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Summary of the talk

1. The exchangeable filtration is an interesting object that arises naturally. 

2. F-divergences, KL, TV, integral probability metrics, Wasserstein, etc. 
are “convex divergences”. Entropy is a convex functional. 

3. Convex divergences are reverse submartingales with respect to the 
exchangeable filtration. 

4. A reverse Ville’s inequality, converts fixed-time concentration into 
time-uniform (or stopping-time) concentration. 

5. A sequence of random graphs, ignoring labeling (ordering), can play 
the role of the empirical distribution in the exchangeable filtration.  

6. Are the above techniques useful for the study of random graphs?



Convex divergences

Examples:

(TV, KS, MMD)

(Rockefeller’70s)



Confidence sequences

or equivalently,

Useful for sequential testing, estimation, bandits, etc.

(Robbins’67)



Exchangeable filtration

\

X1, X2, … ∼ P

ℰ1 ⊇ ℰ2 ⊇ …ℰ∞

 is the information known to an amnesic oracle (an oracle with amnesia).  
Oracle = knows the entire future  

Anmesia = forgotten order of events in the past 

ℰt
Xt, Xt+1, …

σ(X1, …, Xt−1)

Informally, ℰt ≈ σ(Pt, Xt+1, Xt+1, …)

(De-Finetti? Hewitt-Savage?)



Reverse submartingales

\

X1, X2, … ∼ P
ℰ1 ⊇ ℰ2 ⊇ …ℰ∞

An integrable process  is a reverse submartingale wrt  if 
.

(Mt) (ℰt)
'[Mt |ℰt+1] ≥ Mt+1

Eg:  is a reverse martingale.Mt = (X1 + … + Xt)/t
Eg:  is a measure-valued reverse martingale.Pt = (δX1

+ … + δXt
)/t

Define Nt := D(Pt∥Q) − D(P∥Q), Mts := D(Pt∥Qs) − D(P∥Q)



Reduces stopping-time concentration to fixed-time

\

Eg: A time-uniform  
DKW inequality

Eg: A time-uniform 
 TV inequality for  
alphabets of size k



The rest is ongoing and “shaky” 
(work in progress, would love feedback)



Graphs are like “empirical distributions”

\

Given a sequence of random graphs (node exchangeable), 
if we only kept the structure, but not the ordering in which nodes are introduced, 

does the graph itself behave like an empirical distribution, 
in the sense that it is a “graph-valued” reverse martingale?



Submodularity? Subadditivity? Leave-one-out?

Weaker, sufficient condition:

Natural graph functions (counting motifs) are superadditive.

(Conversations with Aditya Gangrade)

What’s the right formalism? Is any of this interesting/useful?

Is the cut metric between two graphons a convex divergence, 
can it be sequentially tracked from two sequences of random graphs?



Reverse martingales and exchangeable filtrations
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