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Summary of the talk

The exchangeable filtration Is an interesting object that arises naturally.

2. F-divergences, KL, TV, integral probability metrics, Wasserstein, etc.
are “‘convex divergences’. Entropy Is a convex functional.

3. Convex divergences are reverse submartingales with respect to the
exchangeable filtration.

4. A reverse Ville's inequality, converts fixed-time concentration into
time-uniform (or stopping-time) concentration.

5. A sequence of random graphs, ignoring labeling (ordering), can play
the role of the empirical distribution in the exchangeable filtration.

6. Are the above techniques useful for the study of random graphs!?



Convex divergences (Rockefeller'70s)

P(X) denotes the set of Borel
probability measures over a set X C R

D : P(X) x P(X) = Ry

D (A1 + (L= Np2 || Avr + (1= Nra) < AD(pa|lv1) + (1 — N)D(pzl|va).

Examp| es: e Integral Probability Metrics (IPMs). Let J denote a set of Borel-measurable, real-
' valued functions on X. The IPM (Miiller, 1997) associated with J is given by
s(PIQ) = sup [ fa(P - Q). (5)
feg
(TV.KS, MMD)

e Optimal Transport Costs. Let II(P, Q) denote the set of joint probability distributions
7 € P(X x X) with marginals P, Q, that is, satisfying 7(Bx X) = P(B) and n(X x B) = Q(B)
for all B € B(X). Given a nonnegative cost function c: X x X — R, the optimal transport
cost between P and () is given by

T(P,Q)= inf / oz, y)dn(z, 7). (7)

mell(P,Q)

e p-Divergences. Let ¢ : R — R be a convex function, and let v € P(X’) be a o-finite measure
which dominates both P and @ (for instance, v = (P+Q)/2). Let p = dP/dv and q = dQ/dv
be the respective densities. Then, the p-divergence (Ali and Silvey, 1966) between P and
is given by

rT—00 I

DAPIQ) = [ ¢ () Q-+ Pla=0) Jim 22, )



Confidence sequences (Robbins'67)

Given two independent sequences (X;)52; and (Y;)$2, of i.i.d. observations arising respectively
from unknown distributions P,Q € P(X), we aim to construct a sequence of confidence intervals
(Cts)g%=1 with the uniform coverage property

P(Vt,s >1: D(P||Q) € Cys) > 134, (2)
for some pre-specified level 6 € (0,1). Such a sequence (Cis)f%—; is called a confidence sequence,

or equivalently, for all stopping times (7,0),

P(D(P||Q) € Crg) 21 —4. (3)

Useful for sequential testing, estimation, bandits, etc.



Exchangeable filtration (De-Finetti? Hewitt-Savage?)
Xl,Xz, e Y P

Definition 1 (Exchangeable Filtration). Given a sequence of random variables (X;)2,, the ez-

changeable filtration is the reverse filtration (&;)52,, where & denotes the o-algebra ge_nemted by

all real-valued Borel-measurable functions of X1, Xa,

... which are permutation-symmetric in their
first t arguments.

£ 28,2..8

Q)

&, is the information known to an amnesic oracle (an oracle with amnesia).
Oracle = knows the entire future X,, X, 1, ...
Anmesia = forgotten order of events in the past (X, ..., X,_{)

Informally, &, =~ 6(P,, X, 1, X, 1, --)



XI’XZ’ ces MY P

Reverse submartingales
£ 2%,2..%

G o)

An integrable process (M,) is a reverse submartingale wrt (&) if
E[M,| €111 2 M,y

Ee M, = (X; + ... + X))/t is a reverse martingale.

Eg: P, = (0x, + ... + Ox )/t is a measure-valued reverse martingale.

Theorem 2 (Ville’s Inequality for Nonnegative Reverse Submartingales (Lee, 1990)). Let (R;)$2,
be a nonnegative reverse submartingale with respect to a reverse filtration (F)2,. Then, for any
integer tg > 1 and real number u > 0,

E
P(3t > to: Ry > u) < [Izt‘)].

Define N, := D(P,||Q) — D(P||Q), M,; := D(P/||Q,) — D(P||Q)

Theorem 4. Let ® : P(X) = R and ¥ : P(X) x P(X) — R be convex functionals, and assume
that ®(P,), Y (P;, Q,) € LY(P) for allt,s > 1. Then,

(i) The process (®(P;))¢>1 is a reverse submartingale with respect to (E;X).

(1) The process (V(P:, Qs))ts>1 @S a partially ordered reverse submartingale with respect to (Ets).

In particular, (N;) is a reverse submartingale with respect to (£X), while (M) is a reverse sub-
martingale with respect to (E;), whenever these processes are in L' (P).




Reduces stopping-time concentration to fixed-time

Corollary 9. Assume the same conditions as Proposition 8, and that the processes (Ry), (Ri), (RY)
therein are uniformly integrable. Then, for any stopping times T and o with respect to the canonical
forward filtrations (o(X1,...,Xt))2, and (o(Y1,...,Ys))S2, respectively, we have

E[D(F[|Q)] = D(P|Q), E[D(P|Qs)] = D(P|Q). (20)

Fi(z) = (1/t) Y, I(X; < x) denote the empirical CDF of F'.

Corollary 13. For any 6 € (0,1),

P (Elt >1:||F;—Fll > \/g—i— 2\/% [logﬁ(logz t) + log(l/é)]) <é.

Eg: A time-uniform
DKW inequality

- . Corollary 18. For all § € (0,1 L
Eg: A time-uniform oroliary or all 6 € (0,1), we have

TV inequality for r 5
alphabets of size k P {3t > 1:||P— Pllpy 2 5\/;+ \/; [108;5(10%2 t) + 10g(1/5)] } < 6.

Corollary 20. Let D be a conver divergence such that D(P;||P) is (02/t)-sub-Gaussian for all
t >1 and some 0 > 0. Assume ED(P;||P) = o(y/(loglogt)/t). Then,

lim sup tD(B|IP) <1, a.s.
t—oo  4/2to?loglogt




The rest is ongoing and “shaky”
(work in progress, would love feedback)



Graphs are like “empirical distributions”

Given a sequence of random graphs (node exchangeable),

if we only kept the structure, but not the ordering in which nodes are introduced,
does the graph Iitself behave like an empirical distribution,
in the sense that it is a “graph-valued” reverse martingale?

Basic Definitions Let G = (V, E) be a simple undirected labelled graph with a countable set of nodes.
For U C V, define the subgraph of G induced by U as Gy = (U, Ey), where

Ey ={{i,j} e E:i,jeU}.
Further, for a permutation ¢ : V — V, define the ¢-permuted version of a graph G as G® = (V, E?)

where
E? = {{¢(i),6(j)} : {i, 5} € E}.

Notice that the definition extends to induced subgraphs, so that G? = (U, Eg) A law on labelled

graphs is said to be exchangable if it is invariant under pushforwards through a permutation, that is,
law

for every permutation ¢, G = G?.



Submodularity? Subadditivity? Leave-one-out?

A function f : G — R is node-subadditive if for any U, W C V,
f(Guuw) < f(Gu) + f(Gv).

Let &; be the sigma algebra generated by node-symmetric functions of G;. This yields the associated
exchangable filtration {€;}. The basic property follows simply

Proposition 1. Let G be an exchangable graph, and G; its node-wise observation process. If f is

a node-subadditive, node-symmetric, and trivial non-negative graph function, then f(Gy) is a reverse
submartingale with respect to {&:}.

Weaker, sufficient condition: f(Ger1) < —— ) f(

Natural graph functions (counting motifs) are superadditive.

s the cut metric between two graphons a convex divergence,
can It be sequentially tracked from two sequences of random graphs?

What's the right formalism? Is any of this interesting/useful?

(Conversations with Aditya Gangrade)
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