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Questions

What is pooled data?

What is sparse?

What is near optimal in this context?

How does it work?
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Pooled data

n items x1, . . . , xn, each of a specific weight σi ∈ {0, 1, . . . , d}.
A ground-truth or signal σ ∈ {0, 1, . . . , d}n is drawn uniformly from a
probability distribution.

We can pool items together and measure them (additive model).

All measurements need to be possible to be conducted in parallel
(non-adaptivity).

1 2 0 0 1 0 0

3 2 5 1 1
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Pooled data

1 1 0 0 1 0 0

2 2 3 1 1

Special case of compressed sensing (e.g. Donoho)

In this talk: d = 1, Quantitative Group Testing

QGT studied since the 1960’s (Erdős, Rényi, Soderberg, Shapiro, Djackov,
Kucherov, Gebrinski, ...) and of interest today (Alaoui et al., Feige &
Lellouche, Gebhard et al., Karimi et al., Scarlett & Cevher, . . . )
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Sparsity

Definition
σ is sparse if

||σ||0 := k � n

We assume k = nθ for some θ ∈ (0, 1).

Important in inference problems: e.g. compressed sensing is efficiently
solvable by convex optimisation if the signal is sparse (`0 − `1 equivalence,
Donoho 2013).

Theorem
If σ is sparse and A a Rademacher matrix or a Gaussian matrix, we can
reconstruct σ from Aσ efficiently by solving

min ||z ||1 s.t. Aσ = z , z ∈ R.
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Near optimal

Lemma (Folklore lower bound)

The number of measurements m required for recovery of σ is at least

m ≥ k
log(n/k)

log k
=

θ

1− θ
k .

The number of possible results is (k + 1)m and we need to distinguish
(
n
k

)
possible ground-truth values.
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Near optimal

Lemma (Djackov’s lower bound)

The number of measurements m required for recovery of σ is at least

m ≥ 2
θ

1− θ
k .
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Near optimal

Lemma (Exponential time upper bound)

There is a simple randomised construction on

m ≈ 2
θ

1− θ
k

measurements that allows exhaustive search to reconstruct σ w.h.p..

Independent proofs by Feige & Lellouche and Gebhard et al.

Simple: Any measurement chooses n/2 items uniformly at random.
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How to do it efficiently?

Compressed Sensing (Basis Pursuit and refinements)

: requires
m = Ω (k log(n)) .

Irregular sparse parity check codes (Karimi et al.)

: requires
m = Ω (k log(n)) .

Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.)

: requires
m = Ω (k log(n)) .

Thresholding algorithms (Gebhard et al.)

: requires m = Ω (k log(n)) .

SubsetSelect Problem (Feige & Lellouche)

: requires m = Ω (k log(n)) .
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How to do it nearly optimal and efficiently?

Theorem (HKN2021+)

There is a randomised polynomially time construction coming with a
polynomial-time inference algorithm that allows reconstruction of σ by no more
than

m = (4 + δ)
1 +
√
θ

1−
√
θ

(
2

1− θ
θ

k

)
= O(k)

measurements.

Closing the previously conjectured log n gap up to a moderate
multiplicative constant.

Basic idea: Equip a clever version of Gebhard et al.’s thresholding
algorithm with a spatially coupled pooling design.
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Spatial Coupling

Was invented in coding theory (Kukedar et al. 2013)

Asymptotically vanishing seed

Most of items are in the so-called bulk

V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

· · · · · ·

F[0]
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Decoding the seed

The seed contains roughly n′ ≈ n√
k

items out of which k ′ ≈
√
k have

weight one.

Apply an algorithm of your choice requiring ≈ k ′ log(n′) = o(k)
measurements (we used Basis Pursuit).
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Decoding the bulk

Suppose we already decoded compartments 1 . . . i − 1 correctly.

The unexplained neighbourhood sum of an item is the sum over its
measurements subtracted by the weights of already contained items.

The unexplained neighbourhood sum (random, binomially distributed) is
increased by deg(x) if the weight of x is one.

V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

· · · · · ·

F[0]
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Decoding the bulk

Information in close compartments is much more valuable (weigh close
compartments more in the sum).
The summands of close compartments are significantly smaller. ⇒ We
need to normalise each summand!
Instead of calculating Ux =

∑s
r=1 U j

x (the unexplained neighbourhood
sum) we calculate

Nx =
s∑

r=1

ωr

U j
x − E

[
U j

x

]
√
Var

(
U j

x

) .
V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

· · · · · ·

F[0]
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Decoding the bulk

This weighted unexplained normalised neighbourhood sum is still increased
by a constant (depending on deg(x)) if the weight of x is one.

If enough measurements are conducted, the distributions between items of
weight zero and weight one are well separated w.h.p..

V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

· · · · · ·

F[0]
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Summary

Spatial coupling was previously used to optimise constants (Coja-Oghlan et
al., 2021).

We used it to decrease the order of measurements.

Simple thresholding is not enough (this only improved the constant) -
normalised quantities allowed us to reduce the order.

We could not use the (information-theoretically optimal) design with
measurements of size n/2 as error terms in concentration results became
too high.

In the used design, any algorithm would require

m ≥ 8
1− θ
θ

k

measurements.
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Thank you!

Questions?

... and (hopefully) answers!
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