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This will be a lecture on the Jones polynomial of a knot in
three-space and its refinement that is known as Khovanov
homology.

The first physics-based proposal concerning Khovanov homology of
knots was made by Gukov, Vafa, and Schwarz (2004), who
suggested that vector spaces associated to knots that had been
introduced a few years earlier by Ooguri and Vafa were related to
what appears in Khovanov homology.

A number of years later, I re-expressed this type of construction in
terms of gauge theory and the counting of solutions of PDE’s (see
“Fivebranes and Knots,” arXiv:1101.3216). That is the story I will
describe today. A number of my previous lectures are available
online (see arXiv:1603.03854, arXiv:1401.6996, arXiv:1108.3103)
and what I will explain here is closest to the most recent of those.



In any event, the goal is to construct invariants of a knot

embedded in R3:

In the simplest version, the invariants will be obtained by simply
counting, with signs, the solutions of an equation. The solutions
will have an integer-valued topological invariant P and if an is the
“number” (counted algebraically) of solutions with P = n, then
the Jones polynomial of the knot will be

J(q) =
∑
n

anq
n.



To get Khovanov homology, this situation is supposed to be
“categorified,” that is, we want for each n to define a complex of
vector spaces whose Euler characteristic is an. Categorifying the
counting of solutions of an equation is possible if and (as far as I
know) only if the equation whose solutions we are counting is the
equation for critical points of some Morse function h. (Our
equations will be PDE’s, so h will be a Morse function on an
infinite-dimensional space of functions, namely the functions that
appear in the PDE.) Let us put this aside for a moment and
assume we are just trying to describe the Jones polynomial.



The equations whose solutions I claim should be counted to define
the Jones polynomial and ultimately Khovanov homology might
look ad hoc if written down without an explanation of where they
come from. I could have started today’s lecture by explaining the
physical setup, but not everyone would find this helpful. Instead I
will try a different approach of motivating the equations from what
appears in an established mathematical approach to Khovanov
homology, namely symplectic Khovanov homology (Seidel and
Smith; Manolescu; Abouzeid and Smith).



Going all the way back to the original work of Vaughn Jones in
1983, most approaches to the Jones polynomial define an invariant
in terms of some sort of presentation of a knot, for example a
projection to a plane

or some other “knot presentation.” One defines something that is
manifestly well-defined once such a presentation is given. What
one defines is not obviously independent of the knot presentation,
but turns out to be. That step is where the magic is. And there
always is some magic.



An approach based on counting solutions of PDE’s has the
opposite advantages and drawbacks: Topological invariance is
potentially manifest (given certain generalities about elliptic
PDE”s and assuming compactness is under control), but it may
not be clear how to calculate. The ideal is to have manifest three-
or (in the categorified case) four-dimensional symmetry together
with a method of calculation. How might this be achieved?



Adapting what has been done mathematically in many problems
involving counting of solutions of PDE’s, a natural try, which I
followed in work with D. Gaiotto (arXiv:1106.4789) is to stretch a
knot in one direction:

Then one wants it to be the case that except near the ends, the
solutions are independent of u. (This is not automatically the case
and we had to make a perturbation to get to a situation in which
this would be true.)



Then we define a space M of u-independent solutions. We can
think of these as the solutions in the presence of infinite long
strands that extend in the u direction:



In M, we define two “subspaces” L` and Lr consisting of solutions
that extend over the left or over the right. (For simplicity in my
terminology, I will assume a given solution extends in at most one
way, but this assumption is not necessary.) For example, a point in
L` represents a solution in a semiinfinite situation in which the
strands terminate on the left:

Likewise Lr
parametrizes solutions that extend over the right end.



For a global knot with the strands ending on both ends

the global solutions
are solutions in the middle that extend over both ends. So the
global solutions are intersection points of L` and Lr . The integer
an that appears as a coefficient in the Jones polynomial is
supposed to be the algebraic intersection number of L` and Lr :

an = L` ∩ Lr .

(To be more exact, an is this intersection number computed by
counting only intersections with P = n.)



In this language of intersections, categorification can happen if M
is in a natural way a symplectic manifold and L` and Lr are
Lagrangian submanifolds. Then Floer cohomology – i.e. the
A-model or the Fukaya category – of M gives a framework for
categorification. From the point of view of today’s lecture, the
reason that all this will happen is that, even before we stretched
the knot to reduce to intersections in M, the equations whose
solutions we were counting are equations for critical points of some
Morse function(al) h.



In “symplectic Khovanov homology,” a version of such a story is
developed for Khovanov homology (at least in a singly-graded
version) with a very specific M. A description of this M that was
proposed by Kamnitzer (and exploited in a mirror version by Cautis
and Kamnitzer) and which provided an important clue in my work
is as follows: M can be understood as a space of Hecke
modifications. Let me explain this concept. Let C be a Riemann
surface and E → C a holomorphic GC bundle over C , where GC is
some complex Lie group. A Hecke modification of E at a point
p ∈ C is a holomorphic GC bundle E ′ → C with an isomorphism to
E away from p:

ϕ : E ′|C\p ∼= E |C\p.



For example, if GC = C∗, the we can think of E as a holomorphic
line bundle L → C . A holomorphic bundle L′ that is isomorphic to
L away from p is

L′ = L(np) = L ⊗O(p)n

for some integer n. Here the integer n can be thought of as a
weight of the Langlands-GNO dual group of C∗, which is another
copy of C∗.



The reason that I write GC, making explicit that this is the complex
form of the group, is that when we do gauge theory, the gauge
group will be the compact real form and I will call this simply G .
In general, for any G , there is a corresponding Langlands-GNO
dual group G∨, with complexification G∨C , such that Hecke
modifications of a holomorphic GC-bundle at a point p ∈ C occur
in families classified by dominant weights (or equivalently
finite-dimensional representations) of G∨C (or equivalently G∨).



For example, if GC = GL(2,C), we can think of a GC-bundle
E → C as a rank 2 complex vector bundle E → C . The
Langlanda-GNO dual group G∨C is again GL(2,C), and a Hecke
modification dual to the 2-dimensional representation of G∨C is as
follows. For some local decomposition E ∼= O ⊕O in a
neighborhood of p ∈ C , one has E ′ ∼= O(p)⊕O. The difference
from the abelian case is that there is not just 1 Hecke modification
of this type at p but a whole family of them, arising from the
choice of decomposition of E as O ⊕O.



Because of the dependence on the decomposition of E , or more
accurately on the choice of a subbundle O ⊂ E that is going to be
replaced by O(p), the Hecke modifications of this type at p form a
family, parametrized by CP1. Suppose we are given 2n points on
C ∼= R2 at which we are going to make Hecke modifications of this
type of a trivial rank 2 complex vector bundle E → C:



The space of all such Hecke modifications would be a copy of
(CP1)2n, with one copy of CP1 at each point. However, there is a
natural subvariety M⊂ (CP1)2n defined as follows. One adds a
point ∞ at infinity to compactify C to CP1, so we are now making
Hecke modifications of a trivial bundle E = O ⊕O → CP1. A
point in (CP1)2n determines a way to perform Hecke modifications
at the points p1, p2, . . . , p2n to make a new bundle E ′ → CP1. M
is defined by requiring that E ′ ⊗O(−n∞) is trivial. (If we were
working in PGL(2,C) rather than GL(2,C), we would just say that
E ′ should be trivial.)



Symplectic Khovanov homology is constructed by considering
intersections of Lagrangian submanifolds of the space I just
described – the space M of multiple Hecke modifications from a
trivial bundle to itself.

We want to reinterpret this in terms of gauge theory PDE’s.



In my work with Kapustin on gauge theory and geometric
Langlands, an important fact was that M can be realized as a
moduli space of solutions of a certain system of PDE’s. However,
although M is defined in terms of bundles on a 2-manifold
R2 ∼= C, the PDE’s are in 3 dimensions – on R3. As a result of
this, everything in the rest of the lecture will be in a dimension 1
more than one might expect. To describe the Jones polynomial –
an invariant of knots in 3-space – we will count solutions of certain
PDE’s in 4 dimensions, and the categorified version – Khovanov
homology – will involve PDE’s in 5 dimensions.



The 3-dimensional PDE’s that we need are known as the
Bogomolny equations. They are equations for a pair A,φ, where A
is a connection on a G -bundle E →W3, with W3 an oriented
3-dimensional Riemannian manifold, and φ is a section of
ad(E )→W3 (i.e. an adjoint-valued 0-form). If F = dA + A ∧ A is
the curvature of A, then the Bogomolny equations are

F = ?dAφ.

(? is the Hodge star and dA is the gauge-covariant extension of the
exterior derivative.)



The Bogomolny equations have many remarkable properties and
we will focus on just one aspect. We consider the Bogomolny
equations on W3 = R× C with C a Riemann surface. Any
connection A on a G -bundle E → C determines a holomorphic
structure on E (or more exactly on its complexification): one
simply writes dA = ∂̄A + ∂A and uses ∂̄A to define the complex
structure. (In complex dimension 1, there is no integrability
condition that must be obeyed by a ∂̄ operator.) So for any y ∈ R,
by restricting E → R× C to E → {y} × C , we get a holomorphic
bundle Ey → C . However, if the Bogomolny equations are
satisfied, Ey is canonically independent of y . Indeed, a
consequence of the Bogomolny equations is that ∂̄A is independent
of r up to conjugation. If we parametrize R by y then[

D

Dy
− iφ, ∂̄A

]
= 0.



The Bogomolny equations admit solutions with a singularity at
isolated points in R3 (or in a more general 3-manifold W3). Let me
first describe the picture for U(1). One fixes an integer n and one
observes that the Bogomolny equation has an exact solution for
any x0 ∈ R3:

φ =
n

2|~x − ~x0|
, F = ?dφ.

I have only defined F and not the connection A whose curvature is
F or the line bundle L on which A is connection, but such an L
and A exist (and are essentially unique) if n ∈ Z.



For G = U(1), since the Bogomolny equations are linear, they have
a unique solution with singularities labeled by specified integers
n1, n2, . . . at specified points in R3:

We assume that
∑

i ni = 0, which ensures that the given solution
vanishs at infinity faster than 1/|~x |.



We pick a decomposition R3 = R× R2 where we identify R2 as C.
Suppose that the singularities are at yi × pi , with yi ∈ R, pi ∈ C:

For each y /∈ {y1, . . . , yn}, the indicated
solution of the Bogomolny equations determines a holomorphic line
bundle Ly → C, and this naturally extends to Ly → CP1. Ly is
constant up to isomorphism for y not equal to one of the yi , but
even when y crosses one of the yi , Ly is constant when restricted
to CP1\pi . In crossing y = yi , Ly undergoes a Hecke modification

Ly → Ly ⊗O(pi )
ni .

Ly is trivial for y → −∞ and for y → +∞. The solution describes
a sequence of Hecke modifications mapping the trivial bundle to
itself.



We can do something similar for any simple Lie group G . (This
construction, introduced by ’t Hooft in the late 1970’s, is
important in physical applications of quantum field theory.) Let T
be the maximal torus of G and let t be its Lie algebra. Pick a
homomorphism ρ : u(1)→ t. Up to a Weyl transformation, such a
ρ is equivalent to a dominant weight of the dual group G∨, so it
corresponds to a representation R∨ of G∨. We turn the singular
solution of the U(1) Bogomolny equations that we already used
(with n = 1) into a singular solution for G simply by

(A,φ)→ (ρ(A), ρ(φ)).

Then we look for solutions of the Bogomolny equations for G with
singularities of this type at specified points yi × pi ∈ R3.



The picture is the same as before

except that now the points yi × pi are labeled by homomorphisms
ρi : u(1)→ t, or in other words by representations R∨i of the dual
group G∨, rather than by integers ni . Also, now we must specify
that the solution should go to 0 at infinity faster than 1/r . (In the
abelian case, this was a condition on the representations,∑

i ni = 0.) Given this, such a solution describes a sequence of
Hecke modifications at pi of type ρi , mapping a trivial G -bundle
E → CP1 to itself.



The moduli space M of solutions of the Bogomolny equations on
R3 with the indicated singularities and vanishing at infinity faster
than 1/r is actually a hyper-Kahler manifold, essentially first
studied by P. Kronheimer in the 1980’s. If we pick a decomposition
R3 = R× R2, this picks one of the complex structures on the
hyper-Kahler manifold and in that complex structure, M is the
moduli space Mp1,ρ1;p2,ρ2;... of all Hecke modifications of the
indicated types at the indicated points, mapping a trivial bundle
over CP1 to itself.



This construction can be used to account for a number of
properties of spaces of Hecke modifications, but for today we want
to focus on the fact that for application to knot theory, we want
M to be the space of u-independent solutions of some equations:

We already
described M via solutions of some PDE’s on R3, so now we have
to think of M as a space of u-independent solutions on
R4 = R3 × R, where the second factor is parametrized by u.



There actually are natural PDE’s in four dimensions that work,
sometimes called the KW equations (they appeared in my work on
geometric Langlands with A. Kapustin and have been sometimes
called the KW equations). They are equations for a pair A, φ
where A is a connection on E → Y4, Y4 a four-manifold, and φ is
a 1-form on Y4 valued in ad(E ):

F − φ ∧ φ = ?dAφ, dA ? φ = 0.

In a special case Y4 = W3 × R, with A a pullback from W3 and
φ = φdu (where φ is a section of ad(E ) and u parametrizes the
second factor in Y4) these equations reduce to the Bogomolny
equations:

F = ?dAφ.



Therefore, the singular solution of the Bogomolny equations that
we have already studied can be embedded as a singular solution of
the KW equation, but now the singularity is along a line rather
than a point. If Y4 is a 4-manifold and S ⊂ Y4 is an embedded
1-manifold, labeled by a homomorphism ρ : u(1)→ t (or by a
representation of G∨), then one can look for solutions of the KW
equations with a singularity of the indicated type along S :



If we specialize to the case that Y4 = W3 × R, with S = ∪iSi , and
Si = qi × R ⊂W3 × R (qi are points in R3)

then the
u-independent solutions of the KW equations are parametrized by
M; and indeed one can show that these are all solutions of the
KW equations in this situation with reasonable behavior at infinity.



So we have an elliptic PDE in four dimensions and we can specify
in an interesting way what sort of singularity it should have on an
embedded circle S ⊂ Y4. But this sounds like a ridiculous
framework for knot theory, because there is no knottedness of a
1-manifold in a 4-manifold!



A couple of things are missing from what I have said so far. There
are a few directions that we could go next but I think I will head for
categorification, which will also resolve the point I just mentioned.



Let us practice with an ordinary equation rather than a partial
differential equation. Suppose that we are on a finite-dimensional
compact oriented manifold N with a real vector bundle V → N
with rank(V )=dimension(N). Suppose also we are given a section
s of V . We can define an integer by counting, with multiciplities
(and in particular with signs) the zeroes of s. This integer is the
Euler class

∫
M χ(V ).



In general as far as I know, there is no way to categorify the Euler
class of a vector bundle. However, suppose that V = T ∗N and
that s = dh where h is a Morse function. Then the zeroes of s,
which are critical points of h, have a natural “categorification”
described in Morse homology. One defines a complex V with a
basis vector ψp for each critical point p of h. The complex is
Z-graded by assigning to ψp the “index” of the critical point p,
and it has a natural differential that is defined by counting gradient
flow lines between different critical points.



Concretely the differential is defined by

dψp =
∑
q

npqψq

where the sum runs over all critical points q whose Morse index
exceeds by 1 that of p, and the integer npq is defined by counting
flows from p to q:

A “flow” is a solution fo the gradient flow
equation

d~x

dt
= −~∇h.

(To define this equation, one has to pick a Riemannian metric on
the manifold N. The complex that one gets is independent of the
metric up to quasi-isomorphism. What one actually counts are
1-parameter families of flow, related by time translations.)



This tells us what we need in order to be able to categorify a
problem of counting solutions of the KW equations: we have to be
able to write those equations as equations for a critical point of a
functional Γ(A, φ):

δΓ

δA
=
δΓ

δφ
= 0.

And the associated gradient flow equation, which will be a PDE in
5 dimensions on X5 = R× Y4

dA

dt
= − δΓ

δA
,

dφ

dt
= − δΓ

δφ

has to be elliptic, so that it will makes sense to try to count its
solutions.



Generically, it is not true that the KW equations on a manifold Y4

are equations for a critical point of some functional. However, this
is true if Y4 = W3 × R for some W3. If singularities are present on
an embedded 1-manifold S ⊂ Y4 then there is a further condition:
The KW equations in this situation are equations for critical points
of a functional if and only if S is contained in a 3-manifold
W3 × q, with q a point in R. So to make categorification possible,
we have to be in the situation that leads to knot theory: S is an
embedded 1-manifold in a 3-manifold W3.



When we do take Y4 = W3 × R so that the KW equations become
equations for a critical point of some functional, we can consider
the corresponding flow equations in five dimensions. Those
equations “miraculously” turn out to be elliptic PDE’s (sometimes
called the HW equations, as they were discovered independently by
A. Haydys) so it makes sense to count their solutions and to
develop a version of Morse/Floer theory.



Naively, this leads to “categorified” knot invariants for any
three-manifold W3, but to justify this claim one needs some
compactness properties for solutions of the equations under
consideration. It is not really clear what conditions on W3 will
make the analysis work, and it is conceivable that a proper proof of
the compactness properties requires that the Ricci tensor of W3 is
nonnegative, a very restrictive condition. The case that I really do
expect to work is W3 = R3.



What I have described so far is supposed to correspond (for
W3 = R3, G = PGL(2) and ρ corresponding to the 2-dimensional
representation of G∨ = SL(2)) to “singly-graded Khovanov
homology.” The only grading I’ve mentioned is the grading that is
associated to the Morse index, or in other words to
categorification. In the mathematical theory, one says that
singly-graded Khovanov homology becomes trivial (it does not
distinguish knots) if one “decategorifies” it and forgets the
grading. In the approach I have described, this is true because in
the uncategorified version, the embedded 1-manifold S is just a
1-manifold in a 4-manifold Y4 (it has no reason to be embedded in
the 3-manifold W3 × q) so there is no knottedness.



The physical picture makes clear where the additional “q”-grading
of Khovanov homology would come from. It is supposed to come
from the second Chern-class, integrated over the 4-manifold Y4.
But for topological reasons, this q-grading cannot be defined in the
construction as I have presented it so far. The second Chern class
cannot be defined in the presence of the singularities that we’ve
assumed:



The physical picture tells us what we have to do to get the
q-grading: Y4 should be a manifold with boundary, with the knot
placed in its boundary

and with a certain
very subtle boundary condition. This boundary condition is defined
by specifying a singular behavior that the fields are supposed to
have along the boundary, with a more subtle singularity defined
along the knot.



A boundary condition defined by requiring a specified type of
singularity is not as familiar as, say, Dirichlet or Neumann
boundary conditions, but one can show in this case that this
boundary condition does have all of the formal properties of a
standard elliptic boundary condition such as Dirichlet or Neumann:

R. Mazzeo and E. Witten, arXiv:1311.3167 and 1712.00835

C. Taubes, arXiv:2008.09538.

For example, on a compact manifold, the linearized KW or HW
equations have a discrete spectrum, as for any elliptic boundary
condition.



The Morse/Floer theory of the HW equations, with the delicate
boundary condition, is supposed to reproduce doubly-graded
Khovanov homology, with one grading being the cohomological
grading, and the second grading being the q-grading, associated to
the instanton number. Part of Michael Atiyah’s vision about the
Jones polynomial back in the 1980’s was that the variable “q” of
the Jones polynomial would be related to instanton number in four
dimensions, and what I am telling you is a version of that.



There is also a variant of this for “odd” Khovanov homology. For
this, one takes G∨ = Spin(2n + 1) so that G = Sp(2n)/Z2. Then
as π4(G ) = Z2, a G -bundle over a five-manifold has a Z2-valued
characteristic class, which I will call ζ. In the Morse-Floer theory,
one can modify the definition of the differential by weighting each
gradient flow trajectory with an extra factor of (−1)ζ . Hopefully
this will recover odd Khovanov homology if we specialize to
G∨ = SU(2) and the two-dimensional representation.



To rigorously define these invariants, the main thing that is needed
is information about compactness properties of the KW and HW
equations. Compactness properties of these and related equations
has been the topic of a series of papers by C. Taubes in recent
years, and I am hopeful that this will lead relatively soon to to a
proof of well-definedness of these invariants.



In work I cited earlier, Gaiotto and I analyzed this situation (in the
uncategorified situation, meaning that we counted solutions in 4
dimensions, not 5) with the aim of showing directly, without
referring to the physical picture, that the Jones polynomial is

J(q) =
∑
n

anq
n

where an is the number of solutions with second Chern class n. As
usual, the starting point was to stretch the knot in one direction,
reducing to equations in one dimension less:



There was a plausible scenario to recover the Jones polynomial
from the counting of solutions. This has been extended to the
categorified case by Galakhov and Moore arXiv:1607.04222. One
can hope to ultimately make contact with the rigorous approach
described by Mina Aganagic.


