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Questions

@ What is pooled data?
@ What is sparse?
o What is near optimal in this context?

@ How does it work?

Max Hahn-Klimroth & Noela Miiller Random Graphs and Statistical Inference August 12th, 2021 2/17



Pooled data

@ nitems xq, ..., X,, each of a specific weight ; € {0,1,...,d}.

e A ground-truth or signal o € {0,1,...,d}" is drawn uniformly from a
probability distribution.

@ We can pool items together and measure them (additive model).

@ All measurements need to be possible to be conducted in parallel
(non-adaptivity).
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Pooled data

@ Special case of compressed sensing (e.g. Donoho)
@ In this talk: d = 1, Quantitative Group Testing

@ QGT studied since the 1960's (Erdés, Rényi, Soderberg, Shapiro, Djackov,
Kucherov, Gebrinski, ...) and of interest today (Alaoui et al., Feige &
Lellouche, Gebhard et al., Karimi et al., Scarlett & Cevher, ...)
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Sparsity

Definition

o is sparse if
llolly == k < n

o We assume k = n? for some 6 € (0,1).

@ Important in inference problems: e.g. compressed sensing is efficiently

solvable by convex optimisation if the signal is sparse (¢o — {1 equivalence,
Donoho 2013).

If o is sparse and A a Rademacher matrix or a Gaussian matrix, we can
reconstruct o from Ao efficiently by solving

min||z||, s.t. Ao =z,z€eR.

Max Hahn-Klimroth & Noela Miiller

Random Graphs and Statistical Inference August 12th, 2021 5/17



Near optimal

Lemma (Folklore lower bound)

The number of measurements m required for recovery of o is at least

@ The number of possible results is (k + 1)™ and we need to distinguish (})
possible ground-truth values.
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Near optimal

m > ZLk.

1-0

The number of measurements m required for recovery of o is at least
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Near optimal

Lemma (Exponential time upper bound)

There is a simple randomised construction on

measurements that allows exhaustive search to reconstruct o w.h.p..

@ Independent proofs by Feige & Lellouche and Gebhard et al.
o Simple: Any measurement chooses n/2 items uniformly at random.
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How to do it efficiently?

o Compressed Sensing (Basis Pursuit and refinements)
@ lIrregular sparse parity check codes (Karimi et al.)
@ Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.)

@ Thresholding algorithms (Gebhard et al.)
@ SubsetSelect Problem (Feige & Lellouche)
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How to do it nearly optimal and efficiently?

Theorem (HKN2021+)

There is a randomised polynomially time construction coming with a
polynomial-time inference algorithm that allows reconstruction of o by no more

than
1+vV0 ([, 1-6

measurements.

@ Closing the previously conjectured log n gap up to a moderate
multiplicative constant.

@ Basic idea: Equip a clever version of Gebhard et al.'s thresholding
algorithm with a spatially coupled pooling design.
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Spatial Coupling

@ Was invented in coding theory (Kukedar et al. 2013)
@ Asymptotically vanishing seed
@ Most of items are in the so-called bulk
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Decoding the seed

@ The seed contains roughly n’ ~ ﬁ items out of which k’ ~ vk have

weight one.
@ Apply an algorithm of your choice requiring =~ k' log(n’) = o(k)
measurements (we used Basis Pursuit).
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Decoding the bulk

@ Suppose we already decoded compartments 1.../ — 1 correctly.

@ The unexplained neighbourhood sum of an item is the sum over its
measurements subtracted by the weights of already contained items.

@ The unexplained neighbourhood sum (random, binomially distributed) is
increased by deg(x) if the weight of x is one.
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Decoding the bulk

o Information in close compartments is much more valuable (weigh close
compartments more in the sum).

@ The summands of close compartments are significantly smaller. = We
need to normalise each summand!

e Instead of calculating U, = _._; U/ (the unexplained neighbourhood
sum) we calculate

)

r=1 Var (Ui)
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Decoding the bulk

@ This weighted unexplained normalised neighbourhood sum is still increased
by a constant (depending on deg(x)) if the weight of x is one.

o If enough measurements are conducted, the distributions between items of
weight zero and weight one are well separated w.h.p..
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Summary

@ Spatial coupling was previously used to optimise constants (Coja-Oghlan et
al., 2021).

@ We used it to decrease the order of measurements.

@ Simple thresholding is not enough (this only improved the constant) -
normalised quantities allowed us to reduce the order.

@ We could not use the (information-theoretically optimal) design with
measurements of size n/2 as error terms in concentration results became
too high.

@ In the used design, any algorithm would require
1-6
>8——k
m=""

measurements.
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Thank you!

Questions?

. and (hopefully) answers!
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