Tautological classes and symmetry in Khovanov-Rozansky homology

Eugene Gorsky (University of California, Davis)

joint with Matt Hogancamp and Anton Mellit, arXiv:2103.01212
（1）Results
（2）Idea of proof
（3）Geometric motivation

For any link L, Khovanov and Rozansky defined triply graded homology $\mathrm{HHH}_{i, j, k}(L)$ categorifying the unreduced HOMFLY-PT polynomial

$$
P(a, q)=\sum_{i, j, k} a^{i} q^{j}(-1)^{k} \operatorname{dim} \operatorname{HHH}_{i, j, k}(L) .
$$

For knots, there is a reduced version $\overline{\mathrm{HHH}}_{i, j, k}(K)$ which yields a finite dimensional vector space.

Theorem (GHM)

For any knot K, the reduced Khovanov-Rozansky homology is symmetric:

$$
\overline{\mathrm{HHH}}_{i,-2 j, k}(K)=\overline{\mathrm{HHH}}_{i, 2 j, k+2 j}(K) .
$$

This was conjectured by Gukov, Dunfield and Rasmussen in 2005:

Figure 3.7. Differentials for $T_{3,4}$. The bottom row of dots has a-grading 6. The leftmost dot on that row has q-grading -6 , which you can determine by noting that the vertical axis of symmetry corresponds to the line $q=0$.

Other approaches:

- Oblomkov, Rozansky: use matrix factorizations over Hilbert schemes of points on the plane.
- Galashin, Lam (for knots related to Richardson varieties): use graded Koszul duality for category \mathcal{O} developed by Bezrukavnikov-Yun.
Both approaches use very heavy machinery of geometric representation theory. Our proof is more straightforward, and generalizes to links.

Problems for links:

- No good reduced homology
- There is an action of a polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{c}\right]$ on the unreduced homology $\operatorname{HHH}(L)$, where c is the number of components of L
- The symmetry does not preserve the degrees of x_{i}.

Solution: use " y-ified" homology HY(L) defined by G.-Hogancamp. It is naturally a module over $\mathbb{C}\left[x_{1}, \ldots, x_{c}, y_{1}, \ldots, y_{c}\right]$. The symmetry would exchange x_{i} with y_{i}.

Theorem (G.,Hogancamp)

For all $n, k \geq 0$ the homology of the $(n, k n)$ torus link with n components is given by:

$$
\begin{aligned}
\operatorname{HY}(T(n, k n))= & \bigcap_{i \neq j}\left(x_{i}-x_{j}, y_{i}-y_{j}, \theta_{i}-\theta_{j}\right)^{k} \subset \\
& \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, \theta_{1}, \ldots, \theta_{n}\right]=\operatorname{HY}(\text { unlink }) .
\end{aligned}
$$

Main result

Theorem (GHM)

For any link L, there is an action of operators F_{k} on $\mathrm{HY}(L)$ satisfying the following relations:

$$
\left[F_{k}, F_{m}\right]=0, \quad\left[F_{k}, x_{i}\right]=0, \quad\left[F_{k}, y_{i}\right]=k x_{i}^{k-1}
$$

Furthermore, F_{2} satisfies "hard Lefshetz property":

$$
F_{2}^{j}: \mathrm{HY}_{i,-2 j, k}(L) \rightarrow \mathrm{HY}_{i, 2 j, k+2 j}(L)
$$

is an isomorphism, and F_{2} extends to an action of $\mathfrak{s l}_{2}$ on $\mathrm{HY}(L)$.
For knots, $\mathrm{HY}(K)=\overline{\mathrm{HHH}}(K) \otimes \mathbb{C}[x, y]$ and the symmetry of $\mathrm{HY}(K)$ implies the symmetry of $\overline{\mathrm{HHH}}(K)$.

Definition of Khovanov-Rozansky homology

Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Define the $R-R$-bimodules $B_{i}=R \otimes_{R^{(i+1)}} R$.
- To a simple crossing, associate Rouquier complexes

$$
T_{i}=\left[B_{i} \rightarrow R\right], T_{i}^{-1}=\left[R \rightarrow B_{i}\right]
$$

- To any braid β, associate the product T_{β} of T_{i}, T_{i}^{-1}. It is naturally a complex of $R-R$ bimodules.
- The braid closure corresponds to the Hochschild homology $\mathrm{HH}\left(T_{\beta}\right)$.

Theorem (Khovanov,Rozansky)

The output of this construction is a topological invariant of the closure of β.

Dg algebra \mathcal{A}

Let

$$
B=\frac{\mathbb{C}\left[x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]}{f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \text { for any symmetric function } f}
$$

We define a dg algebra \mathcal{A} as follows:

$$
\mathcal{A}=B\left[\xi_{1}, \ldots, \xi_{n}, u_{1}, \ldots, u_{n}\right], d\left(\xi_{i}\right)=x_{i}-x_{i}^{\prime}, d\left(u_{k}\right)=\sum_{i=1}^{n} h_{k-1}\left(x_{i}, x_{i}^{\prime}\right) \xi_{i}
$$

Here $h_{k-1}\left(x_{i}, x_{i}^{\prime}\right)=x_{i}^{k-1}+\ldots+\left(x_{i}^{\prime}\right)^{k-1}$ is the complete symmetric function. Note that

$$
d^{2}\left(u_{k}\right)=\sum_{i=1}^{n} h_{k-1}\left(x_{i}, x_{i}^{\prime}\right)\left(x_{i}-x_{i}^{\prime}\right)=\sum x_{i}^{k}-\sum\left(x_{i}^{\prime}\right)^{k}=0
$$

Dg algebra \mathcal{A} : properties

Theorem

The dg algebra \mathcal{A} is a free resolution of R as a B-module.

Theorem

The dg algebra \mathcal{A} has a coproduct $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes_{R} \mathcal{A}$ defined by the equations

$$
\begin{gathered}
\Delta\left(x_{i}\right)=x_{i} \otimes 1, \Delta\left(x_{i}^{\prime}\right)=1 \otimes x_{i}^{\prime}, \Delta\left(\xi_{i}\right)=\xi_{i} \otimes 1+1 \otimes \xi_{i} \\
\Delta\left(u_{k}\right)=u_{k} \otimes 1+1 \otimes u_{k}+\sum_{i=1}^{n} h_{k-2}\left(x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime}\right) \xi_{i} \otimes \xi_{i}
\end{gathered}
$$

This coproduct is coassociative up to homotopy.

Dg algebra \mathcal{A} : modules

The dg algebra \mathcal{A} acts on simple crossings T_{i}, T_{i}^{-1} as follows: ξ_{i} are explicit "dot sliding homotopies" and u_{k} act by 0 . By using the coproduct on \mathcal{A}, we can extend the action to arbitrary Rouquier complexes and obtain the following:

Theorem

There is an action of \mathcal{A} on the Rouquier complex T_{β} associated to an arbitrary braid β. This action is invariant under braid relations and unique up to homotopy.

y-ification

We can use the action of ξ_{i} to deform the differential on T_{β} :

$$
D=d+\sum \xi_{i} y_{i}
$$

The differential D does not square to zero, but D^{2} vanishes after closing the braid (that is, applying HH), and we can define

$$
\operatorname{HY}(\beta)=H\left(H H\left(T_{\beta}\right) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{c}\right], D\right)
$$

Theorem (G.,Hogancamp)
The " y-ified" homology $\operatorname{HY}(\beta)$ is the topological invariant of the closure of β.

Construction of F_{k}

The action of u_{k} can be used to define the operators

$$
F_{k}=h_{k-1}\left(x_{i}, x_{i}^{\prime}\right) \frac{\partial}{\partial y_{i}}+u_{k}
$$

One can check that $\left[D, F_{k}\right]=0$ and hence F_{k} yield well-defined operators on $\mathrm{HY}(\beta)$.

Theorem (GHM)

The action of F_{k} on $\mathrm{HY}(\beta)$ is a topological invariant of the closure of β.

Lefshetz property

To prove that F_{2} satisfies "hard Lefshetz property", we use the objects $K_{i, j}=R \xrightarrow{x_{i}-x_{j}} R$ which are \mathcal{A}-modules as well. The maps in the "skein exact triangle"

$$
T_{i} \rightarrow T_{i}^{-1} \rightarrow K_{i, i+1}
$$

agree with the action of \mathcal{A} (up to homotopy). This allows us to reduce a complicated Rouquier complex to the ones for unlinks, possibly multiplied by products of $K_{i j}$. We explicitly compute the action of all F_{k} for such complexes, and verify the hard Lefshetz property for them.

Geometric motivation

Let me comment on geometric motivation behind the construction of \mathcal{A} and the coproduct. Let $G=G L(n)$, for any symmetric function $Q\left(x_{1}, \ldots, x_{n}\right)$ of degree d one can construct the following differential forms:

$$
\Phi_{1}(Q) \in \Omega^{2 d-1}(G), \Phi_{2}(Q) \in \Omega^{2 d-2}(G \times G), \ldots \Phi_{d}(Q) \in \Omega^{d}\left(G^{d}\right)
$$

satisfying equations

$$
d \Phi_{1}(Q)=0, d \Phi_{2}(Q)=\Phi_{1}(Q) \otimes 1+1 \otimes \Phi_{1}(Q)-m^{*}\left(\Phi_{1}(Q)\right), \ldots
$$

where $m: G \times G \rightarrow G$ is the multiplication map on G. For example, for $Q=\sum x_{i}^{2}$ we get a 3 -form on G and a 2 -form on $G \times G$.

Geometric motivation cont'd

Atiyah, Bott, Jeffrey and others used these forms to construct interesting cohomology classes on character varieties.

Suppose that $f: X \rightarrow G$ and $g: Y \rightarrow G$ are matrix-valued functions such that $f^{*} \Phi_{1}(Q)=d \omega_{X}$ and $g^{*} \Phi_{1}(Q)=d \omega_{Y}$ for some forms ω_{X} and ω_{Y}, then we can define

$$
f \cdot g: X \times Y \rightarrow G, \omega_{X \times Y}=\omega_{X} \otimes 1+1 \otimes \omega_{Y}+(f \times g)^{*} \Phi_{2}(Q)
$$

such that

$$
d\left(\omega_{X \times Y}\right)=(f \cdot g)^{*}\left(\Phi_{1}(Q)\right)
$$

This is very similar to our coproduct, where ω_{X} play the role of u_{k}. Note that even if $\omega_{X}=\omega_{Y}=0, \omega_{X \times Y}$ could be nontrivial.

Geometric motivation：braid varieties

Given a positive braid $\beta=\sigma_{i_{1}} \cdots \sigma_{i_{k}}$ ，Mellit defined the braid variety

$$
X(\beta)=\left\{z_{1}, \ldots, z_{k}: B_{i_{1}}\left(z_{1}\right) \cdots B_{i_{k}}\left(z_{k}\right) \text { is upper-triangular }\right\}
$$

where $B_{i}(z)$ are certain explicit matrices．

Theorem（Mellit）

There is an algebraic closed 2－form ω on $X(\beta)$ ．The cup product with ω satisfies＂curious hard Lefshetz property＂with respect to the weight filtration in $H^{*}(X(\beta))$ ．

The form ω corresponds to the symmetric function $Q=\sum x_{i}^{2}$ ．

Theorem（Casals，G．，M．Gorsky，Simental）

If $\beta=\gamma \Delta^{2}$ then $X(\beta)$ is smooth and ω is holomorphic symplectic．

Example

Theorem (Galashin, Lam)

The braid variety for the (m, n) torus knot is isomorphic to the open positroid stratum in $\operatorname{Gr}(m, m+n)$, up to a free action of a certain torus.

For example, $(3,4)$ torus knot corresponds to the open positroid stratum in $\operatorname{Gr}(3,7)$, also known as E_{6} cluster variety. The weight filtration in its cohomology was computed by Lam and Speyer:

$E_{6}:$| | H^{0} | H^{1} | H^{2} | H^{3} | H^{4} | H^{5} | H^{6} |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2-p=0$ | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | | | | | 1 | | |

The 2-form ω generates the second cohomology group of this variety, and lifts to an action of $\mathfrak{s l}_{2}$. The symmetric function $Q=\sum x_{i}^{3}$ corresponds to an interesting generator of H^{4}.

One can compare this with the bottom row of the HOMFLY-PT homology:

Figure 3.7. Differentials for $T_{3,4}$. The bottom row of dots has a-grading 6. The leftmost dot on that row has q-grading -6 , which you can determine by noting that the vertical axis of symmetry corresponds to the line $q=0$.

$$
E_{6}: \begin{array}{|r|ccccccc|}
\hline & H^{0} & H^{1} & H^{2} & H^{3} & H^{4} & H^{5} & H^{6} \\
\cline { 2 - 8 } & k-p=0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 \\
1 & & & & & 1 & & \\
\hline
\end{array}
$$

Picture credits:

1. N. Dunfield, S. Gukov, J. Rasmussen. The superpolynomial for knot homologies. Experiment. Math. 15 (2006), no. 2, 129-159.
2. T. Lam, D. Speyer. Cohomology of cluster varieties. I. Locally acyclic case. 1604.06843

Thank you

