Tautological classes and symmetry in Khovanov-Rozansky homology

Eugene Gorsky (University of California, Davis)

joint with Matt Hogancamp and Anton Mellit, arXiv:2103.01212

For any link *L*, Khovanov and Rozansky defined **triply graded homology** $\operatorname{HHH}_{i,j,k}(L)$ categorifying the unreduced HOMFLY-PT polynomial

$$P(a,q) = \sum_{i,j,k} a^i q^j (-1)^k \operatorname{dim} \operatorname{HHH}_{i,j,k}(L).$$

For knots, there is a reduced version $\overline{\text{HHH}}_{i,j,k}(K)$ which yields a finite dimensional vector space.

Theorem (GHM)

For any knot K, the reduced Khovanov-Rozansky homology is symmetric:

$$\overline{\mathrm{HHH}}_{i,-2j,k}(K) = \overline{\mathrm{HHH}}_{i,2j,k+2j}(K).$$

FIGURE 3.7. Differentials for $T_{3,4}$. The bottom row of dots has *a*-grading 6. The leftmost dot on that row has *q*-grading -6, which you can determine by noting that the vertical axis of symmetry corresponds to the line q = 0.

Other approaches:

- Oblomkov, Rozansky: use matrix factorizations over Hilbert schemes of points on the plane.
- Galashin, Lam (for knots related to Richardson varieties): use graded Koszul duality for category O developed by Bezrukavnikov-Yun.

Both approaches use very heavy machinery of geometric representation theory. Our proof is more straightforward, and generalizes to links.

Problems for links:

- No good reduced homology
- There is an action of a polynomial ring $\mathbb{C}[x_1, \ldots, x_c]$ on the unreduced homology $\operatorname{HHH}(L)$, where c is the number of components of L
- The symmetry does not preserve the degrees of x_i.

Solution: use "y-ified" homology HY(L) defined by G.-Hogancamp. It is naturally a module over $\mathbb{C}[x_1, \ldots, x_c, y_1, \ldots, y_c]$. The symmetry would exchange x_i with y_i .

Theorem (G., Hogancamp)

For all $n, k \ge 0$ the homology of the (n, kn) torus link with n components is given by:

$$\begin{split} \operatorname{HY}(T(n,kn)) &= \bigcap_{i \neq j} (x_i - x_j, y_i - y_j, \theta_i - \theta_j)^k \subset \\ & \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n, \theta_1, \dots, \theta_n] = \operatorname{HY}(\textit{unlink}). \end{split}$$

э

(日)

Theorem (GHM)

For any link L, there is an action of operators F_k on HY(L) satisfying the following relations:

$$[F_k, F_m] = 0, \quad [F_k, x_i] = 0, \quad [F_k, y_i] = k x_i^{k-1}.$$

Furthermore, F₂ satisfies "hard Lefshetz property":

$$F_2^j:\mathrm{HY}_{i,-2j,k}(L)\to\mathrm{HY}_{i,2j,k+2j}(L)$$

is an isomorphism, and F_2 extends to an action of \mathfrak{sl}_2 on HY(L).

For knots, $HY(K) = \overline{HHH}(K) \otimes \mathbb{C}[x, y]$ and the symmetry of HY(K) implies the symmetry of $\overline{HHH}(K)$.

Definition of Khovanov-Rozansky homology

Let $R = \mathbb{C}[x_1, \ldots, x_n]$.

- Define the R R-bimodules $B_i = R \otimes_{R^{(i \ i+1)}} R$.
- To a simple crossing, associate Rouquier complexes

$$T_i = [B_i \rightarrow R], \ T_i^{-1} = [R \rightarrow B_i]$$

- To any braid β , associate the product T_{β} of T_i, T_i^{-1} . It is naturally a complex of R R bimodules.
- The braid closure corresponds to the Hochschild homology $HH(T_{\beta})$.

Theorem (Khovanov, Rozansky)

The output of this construction is a topological invariant of the closure of β .

Dg algebra \mathcal{A}

Let

$$B = \frac{\mathbb{C}[x_1, \dots, x_n, x'_1, \dots, x'_n]}{f(x_1, \dots, x_n) = f(x'_1, \dots, x'_n) \text{ for any symmetric function } f}.$$

We define a dg algebra \mathcal{A} as follows:

$$\mathcal{A} = B[\xi_1, \ldots, \xi_n, u_1, \ldots, u_n], \ d(\xi_i) = x_i - x'_i, \ d(u_k) = \sum_{i=1}^n h_{k-1}(x_i, x'_i)\xi_i$$

Here $h_{k-1}(x_i, x'_i) = x_i^{k-1} + \ldots + (x'_i)^{k-1}$ is the complete symmetric function. Note that

$$d^2(u_k) = \sum_{i=1}^n h_{k-1}(x_i, x_i')(x_i - x_i') = \sum x_i^k - \sum (x_i')^k = 0.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Theorem

The dg algebra A is a free resolution of R as a B-module.

Theorem

The dg algebra $\mathcal A$ has a coproduct $\Delta:\mathcal A\to\mathcal A\otimes_R\mathcal A$ defined by the equations

$$\Delta(x_i)=x_i\otimes 1,\;\Delta(x_i')=1\otimes x_i',\;\Delta(\xi_i)=\xi_i\otimes 1+1\otimes \xi_i,$$

$$\Delta(u_k) = u_k \otimes 1 + 1 \otimes u_k + \sum_{i=1}^n h_{k-2}(x_i, x'_i, x''_i)\xi_i \otimes \xi_i.$$

This coproduct is coassociative up to homotopy.

The dg algebra \mathcal{A} acts on simple crossings T_i , T_i^{-1} as follows: ξ_i are explicit "dot sliding homotopies" and u_k act by 0. By using the coproduct on \mathcal{A} , we can extend the action to arbitrary Rouquier complexes and obtain the following:

Theorem

There is an action of A on the Rouquier complex T_{β} associated to an arbitrary braid β . This action is invariant under braid relations and unique up to homotopy.

We can use the action of ξ_i to deform the differential on T_β :

$$D=d+\sum\xi_i y_i$$

The differential D does not square to zero, but D^2 vanishes after closing the braid (that is, applying HH), and we can define

$$\operatorname{HY}(\beta) = H(\operatorname{HH}(T_{\beta}) \otimes \mathbb{C}[y_1, \ldots, y_c], D)$$

Theorem (G., Hogancamp)

The "y-ified" homology $HY(\beta)$ is the topological invariant of the closure of β .

The action of u_k can be used to define the operators

$$F_k = h_{k-1}(x_i, x'_i) \frac{\partial}{\partial y_i} + u_k.$$

One can check that $[D, F_k] = 0$ and hence F_k yield well-defined operators on $HY(\beta)$.

Theorem (GHM)

The action of F_k on $HY(\beta)$ is a topological invariant of the closure of β .

To prove that F_2 satisfies "hard Lefshetz property", we use the objects $K_{i,j} = R \xrightarrow{x_i - x_j} R$ which are A-modules as well. The maps in the "skein exact triangle"

$$T_i
ightarrow T_i^{-1}
ightarrow K_{i,i+1}$$

agree with the action of \mathcal{A} (up to homotopy). This allows us to reduce a complicated Rouquier complex to the ones for unlinks, possibly multiplied by products of K_{ij} . We explicitly compute the action of all F_k for such complexes, and verify the hard Lefshetz property for them.

Let me comment on geometric motivation behind the construction of \mathcal{A} and the coproduct. Let G = GL(n), for any symmetric function $Q(x_1, \ldots, x_n)$ of degree d one can construct the following differential forms:

$$\Phi_1(Q)\in \Omega^{2d-1}(G), \ \Phi_2(Q)\in \Omega^{2d-2}(G imes G), \ \dots \Phi_d(Q)\in \Omega^d(G^d)$$

satisfying equations

$$d\Phi_1(Q)=0, \ d\Phi_2(Q)=\Phi_1(Q)\otimes 1+1\otimes \Phi_1(Q)-m^*(\Phi_1(Q)), \ \ldots$$

where $m: G \times G \to G$ is the multiplication map on G. For example, for $Q = \sum x_i^2$ we get a 3-form on G and a 2-form on $G \times G$. Atiyah, Bott, Jeffrey and others used these forms to construct interesting cohomology classes on character varieties.

Suppose that $f: X \to G$ and $g: Y \to G$ are matrix-valued functions such that $f^*\Phi_1(Q) = d\omega_X$ and $g^*\Phi_1(Q) = d\omega_Y$ for some forms ω_X and ω_Y , then we can define

$$f \cdot g : X \times Y \to G, \ \omega_{X \times Y} = \omega_X \otimes 1 + 1 \otimes \omega_Y + (f \times g)^* \Phi_2(Q)$$

such that

$$d(\omega_{X\times Y})=(f\cdot g)^*(\Phi_1(Q)).$$

This is very similar to our coproduct, where ω_X play the role of u_k . Note that even if $\omega_X = \omega_Y = 0$, $\omega_{X \times Y}$ could be nontrivial.

Geometric motivation: braid varieties

Given a positive braid $\beta = \sigma_{i_1} \cdots \sigma_{i_k}$, Mellit defined the *braid variety*

 $X(\beta) = \{z_1, \ldots, z_k : B_{i_1}(z_1) \cdots B_{i_k}(z_k) \text{ is upper-triangular} \}$

where $B_i(z)$ are certain explicit matrices.

Theorem (Mellit)

There is an algebraic closed 2-form ω on $X(\beta)$. The cup product with ω satisfies "curious hard Lefshetz property" with respect to the weight filtration in $H^*(X(\beta))$.

The form ω corresponds to the symmetric function $Q = \sum x_i^2$.

Theorem (Casals, G., M. Gorsky, Simental)

If $\beta = \gamma \Delta^2$ then $X(\beta)$ is smooth and ω is holomorphic symplectic.

・ロト ・四ト ・ヨト ・ヨト

Theorem (Galashin, Lam)

The braid variety for the (m, n) torus knot is isomorphic to the open positroid stratum in Gr(m, m + n), up to a free action of a certain torus.

For example, (3, 4) torus knot corresponds to the open positroid stratum in Gr(3,7), also known as E_6 cluster variety. The weight filtration in its cohomology was computed by Lam and Speyer:

		H^0	H^1	H^2	H^3	H^4	H^5	H^6
$E_{6}:$	k - p = 0	1	0	1	0	1	0	1
	1					1		

The 2-form ω generates the second cohomology group of this variety, and lifts to an action of \mathfrak{sl}_2 . The symmetric function $Q = \sum x_i^3$ corresponds to an interesting generator of H^4 .

FIGURE 3.7. Differentials for $T_{3,4}$. The bottom row of dots has *a*-grading 6. The leftmost dot on that row has *q*-grading -6, which you can determine by noting that the vertical axis of symmetry corresponds to the line q = 0.

		H^0	H^1	H^2	H^3	H^4	H^5	H^6
E_6 :	k - p = 0	1	0	1	0	1	0	1
	1					1		

 N. Dunfield, S. Gukov, J. Rasmussen. The superpolynomial for knot homologies. Experiment. Math. 15 (2006), no. 2, 129–159.
 T. Lam, D. Speyer. Cohomology of cluster varieties. I. Locally acyclic case. 1604.06843

Thank you