Invariants of 4-manifolds from Khovanov-Rozansky link homology

Paul Wedrich
MPIM / Uni Bonn

Joint work with Scott Morrison and Kevin Walker

BIRS, May 21st 2021

Motivation

How does Khovanov homology extend to other ambient manifolds?

Hints:

- Functoriality under link cobordisms in 4d.
- Rozansky\&Willis invariants for nullhomologous links in $\#^{k}\left(S^{1} \times S^{2}\right)$.
- Rasmussen: Kh sensitive to smooth surfaces in B^{4}.

Proposal:

$$
\operatorname{Kh}(L)=\operatorname{Kh}\left(B^{4} ; L\right)
$$

- 4-manifolds (with (link in) boundary) \rightarrow chain complexes
- 3-manifolds \rightarrow dg categories
- point \rightarrow some 4-category

Today: a few steps in this direction.

Starting in dimension 3...

Link invariants

The $\mathfrak{g l}_{N}$ link polynomial P_{N} : \{framed, oriented links $\} \rightarrow \mathbb{Z}\left[q^{ \pm 1}\right]$:

$$
\begin{aligned}
& P_{N}(\kappa)=q^{N} P_{N}\left(\ulcorner), \quad P_{N}\left(L_{1} \sqcup L_{2}\right)=P_{N}\left(L_{1}\right) P_{N}\left(L_{2}\right)\right.
\end{aligned}
$$

Higher categories

Ribbon category $\operatorname{Rep}\left(U_{q}\left(\mathfrak{g l}_{N}\right)\right)$, tangle invariants

Manifold invariants

The $\mathfrak{g l}_{N}$ skein module for compact, oriented $M^{3}, P \subset \partial M^{3}$:

$$
\mathrm{Sk}_{N}\left(M^{3} ; P\right):=\frac{\mathbb{Z}\left[q^{ \pm 1}\right]\left\langle\text { framed, oriented tangles in }\left(M^{3}, P\right)\right\rangle}{\left\langle\text { isotopy, local relations in } B^{3} \hookrightarrow M^{3}\right\rangle}
$$

Part of a 0123ε-dimensional TFT.

...upgrading to dimension 4

Khovanov-Rozansky 2004, Robert-Wagner+Ehrig-Tubbenhauer-W 2017:

Link invariants

The $\mathfrak{g l}_{N}$ Khovanov-Rozansky link homology
$\mathrm{KhR}_{N}:\{$ links/link cobordisms $\} \rightarrow K^{b}\left(\mathrm{gr}^{\mathbb{Z}}\right.$ Vect $), \quad \chi_{q} \circ \mathrm{KhR}_{N}=P_{N}$
Morrison-Walker-W 2019:

Higher categories

A ribbon 2-category / a disk-like 4-category categorifying $\operatorname{Rep}\left(U_{q}\left(\mathfrak{g l}_{N}\right)\right)$.

Manifold invariants

A 'skein module' $\mathcal{S}_{N}\left(W^{4} ; L\right)$ for compact, oriented, smooth W^{4}, $L \subset \partial W^{4}$.

$$
\mathcal{S}_{N}\left(B^{4} ; L\right) \cong \operatorname{KhR}_{N}(L)
$$

Part of a 01234ε-dimensional TFT?

Approaches

Some routes to Khovanov-Rozansky homology for (links in) 3-manifolds:

- Categorify Witten-Reshetikhin-Turaev invariants
- Categorification at roots of unity
- Categorification of tensor product reps
- Categorify skein modules
- Via surgery
- Via Heegaard splitting, categorified skein algebras
- Extending Witten's model for Khovanov homology in \mathbb{R}^{3}
- Higher skein modules (this talk)
- Functorial tangle invariant \rightarrow 4-category \rightarrow skein module

Khovanov-Rozansky homology

Defining KhR_{N} requires:

- the data of a chain complex for each link diagram (KhR04, RW17)
- the data of a chain map for every elementary movie (KhR04)
- movie move checks (Blanchet10, ETW17)
$\Longrightarrow \mathrm{KhR}_{N}$ can be considered as diagram-independent (MWW19).

Khovanov-Rozansky homology

$\left\{\begin{array}{c}\text { links diagrams } \\ \text { movies of diagrams } / \mathrm{m} \text {. moves }\end{array}\right\} \xrightarrow{\mathrm{KhR}_{N}} K^{b}\left(\mathrm{gr}^{\mathbb{Z}}\right.$ Vect $)$
E.g. this chain map should be homotopic to the identity:

Definırig rimin N requires.

- the data of a chain complex for each link diagram (KhR04, RW17)
- the data of a chain map for every elementary movie (KhR04)
- movie move checks (Blanchet10, ETW17)
$\Longrightarrow \mathrm{KhR}_{N}$ can be considered as diagram-independent (MWW19).

Functoriality in S^{3}

For $\mathcal{S}_{N}\left(B^{4} ; L\right) \cong \operatorname{KhR}_{N}(L)$ we need KhR_{N} for links in $S^{3}=B^{3} \cup\{\infty\}$.

- links in S^{3} generically avoid ∞
\Longrightarrow same chain complexes
- link cobordisms in $S^{3} \times I$ generically avoid $\infty \times I$
\Longrightarrow same chain maps
- link cobordism isotopies in $S^{3} \times I^{2}$ might intersect $\infty \times I^{2}$ transversely \Longrightarrow a new movie move to check, non-local if viewed from B^{3}

Theorem (M.-W.-W. 2019)

KhR_{N} is invariant under the sweeparound move, thus functorial in S^{3}.

Proving the sweeparound move

(1) Reduce to the case of almost braid closures
(2) Compare front and back versions of

(3) Consider filtration by homological degree of extra crossings
(Front and back versions of R1, R2, R3 agree* in associated graded

Ribbon 2-category via KhR_{N} for tangles

Theorem (M.-W.-W. 2019)
\exists linear braided monoidal 2-category (Kapranov-Voevodsky, Baez-Neuchl, Day-Street, Crans) with duals (Barrett-Meusburger-Schaumann) with

- Objects: tangle boundary sequences
- 1-morphisms: Morse data for tangle diagrams
- 2-morphisms from T_{1} to $T_{2}: \mathrm{H}^{*} \mathrm{Ch}(N$ Foam $)\left(\llbracket T_{1} \rrbracket_{N}, \llbracket T_{2} \rrbracket_{N}\right)$.

Towards TFT

Questions

Is this braided monoidal 2-category (or something similar) 4-dualizable and $S O$ (4)-fixed in a suitable 5-category of $E_{2} 2$-categories? What is the role of the sweeparound move? Can this all be made homotopy-coherent?
\Longrightarrow a local 01234ε-d oriented TFT via the cobordism hypothesis.
Proposed direct construction for the 4ε part (on the level of homology):
Theorem (M.-W.-W. 2019)
KhR_{N} controls a disk-like 4-category, determines $\mathcal{S}_{N}\left(W^{4} ; L\right)$ via the blob complex (Morrison-Walker 2010).

Rest of the talk: focus on degree zero blob homology $\mathcal{S}_{N}^{0}\left(W^{4} ; L\right)$.

A skein module for 4-manifolds

In analogy to

$$
\mathrm{Sk}_{N}\left(M^{3} ; P\right):=\frac{\mathbb{Z}\left[q^{ \pm 1}\right]\left\langle\text { framed, oriented tangles in }\left(M^{3}, P\right)\right\rangle}{\left\langle\operatorname{ker} R T_{N} \text { in } B^{3} \hookrightarrow M^{3}\right\rangle}
$$

we would like to define $\mathcal{S}_{N}^{0}\left(W^{4} ; L\right)$ as:

$$
\frac{\mathbb{Z}\left\langle\text { framed, oriented surfaces in }\left(W^{4}, L\right)\right\rangle}{\left\langle\operatorname{ker} \llbracket-\rrbracket_{N} \text { in } B^{4} \hookrightarrow W^{4}\right\rangle}
$$

Problem: Want $\mathcal{S}_{N}\left(B^{4} ; L\right) \cong \mathcal{S}_{N}^{0}\left(B^{4} ; L\right) \cong \operatorname{KhR}_{N}(L)$, but this is not always spanned by images of cobordisms maps.
\Longrightarrow consider decorated framed, oriented surfaces.

Skeins

A lasagna filling of W^{4} with a link $L \subset \partial W^{4}$ is the data of:

B_{i}^{4} : finitely many disjoint 4-balls in W^{4} L_{i} : input links in ∂B_{i}^{4}
$\Sigma:$ f., o. surface in $\left(W^{4} \backslash \sqcup_{i} B_{i}^{4} ; L \sqcup_{i} L_{i}\right)$ $v_{i} \in \operatorname{KhR}_{N}\left(\partial B_{i}^{4}, L_{i}\right)$

Skein relations via lasagna algebra

Khovanov-Rozansky homology is an algebra for the lasagna operad

Note: A lasagna filling of $\left(B^{4}, L\right)$ is a lasagna diagram D plus $\left(v_{1}, \ldots, v_{r}\right)$. \Longrightarrow evaluates to $\operatorname{KhR}_{N}(D)\left(v_{1} \otimes \cdots \otimes v_{r}\right) \in \operatorname{KhR}\left(\partial B^{4}, L\right)$.

Definition of $\mathcal{S}_{N}^{0}\left(W^{4} ; L\right)$

Definition

We define the $H_{2}\left(W^{4}, L\right) \times \mathbb{Z}_{q} \times \mathbb{Z}_{t}$-graded abelian group

$$
\mathcal{S}_{N}^{0}\left(W^{4} ; L\right):=\mathbb{Z}\left\langle\text { lasagna fillings of }\left(W^{4}, L\right)\right\rangle / \sim
$$

where the 'skein relations' \sim are generated by

with $v=\operatorname{KhR}(D)\left(v_{i} \otimes \cdots \otimes v_{j}\right)$.

To finish, some examples

Example (B^{4})

$\mathcal{S}_{N}\left(B^{4} ; L\right) \cong \mathcal{S}_{N}^{0}\left(B^{4} ; L\right) \cong \operatorname{KhR}(L)$ by construction.
Example $\left(B^{3} \times S^{1}\right)$
$\mathcal{S}_{2}\left(B^{3} \times S^{1} ; L\right)$ is related to the Hochschild homology of Khovanov's arc algebra and to Rozansky's homology theory for links L in $S^{2} \times S^{1}$.

Theorem (Manolescu-Neithalath 2020)

If W^{4} is a 2 -handle body with a single 0 -handle, $L \subset S^{3}$ the attaching link of the 2-handles, then

$$
\mathcal{S}_{N}^{0}\left(W^{4} ; \emptyset\right) \cong \operatorname{KhR}_{N}(L)
$$

where $\underline{K h R}_{N}(L)$ depends on KhR_{N} of cables of L.
E.g. $\operatorname{dim}_{q}\left(\mathcal{S}_{N}^{0}\left(S^{2} \times D^{2} ; \emptyset, \alpha\right)\right)=\prod_{k=1}^{N-1} \frac{1}{1-q^{2 k}}$, results for $\mathbb{C} P^{2}$ and $\overline{\mathbb{C} P^{2}}$.

