} / T_{\text {lin }}, \quad E_{\text {red }}:=E / a$

$E_{\text {red }} \rightarrow 0$: nonzero

$2+1$ dimensions
$E_{\text {red }} \rightarrow 0$: linear zero

4a. Relativistic spacetime
 $T_{\text {rat }}:=T_{\text {circ }} / T_{\text {lin }}, \quad E_{\text {red }}:=E / a$

$3+1$ dimensions
$E_{\text {red }} \rightarrow 0$: nonzero

$2+1$ dimensions
$E_{\text {red }} \rightarrow 0$: linear zero
$v \rightarrow 1$:

4b. Analogue spacetime $T_{\text {rlab }}:=\hat{T}_{\text {circ }} / \hat{T}_{\text {lin }}, \quad E_{\text {rab }}:=\hat{E} / \hat{a}, \quad \wedge=$ non-rel

4b. Analogue spacetime
 $T_{\text {rlab }}:=\hat{T}_{\text {circ }} / \hat{T}_{\text {lin }}, \quad E_{\text {rab }}:=\hat{E} / \hat{a}, \quad{ }^{\wedge}=$ non-rel

$3+1$ dimensions

$2+1$ dimensions

4b. Analogue spacetime
 $T_{\text {rlab }}:=\hat{T}_{\text {circ }} / \hat{T}_{\text {lin }}, \quad E_{\text {rlab }}:=\hat{E} / \hat{a}, \quad{ }^{\wedge}=$ non-rel

$3+1$ dimensions
$E_{\text {rlab }} \rightarrow 0$: nonzero

$2+1$ dimensions
$E_{\text {rlab }} \rightarrow 0$: linear zero

4b. Analogue spacetime
 $T_{\text {rlab }}:=\hat{T}_{\text {circ }} / \hat{T}_{\text {lin }}, \quad E_{\text {rlab }}:=\hat{E} / \hat{a}, \quad{ }^{\wedge}=$ non-rel

$3+1$ dimensions
$E_{\text {rlab }} \rightarrow 0$: nonzero
$v \rightarrow 1: \quad T_{\text {rlab }} \rightarrow \frac{\pi}{2 \sqrt{3}} \approx 0.9$

$2+1$ dimensions

$$
E_{\text {rlab }} \rightarrow 0 \text { : linear zero }
$$

$$
T_{\mathrm{rlab}} \approx \frac{\pi^{2}}{4 \sqrt{3} \ln \gamma} \approx \frac{1.4}{\ln \gamma}
$$

4b. Analogue spacetime $T_{\text {rlab }}:=\hat{T}_{\text {circ }} / \hat{T}_{\text {lin }}, \quad E_{\text {rab }}:=\hat{E} / \hat{a},{ }^{\wedge}=$ non-rel

$3+1$ dimensions

$$
E_{\text {rlab }} \rightarrow 0 \text { : nonzero }
$$

$v \rightarrow 1: \quad T_{\text {rlab }} \rightarrow \frac{\pi}{2 \sqrt{3}} \approx 0.9$

$2+1$ dimensions

$$
E_{\text {rlab }} \rightarrow 0 \text { : linear zero }
$$

$$
T_{\mathrm{rlab}} \approx \frac{\pi^{2}}{4 \sqrt{3} \ln \gamma} \approx \frac{1.4}{\ln \gamma}
$$

Suppressed at $v \rightarrow 1$

5. Summary and outlook

Setting

- "Quantum dot" in circular motion; massless scalar
- Relativistic and analogue
- Unruh temperature $T_{\text {circ }}$ via detailed balance

Outcomes

- $3+1: T_{\text {circ }} / T_{\text {lin }}$ of order unity (relativistic and analogue)
$-2+1: T_{\text {circ }} / T_{\text {lin }} \ll 1$ for:
- small energy gap (relativistic and analogue)
- near-sonic limit (analogue only)

5. Summary and outlook

Setting

- "Quantum dot" in circular motion; massless scalar
- Relativistic and analogue
- Unruh temperature $T_{\text {circ }}$ via detailed balance

Outcomes

$-3+1: T_{\text {circ }} / T_{\text {lin }}$ of order unity (relativistic and analogue)
$-2+1: T_{\text {circ }} / T_{\text {lin }} \ll 1$ for:

- small energy gap (relativistic and analogue)
- near-sonic limit (analogue only)

Outlook

- Ambient temperature, finite size,... Bunney et al. in progress
- Beyond quantum dot: experiment? Gooding et al. 2020

5. Summary and outlook

Setting

- "Quantum dot" in circular motion; massless scalar
- Relativistic and analogue
- Unruh temperature $T_{\text {circ }}$ via detailed balance

Outcomes

$-3+1: T_{\text {circ }} / T_{\text {lin }}$ of order unity (relativistic and analogue)
$-2+1: T_{\text {circ }} / T_{\text {lin }} \ll 1$ for:

- small energy gap (relativistic and analogue)
- near-sonic limit (analogue only)

Outlook

- Ambient temperature, finite size,... Bunney et al. in progress
- Beyond quantum dot: experiment? Gooding et al. 2020

Fun fact: $2+1$ time-time correlations are purely imaginary (!?!)

