Global existence for the 2D Kuramoto-Sivashinsky equation

Anna Mazzucato, Yuanyuan Feng¹ Michele Coti Zelati, Michele Dolce²

¹Penn State University

²Imperial College-London

BIRS workshop "New Mechanisms for Regularity, Singularity, and Long Time Dynamics in Fluid Equations", July 26, 2021

<ロト <部ト < 注入 < 注)

Work partially funded by the US National Science Foundation.

Introduction

- 2 Results for KSE
- 3 Enhanced dissipation
- 4 Results for AKSE:mixing
- 5 Results for AKSE: shear

- 2 Results for KSE
 - 3 Enhanced dissipation
- 4 Results for AKSE:mixing
- 5 Results for AKSE: shear

3 Enhanced dissipation

- 4 Results for AKSE:mixing
- 5 Results for AKSE: shear

- 2 Results for KSE
- 3 Enhanced dissipation
 - 4 Results for AKSE:mixing
 - 5 Results for AKSE: shear

- 2 Results for KSE
- 3 Enhanced dissipation
- 4 Results for AKSE:mixing
- 5 Results for AKSE: shear

-

The Kuramoto-Sivashinsky equation

Model for long wavelength instabilities in dissipative systems (e.g., flame front propagation, reaction-diffusion equations).

Study the problem in a 2D periodic box with sides L_1 , L_2 , identified with a 2D torus \mathbb{T}^2 .

Integral form: $\phi: \mathbb{T}^2 \times [0, T) \to \mathbb{R},$

$$\phi_t + \Delta^2 \phi + \Delta \phi + \frac{1}{2} |\nabla \phi|^2 = 0$$
 (KSE)

Derivative form: $\mathbf{u}: \mathbb{T}^2 \times [0, T) \to \mathbb{R}^2, \mathbf{u} = \nabla \phi,$

$$\partial_t \mathbf{u} + \Delta^2 \mathbf{u} + \Delta \mathbf{u} + \frac{1}{2} \nabla |\mathbf{u}|^2 = 0, \quad \text{curl } \mathbf{u} = 0.$$

The Kuramoto-Sivashinsky equation

Model for long wavelength instabilities in dissipative systems (e.g., flame front propagation, reaction-diffusion equations).

Study the problem in a 2D periodic box with sides L_1 , L_2 , identified with a 2D torus \mathbb{T}^2 .

Integral form: $\phi : \mathbb{T}^2 \times [0, T) \to \mathbb{R}$,

$$\phi_t + \Delta^2 \phi + \Delta \phi + \frac{1}{2} |\nabla \phi|^2 = 0$$
 (KSE)

Derivative form: $\mathbf{u}: \mathbb{T}^2 \times [0, T) \to \mathbb{R}^2, \, \mathbf{u} = \nabla \phi,$

$$\partial_t \mathbf{u} + \Delta^2 \mathbf{u} + \Delta \mathbf{u} + \frac{1}{2} \nabla |\mathbf{u}|^2 = 0, \qquad \text{curl } \mathbf{u} = 0.$$

The equation cont.

Dissipative system with Burgers (for **u**) or conservation-law (for ϕ) nonlinearity and instability at large scales.

Even in 1D non-trivial, long-time dynamics (chaotic trajectories)

Challenges in analysis in 2D:

- Unstable modes for linearized operator if any period L_i > 2π.
 Unstable (generalized) modes in R².
- ② No maximum principle (biharmonic op.), no a priori L^{∞} bounds;
- One of the second s

No known a priori norm bound (mean of u preserved).

A. Mazzucato (PSU)

The equation cont.

Dissipative system with Burgers (for **u**) or conservation-law (for ϕ) nonlinearity and instability at large scales.

Even in 1D non-trivial, long-time dynamics (chaotic trajectories)

Challenges in analysis in 2D:

- Unstable modes for linearized operator if any period L_i > 2π.
 Unstable (generalized) modes in R².
- **2** No maximum principle (biharmonic op.), no *a priori* L^{∞} bounds;
- So No energy identity $(\int \mathbf{u} \cdot \nabla |\mathbf{u}|^2 dx \neq 0)$ for \mathbf{u} or ϕ , no *a priori* L^2 bounds.

No known *a priori* norm bound (mean of **u** preserved).

The equation cont.

Dissipative system with Burgers (for **u**) or conservation-law (for ϕ) nonlinearity and instability at large scales.

Even in 1D non-trivial, long-time dynamics (chaotic trajectories)

Challenges in analysis in 2D:

- Unstable modes for linearized operator if any period L_i > 2π.
 Unstable (generalized) modes in R².
- **2** No maximum principle (biharmonic op.), no *a priori* L^{∞} bounds;
- So No energy identity $(\int \mathbf{u} \cdot \nabla |\mathbf{u}|^2 dx \neq 0)$ for \mathbf{u} or ϕ , no *a priori* L^2 bounds.

No known a priori norm bound (mean of u preserved).

A. Mazzucato (PSU)

Previous results

1D KS is well understood, global well-posedness. For **2D KS** many basic open problems.

Known results (stated for ϕ):

- Local-in-time well-posedness for *φ* ∈ *L^p* (Biswas-Swanson), estimates on determining modes and size of attractor, *assuming* global *H*¹ bound (Nikolaenko-Scheuer-Temam);
- Ontinuation criteria based on H¹ norm (Bellout-Benachour-Titi);
- Global-in-time well posedness for thin domains (Sell-Taboada, Molinet, Benachour-Kukavica-Rusin-Ziane, Massatt-Kukavica), small data in H¹ or Wiener algebra B¹, one slightly growing mode in each direction (Ambrose-M.);
- Analyticity and Gevrey regularity (rough data) for t > 0 (Ambrose-M., Biswas-Swanson, Stanislavova-Stefanov) in a strip.

Previous results

1D KS is well understood, global well-posedness. For **2D KS** many basic open problems.

Known results (stated for ϕ):

- Local-in-time well-posedness for *φ* ∈ *L^p* (Biswas-Swanson), estimates on determining modes and size of attractor, *assuming* global *H*¹ bound (Nikolaenko-Scheuer-Temam);
- ② Continuation criteria based on H^1 norm (Bellout-Benachour-Titi);
- Global-in-time well posedness for thin domains (Sell-Taboada, Molinet, Benachour-Kukavica-Rusin-Ziane, Massatt-Kukavica), small data in H¹ or Wiener algebra B¹, one slightly growing mode in each direction (Ambrose-M.);
- Analyticity and Gevrey regularity (rough data) for t > 0 (Ambrose-M., Biswas-Swanson, Stanislavova-Stefanov) in a strip.

Our results

Work with the integrated form of KSE.

 No growing modes (L₁, L₂ < 2π): Global-in-time existence of mild solution for small data in L².

Results can be extended to L^p , 1 .

Growing modes (L₁ or L₂ ≥ 2π): Global-in-time existence for large data data in L², if linear advection by mixing or shear flow added:

$$\partial_t \phi + \mathbf{v} \cdot \nabla \phi + \frac{1}{2} |\nabla \phi|^2 = -\Delta^2 \phi - \Delta \phi,$$
 (AKSE)

v a given, possibly time-dependent, divergence-free vector field.

AKSE model passive flame propagation in premixed-combustion.

Our results

Work with the integrated form of KSE.

No growing modes (L₁, L₂ < 2π): Global-in-time existence of mild solution for small data in L².

Results can be extended to L^{p} , 1 .

Growing modes (L₁ or L₂ ≥ 2π): Global-in-time existence for large data data in L², if linear advection by mixing or shear flow added:

$$\partial_t \phi + \mathbf{v} \cdot \nabla \phi + \frac{1}{2} |\nabla \phi|^2 = -\Delta^2 \phi - \Delta \phi,$$
 (AKSE)

v a given, possibly time-dependent, divergence-free vector field.

AKSE model passive flame propagation in premixed-combustion.

Our results

Work with the integrated form of KSE.

 No growing modes (L₁, L₂ < 2π): Global-in-time existence of mild solution for small data in L².

Results can be extended to L^{p} , 1 .

Growing modes (L₁ or L₂ ≥ 2π): Global-in-time existence for large data data in L², if linear advection by mixing or shear flow added:

$$\partial_t \phi + \mathbf{v} \cdot \nabla \phi + \frac{1}{2} |\nabla \phi|^2 = -\Delta^2 \phi - \Delta \phi,$$
 (AKSE)

v a given, possibly time-dependent, divergence-free vector field.

AKSE model passive flame propagation in premixed-combustion.

Evolution of the mean

Set $\overline{\phi}(t) = \int_{\mathbb{T}^2} \phi(x, t) \, dx$. Let $\psi := \mathbb{P}(\phi) = \phi - \overline{\phi}$.

 \mathbb{P} is an orthogonal projection in L^2 , bounded projection in L^p , H^s , s > 0, and commutes with all Fourier multipliers.

Denote $\mathring{L}^{p}(\mathbb{T}^{2}) = \mathbb{P}(L^{p}(\mathbb{T}^{2})), \quad \mathring{H}^{s}(\mathbb{T}^{2}) = \mathbb{P}(H^{s}(\mathbb{T}^{2})), s > 0.$ Norm in $\mathring{H}^{s}(\mathbb{T}^{2})$ is equivalent to the seminorm in $\dot{H}^{s}(\mathbb{T}^{2}).$

From KSE, AKSE, it follows that:

$$\frac{d}{dt}\bar{\phi} = -\frac{1}{2L_1L_2} \|\nabla\phi\|_{L^2}^2 = -\frac{1}{2L_1L_2} \|\nabla\psi\|_{L^2}^2.$$

 \Rightarrow have control on $\overline{\phi}$ on [0, T] if $\psi \in L^2(0, T; L^2(\mathbb{T}^2))$.

Enough to study the evolution of ψ .

A. Mazzucato (PSU)

イロト 不得 トイヨト イヨト 正言 ろくの

Evolution of the mean

Set $\overline{\phi}(t) = \int_{\mathbb{T}^2} \phi(x, t) \, dx$. Let $\psi := \mathbb{P}(\phi) = \phi - \overline{\phi}$.

 \mathbb{P} is an orthogonal projection in L^2 , bounded projection in L^p , H^s , s > 0, and commutes with all Fourier multipliers.

Denote $\mathring{L}^{p}(\mathbb{T}^{2}) = \mathbb{P}(L^{p}(\mathbb{T}^{2})), \quad \mathring{H}^{s}(\mathbb{T}^{2}) = \mathbb{P}(H^{s}(\mathbb{T}^{2})), s > 0.$ Norm in $\mathring{H}^{s}(\mathbb{T}^{2})$ is equivalent to the seminorm in $\dot{H}^{s}(\mathbb{T}^{2}).$

From KSE, AKSE, it follows that:

$$\frac{d}{dt}\bar{\phi} = -\frac{1}{2L_1L_2} \|\nabla\phi\|_{L^2}^2 = -\frac{1}{2L_1L_2} \|\nabla\psi\|_{L^2}^2.$$

 \Rightarrow have control on $\overline{\phi}$ on [0, T] if $\psi \in L^2(0, T; L^2(\mathbb{T}^2))$.

Enough to study the evolution of ψ .

A. Mazzucato (PSU)

Mild formulation

Set $\psi(t)(\mathbf{x}) = \psi(\mathbf{x}, t)$ and $\psi_0 = \psi(0)$.

Say ψ is a *mild solution* if

 $\psi(t) = \mathcal{T}_{\psi_0}(\psi)(t) := \boldsymbol{e}^{-t\mathcal{L}}\psi_0 + \boldsymbol{B}(\psi,\psi)(t) + \boldsymbol{L}(\psi)(t), \qquad \text{where}$

Linearized operator: L := Δ² + Δ, solution operator e^{-tL}, t > 0.
 Bilinear form:

$$B(\psi_1,\psi_2):=-\frac{1}{2}\int_0^t \mathbb{P}e^{-(t-\tau)\mathcal{L}}\nabla\psi_1(\tau)\cdot\nabla\psi_2(\tau)\,d\tau,$$

Linear advection:

$$L(\psi) := -\int_0^t e^{-(t-\tau)\mathcal{L}} \mathbb{P}(v(\tau) \cdot \nabla \psi(\tau)) \, d\tau.$$

Mild formulation

Set $\psi(t)(\mathbf{x}) = \psi(\mathbf{x}, t)$ and $\psi_0 = \psi(0)$.

Say ψ is a *mild solution* if

 $\psi(t) = \mathcal{T}_{\psi_0}(\psi)(t) := e^{-t\mathcal{L}}\psi_0 + B(\psi,\psi)(t) + L(\psi)(t), \quad \text{where}$

• Linearized operator: $\mathcal{L} := \Delta^2 + \Delta$, solution operator $e^{-t\mathcal{L}}$, t > 0.

Bilinear form:

$$B(\psi_1,\psi_2):=-\frac{1}{2}\int_0^t \mathbb{P}e^{-(t-\tau)\mathcal{L}}\nabla\psi_1(\tau)\cdot\nabla\psi_2(\tau)\,d\tau,$$

Linear advection:

$$L(\psi) := -\int_0^t e^{-(t-\tau)\mathcal{L}} \mathbb{P}(\boldsymbol{v}(\tau) \cdot \nabla \psi(\tau)) \, \boldsymbol{d}\tau.$$

Mild formulation

Set $\psi(t)(\mathbf{x}) = \psi(\mathbf{x}, t)$ and $\psi_0 = \psi(0)$.

Say ψ is a *mild solution* if

 $\psi(t) = \mathcal{T}_{\psi_0}(\psi)(t) := \boldsymbol{e}^{-t\mathcal{L}}\psi_0 + \boldsymbol{B}(\psi,\psi)(t) + \boldsymbol{L}(\psi)(t), \qquad \text{where}$

• Linearized operator: $\mathcal{L} := \Delta^2 + \Delta$, solution operator $e^{-t\mathcal{L}}$, t > 0.

Bilinear form:

$$B(\psi_1,\psi_2):=-\frac{1}{2}\int_0^t \mathbb{P}e^{-(t-\tau)\mathcal{L}}\nabla\psi_1(\tau)\cdot\nabla\psi_2(\tau)\,d\tau,$$

Linear advection:

$$L(\psi) := -\int_0^t e^{-(t-\tau)\mathcal{L}} \mathbb{P}(\mathbf{v}(\tau) \cdot \nabla \psi(\tau)) \, d\tau.$$

Seek a solution as a fixed point of the map $\mathcal{T}_{\psi_0} = \mathcal{T}$.

Properties of $e^{t\mathcal{L}}$

 ${\cal L}$ generates an (unbounded) analytic semigroup $e^{-t{\cal L}}$ on L^p , 1 < p < ∞

No growing modes - exponential stability:

(1) $\forall T_1 > 0, \exists \gamma_1, \beta > 0$ such that

 $\|\boldsymbol{e}^{-t\mathcal{L}}f\|_{\mathring{L}^2} \leq \gamma_1 h_1(t) \|f\|_{\mathring{L}^1}, \qquad \forall t > 0,$

where

$$h_1(t) = egin{cases} t^{-1/4}, & 0 < t \leq T_1, \ t^{-1/2} \, e^{-eta t}, & t > T_1. \end{cases}$$

② $\forall s > 0, \exists \gamma_2, T_2 > 0$ such that $\|e^{-t\mathcal{L}}f\|_{\dot{H}^s} \leq \gamma_2 h_2(t) \|f\|_{\dot{L}^2}, \quad \forall t > 0,$

where

$$h_2(t) = \begin{cases} t^{-s/4}, & 0 < t \le T_2, \\ e^{-\beta t}, & t > T_2. \end{cases}$$

Properties of $e^{t\mathcal{L}}$

 ${\cal L}$ generates an (unbounded) analytic semigroup $e^{-t{\cal L}}$ on L^p , 1 < p < ∞

No growing modes - exponential stability:

• $\forall T_1 > 0, \exists \gamma_1, \beta > 0$ such that

$$\|\boldsymbol{e}^{-t\mathcal{L}}f\|_{\mathring{L}^2} \leq \gamma_1 h_1(t) \|f\|_{\mathring{L}^1}, \qquad \forall t > \mathbf{0},$$

where

$$h_1(t) = \begin{cases} t^{-1/4}, & 0 < t \le T_1, \\ t^{-1/2} e^{-\beta t}, & t > T_1. \end{cases}$$

2) $\forall s > 0, \exists \gamma_2, T_2 > 0$ such that

 $\|\boldsymbol{e}^{-t\mathcal{L}}\boldsymbol{f}\|_{\hat{H}^s} \leq \gamma_2 \, \boldsymbol{h}_2(t) \, \|\boldsymbol{f}\|_{\hat{L}^2}, \qquad \forall t > \mathbf{0},$

where

$$h_2(t) = \begin{cases} t^{-s/4}, & 0 < t \le T_2, \\ e^{-\beta t}, & t > T_2. \end{cases}$$

Properties of $e^{t\mathcal{L}}$

 ${\cal L}$ generates an (unbounded) analytic semigroup $e^{-t{\cal L}}$ on L^p , 1 < p < ∞

No growing modes - exponential stability:

• $\forall T_1 > 0, \exists \gamma_1, \beta > 0$ such that

$$\|\boldsymbol{e}^{-t\mathcal{L}}f\|_{\mathring{L}^2} \leq \gamma_1 h_1(t) \|f\|_{\mathring{L}^1}, \qquad \forall t > \mathbf{0},$$

where

$$h_1(t) = \begin{cases} t^{-1/4}, & 0 < t \le T_1, \\ t^{-1/2} e^{-\beta t}, & t > T_1. \end{cases}$$

 $\forall s > 0, \exists \gamma_2, T_2 > 0 \text{ such that} \\ \|e^{-t\mathcal{L}}f\|_{\hat{H}^s} \le \gamma_2 h_2(t) \|f\|_{\hat{L}^2}, \quad \forall t > 0,$ where

$$h_2(t) = egin{cases} t^{-s/4}, & 0 < t \leq T_2, \ e^{-eta t}, & t > T_2. \end{cases}$$

2 Results for KSE

- 3 Enhanced dissipation
- 4 Results for AKSE:mixing
- 6 Results for AKSE: shear

No advection- no growing modes: small data in L^2

Assume $L_1, L_2 < 2\pi, v = 0$.

Define the adapted space:

 $X_\infty:=\{f:[0,\infty)\times\mathbb{T}^2\ |\ \sup_{t>0}t^{1/4}\|\nabla f\|_{L^2}<\infty\}.$

Let $\widetilde{X}_{\infty} = C([0,\infty); \overset{\circ}{L}^2) \cap X_{\infty}$ with induced norm:

$$\|f\|_{\widetilde{X}_{\infty}}$$
. := Max($\sup_{t\geq 0} \|f\|_{L^2}, \sup_{t>0} t^{1/4} \|\nabla f\|_{L^2}$).

From the semigroup estimates:

 $B:\widetilde{X}_{\infty}\times\widetilde{X}_{\infty}\to\widetilde{X}_{\infty},$

and there exists $\eta > 0$ such that:

 $\left\|B(\psi_1,\psi_2)\right\|_{\widetilde{X}_{\infty}} \leq \eta \left\|\psi_1\right\|_{\widetilde{X}_{\infty}} \left\|\psi_2\right\|_{\widetilde{X}_{\infty}},$

A DIN A DIN A DIN A DIN DIN

No advection- no growing modes: small data in L^2

Assume $L_1, L_2 < 2\pi, v = 0$.

Define the adapted space:

 $X_\infty:=\{f:[0,\infty)\times\mathbb{T}^2\ |\ \sup_{t>0}t^{1/4}\|\nabla f\|_{L^2}<\infty\}.$

Let $\widetilde{X}_{\infty} = C([0,\infty); \overset{\circ}{L}^2) \cap X_{\infty}$ with induced norm:

$$\|f\|_{\widetilde{X}_{\infty}} := \operatorname{Max}(\sup_{t\geq 0} \|f\|_{L^2}, \sup_{t>0} t^{1/4} \|\nabla f\|_{L^2}).$$

From the semigroup estimates:

$$B:\widetilde{X}_{\infty}\times\widetilde{X}_{\infty}\to\widetilde{X}_{\infty},$$

and there exists $\eta > 0$ such that:

 $\|\boldsymbol{B}(\psi_1,\psi_2)\|_{\widetilde{\boldsymbol{X}}_{\infty}} \leq \eta \, \|\psi_1\|_{\widetilde{\boldsymbol{X}}_{\infty}} \, \|\psi_2\|_{\widetilde{\boldsymbol{X}}_{\infty}},$

No growing mode, no advection: global existence cont.

Theorem

Let $\psi_0 \in \mathring{L}^2(\mathbb{T}^2)$. $\exists \delta > 0$ such that, if $\|\psi_0\|_{\mathring{L}^2} < \delta$, \exists a mild solution ψ of the projected KSE in \widetilde{X}_{∞} such that $\psi(0) = \psi_0$.

- Proof is by Banach Contraction Theorem in a suitable ball $B(0, M) \subset \widetilde{X}_{\infty}$.
- 2 Solution is unique in \widetilde{X}_{∞} .
- If \mathbb{S} Smallness of data is used to control linear trend $e^{t\mathcal{L}}\psi_0$.

If one sightly growing mode present in each direction, can essentially separate evolution of growing modes from remainder.

Growing modes controlled via a Lyapunov function argument.

◆□ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

No growing mode, no advection: global existence cont.

Theorem

Let $\psi_0 \in \mathring{L}^2(\mathbb{T}^2)$. $\exists \delta > 0$ such that, if $\|\psi_0\|_{\mathring{L}^2} < \delta$, \exists a mild solution ψ of the projected KSE in \widetilde{X}_{∞} such that $\psi(0) = \psi_0$.

- Proof is by Banach Contraction Theorem in a suitable ball $B(0, M) \subset \widetilde{X}_{\infty}$.
- 2 Solution is unique in \widetilde{X}_{∞} .
- Smallness of data is used to control linear trend $e^{t\mathcal{L}}\psi_0$.

If one sightly growing mode present in each direction, can essentially separate evolution of growing modes from remainder.

Growing modes controlled via a Lyapunov function argument.

2 Results for KSE

3 Enhanced dissipation

- 4 Results for AKSE:mixing
- 6 Results for AKSE: shear

Dissipation time

Consider the hyperdiffusion-advection equation:

```
\partial_t f + \mathbf{v} \cdot \nabla f + \Delta^2 f = \mathbf{0}.
```

Denote the associated *evolution system* by $S_{s,t}$, $0 \le s \le t$.

The number $au^* \ge 0$, where $au^* = \inf \left\{ \mathbf{t} \ge \mathbf{0} \mid \|\mathcal{S}_{\mathbf{s},\mathbf{s}+\mathbf{t}}\|_{\mathbf{L}^2 \to \mathbf{L}^2} \le \frac{\mathbf{1}}{\mathbf{2}}, \text{ for all } \mathbf{s} \ge \mathbf{0} \right\},$

is called the **dissipation time** associated to the system $S_{s,t}$, $s \le t$.

One has $0 < \tau^* < \infty$. τ^* depends on **v** and $\tau^*(\mathbf{v}) \leq \tau^*(\mathbf{0})$.

イロト 不得 トイヨト イヨト 正言 ろくの

Dissipation time

Consider the hyperdiffusion-advection equation:

```
\partial_t f + \mathbf{v} \cdot \nabla f + \Delta^2 f = \mathbf{0}.
```

Denote the associated *evolution system* by $S_{s,t}$, $0 \le s \le t$.

The number $\tau^* \ge 0$, where $\tau^* = \inf \{ \mathbf{t} \ge \mathbf{0} \mid \|\mathcal{S}_{\mathbf{s},\mathbf{s}+\mathbf{t}}\|_{\mathbf{L}^2 \to \mathbf{L}^2} \le \frac{\mathbf{1}}{\mathbf{2}}, \text{ for all } \mathbf{s} \ge \mathbf{0} \},$

is called the **dissipation time** associated to the system $S_{s,t}$, $s \le t$.

One has $0 < \tau^* < \infty$. τ^* depends on **v** and $\tau^*(\mathbf{v}) \leq \tau^*(\mathbf{0})$.

Dissipation time

Consider the hyperdiffusion-advection equation:

```
\partial_t f + \mathbf{v} \cdot \nabla f + \Delta^2 f = \mathbf{0}.
```

Denote the associated *evolution system* by $S_{s,t}$, $0 \le s \le t$.

The number $\tau^* \ge 0$, where $\tau^* = \inf \{ \mathbf{t} \ge \mathbf{0} \mid \|\mathcal{S}_{\mathbf{s},\mathbf{s}+\mathbf{t}}\|_{\mathbf{L}^2 \to \mathbf{L}^2} \le \frac{1}{2}, \text{ for all } \mathbf{s} \ge 0 \},$

is called the **dissipation time** associated to the system $S_{s,t}$, $s \leq t$.

One has $0 < \tau^* < \infty$. τ^* depends on **v** and $\tau^*(\mathbf{v}) \leq \tau^*(\mathbf{0})$.

Enhanced dissipation

Enhanced dissipation

Call $\tau^*(\mathbf{v})$ the dissipation time of (flow of) \mathbf{v} . Assume $\mathbf{v} \in L^{\infty}([0,\infty); W^{1,\infty}(\mathbb{T}^2))$.

Study whether \exists flows with velocity **v** for which $\tau^*(\mathbf{v}) < \tau^*(\mathbf{0})$. Seek examples where τ^* can be made *arbitrarily* small.

Flow of $A\mathbf{v}$, A > 0 amplitude, is said to be **relaxation enhancing** if $\tau^*(A\mathbf{v}) \to \mathbf{0}$ as $A \to \infty$.

Examples:

- Spectral characterization for steady flows (Constantin-Kiselev-Ryzhik-Zlatos for Δ);
- **Weakly mixing** C^2 flows (informally, $f \circ \Phi^{-1} \rightarrow 0$, Φ flow of **v**).

Enhanced dissipation

Enhanced dissipation

Call $\tau^*(\mathbf{v})$ the dissipation time of (flow of) \mathbf{v} . Assume $\mathbf{v} \in L^{\infty}([0,\infty); W^{1,\infty}(\mathbb{T}^2))$.

Study whether \exists flows with velocity **v** for which $\tau^*(\mathbf{v}) < \tau^*(\mathbf{0})$. Seek examples where τ^* can be made *arbitrarily* small.

Flow of $A\mathbf{v}$, A > 0 amplitude, is said to be **relaxation enhancing** if $\tau^*(A\mathbf{v}) \to 0$ as $A \to \infty$.

Examples:

 Spectral characterization for steady flows (Constantin-Kiselev-Ryzhik-Zlatos for Δ);

Weakly mixing C^2 flows (informally, $f \circ \Phi^{-1} \rightarrow 0$, Φ flow of **v**).

< □ > < @ > < E > < E > E = のへの

Enhanced dissipation

Enhanced dissipation

Call $\tau^*(\mathbf{v})$ the dissipation time of (flow of) \mathbf{v} . Assume $\mathbf{v} \in L^{\infty}([0,\infty); W^{1,\infty}(\mathbb{T}^2))$.

Study whether \exists flows with velocity **v** for which $\tau^*(\mathbf{v}) < \tau^*(\mathbf{0})$. Seek examples where τ^* can be made *arbitrarily* small.

Flow of $A\mathbf{v}$, A > 0 amplitude, is said to be **relaxation enhancing** if $\tau^*(A\mathbf{v}) \to 0$ as $A \to \infty$.

Examples:

- Spectral characterization for steady flows (Constantin-Kiselev-Ryzhik-Zlatos for Δ);
- **Weakly mixing** C^2 flows (informally, $f \circ \Phi^{-1} \rightarrow 0$, Φ flow of **v**).
More on enhanced dissipation

Say that flow of **v** mixes with rate *h* if, for all $f \in \mathring{H}^1(\mathbb{T}^2)$,

 $\|f \circ \Phi^{-1}(\cdot, t)\|_{\dot{H}^{-1}} \le h(t) \|f\|_{\dot{H}^{1}}.$

Mixing enhances dissipation by transfering energy to small scales.

Examples:

- deterministic examples of exponentially mixing flows with W^{1,p}-regolarity, 1 ≤ p ≤ ∞ (Alberti-Crippa-M., Elgindi-Zlatŏs, Yao-Zlatŏs);
- random generic examples of exponentially mixing flows, smooth in space (Bedrossian-Blumenthal-Punshon Smith).

Flows can enhance dissipation without being mixing (for special data):

Certain cellular flows (lyer-Xu-Zlatŏs);

Certain shear flows, by hypocoercivity (Albritton-Beekie-Novack, Bedrossian-Coti Zelati, Elgindi, Vicol, mostly for A).

A. Mazzucato (PSU)

More on enhanced dissipation

Say that flow of **v** mixes with rate *h* if, for all $f \in \mathring{H}^1(\mathbb{T}^2)$,

 $\|f \circ \Phi^{-1}(\cdot, t)\|_{\dot{H}^{-1}} \le h(t) \|f\|_{\dot{H}^{1}}.$

Mixing enhances dissipation by transfering energy to small scales.

Examples:

- deterministic examples of exponentially mixing flows with *W*^{1,p}-regolarity, 1 ≤ p ≤ ∞ (Alberti-Crippa-M., Elgindi-Zlatŏs, Yao-Zlatŏs);
- random generic examples of exponentially mixing flows, smooth in space (Bedrossian-Blumenthal-Punshon Smith).

Flows can enhance dissipation without being mixing (for special data):

- Certain cellular flows (lyer-Xu-Zlatŏs);
- Certain shear flows, by hypocoercivity (Albritton-Beekie-Novack, Bedrossian-Coti Zelati, Elgindi, Vicol, mostly for A).

More on enhanced dissipation

Say that flow of **v** mixes with rate *h* if, for all $f \in \mathring{H}^1(\mathbb{T}^2)$,

 $\|f \circ \Phi^{-1}(\cdot, t)\|_{\dot{H}^{-1}} \le h(t) \|f\|_{\dot{H}^{1}}.$

Mixing enhances dissipation by transfering energy to small scales.

Examples:

- deterministic examples of exponentially mixing flows with *W*^{1,p}-regolarity, 1 ≤ p ≤ ∞ (Alberti-Crippa-M., Elgindi-Zlatŏs, Yao-Zlatŏs);
- random generic examples of exponentially mixing flows, smooth in space (Bedrossian-Blumenthal-Punshon Smith).

Flows can enhance dissipation without being mixing (for special data):

- Certain cellular flows (lyer-Xu-Zlatŏs);
- Certain shear flows, by hypocoercivity (Albritton-Beekie-Novack, Bedrossian-Coti Zelati, Elgindi, Vicol, mostly for Δ).

Effects of enhanced dissipation

Enhanced dissipation can also be measured in terms of decay rates in the **diffusion coefficient** ν .

• It may prevent finite-time blow-up due to concentration, e.g. in aggregation-diffusion (Keller-Segel) models (He-Kiselev, Hopf-Rodrigo, Kiselev-Xu).

• It may stabilize the flow, c.f. inviscid damping for Euler (Bedrossian-Masmoudi, Bedrossian-Coti Zelati).

• It may prevent phase separation, e.g. in Cahn-Hilliard (Feng-Iyer).

For AKSE, we show that small diffusion time leads to global existence with growing modes and large data.

Effects of enhanced dissipation

Enhanced dissipation can also be measured in terms of decay rates in the **diffusion coefficient** ν .

• It may prevent finite-time blow-up due to concentration, e.g. in aggregation-diffusion (Keller-Segel) models (He-Kiselev, Hopf-Rodrigo, Kiselev-Xu).

• It may stabilize the flow, c.f. inviscid damping for Euler (Bedrossian-Masmoudi, Bedrossian-Coti Zelati).

• It may prevent phase separation, e.g. in Cahn-Hilliard (Feng-Iyer).

For AKSE, we show that small diffusion time leads to global existence with growing modes and large data.

Effects of enhanced dissipation

Enhanced dissipation can also be measured in terms of decay rates in the **diffusion coefficient** ν .

• It may prevent finite-time blow-up due to concentration, e.g. in aggregation-diffusion (Keller-Segel) models (He-Kiselev, Hopf-Rodrigo, Kiselev-Xu).

• It may stabilize the flow, c.f. inviscid damping for Euler (Bedrossian-Masmoudi, Bedrossian-Coti Zelati).

• It may prevent phase separation, e.g. in Cahn-Hilliard (Feng-Iyer).

For AKSE, we show that small diffusion time leads to global existence with growing modes and large data.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Introduction

2 Results for KSE

- 3 Enhanced dissipation
- 4 Results for AKSE:mixing
- 5 Results for AKSE: shear

Results for AKSE:mixing

Gobal existence with mixing

Theorem

Let $\phi(0) = \phi_0 \in L^2(\mathbb{T}^2)$. Then, there exists a mild solution ϕ of AKSE on $[0, \infty)$, which satisfies:

 $\|\phi(t)\|_{L^2} \leq C_1, \qquad t \geq 0,$

where C_1 depends only on ϕ_0 , provided the dissipation time of **v** is small enough.

The bound on τ^* can be made explicit in terms of the size of the initial data.

By contrast, the L^2 -norm of the solution to the linearized KSE without advection can grow exponentially.

Results for AKSE:mixing

Gobal existence with mixing

Theorem

Let $\phi(0) = \phi_0 \in L^2(\mathbb{T}^2)$. Then, there exists a mild solution ϕ of AKSE on $[0, \infty)$, which satisfies:

 $\|\phi(t)\|_{L^2} \leq C_1, \qquad t \geq 0,$

where C_1 depends only on ϕ_0 , provided the dissipation time of **v** is small enough.

The bound on τ^* can be made explicit in terms of the size of the initial data.

By contrast, the L^2 -norm of the solution to the linearized KSE without advection can grow exponentially.

Strategy of the proof

- Prove short-time existence of mild solutions ψ of the projected AKSE with data in L² (same as for KSE).
- Establish a continuation principle based on the *L*² norm (same for KSE).
- Prove that ψ is also a *weak* solution in L²(0, T; H²(T²)), ∀T > 0, satisfying an energy inequality (same for KSE).
- Show that, if the dissipation time of v is small enough, there is a priori exponential decay of ||ψ(t)||_{L²} by energy estimates.
- Conclude using the ODE for the mean of ϕ .

Strategy of the proof

- Prove short-time existence of mild solutions ψ of the projected AKSE with data in L² (same as for KSE).
- Establish a continuation principle based on the *L*² norm (same for KSE).
- Prove that ψ is also a *weak* solution in L²(0, T; H²(T²)), ∀T > 0, satisfying an energy inequality (same for KSE).
- Show that, if the dissipation time of v is small enough, there is a priori exponential decay of ||ψ(t)||_{L²} by energy estimates.
- Conclude using the ODE for the mean of ϕ .

Strategy of the proof

- Prove short-time existence of mild solutions ψ of the projected AKSE with data in L² (same as for KSE).
- Establish a continuation principle based on the *L*² norm (same for KSE).
- Prove that ψ is also a *weak* solution in L²(0, T; H²(T²)), ∀T > 0, satisfying an energy inequality (same for KSE).
- Show that, if the dissipation time of v is small enough, there is a priori exponential decay of ||ψ(t)||_{L²} by energy estimates.
- Conclude using the ODE for the mean of ϕ .

向 ト イヨ ト イヨ ト ヨ ヨ う くら

Key Lemma: exponential decay of $\|\psi(t)\|_{L^2}$

• Let $B := \|\psi_0\|_{L^2}$. Fix $\mu > 0$.

Define, with C the constant in the energy inequality:

$$T_0(B) = \int_{B^2}^{4B^2} \frac{1}{Cy + Cy^3} \, dy,$$

$$T_1(B) = \frac{1}{4C(2\mu + 4C + 64CB^4)B + 4C(2\mu + 4C + 64CB^4)^{1/2}}.$$

• On $t_0 \le t \le t_0 + T_0(B)$, $0 \le t_0 \le T$, $\|\psi(t)\|_{L^2}$ can at most double.

• If dissipation alone is large enough for $0 < \tau < T_0(B)$,

 $\frac{1}{\tau}\int_{t_0}^{t_0+\tau} \|\Delta\psi(t)\|_{L^2}^2 \, dt \geq 2\mu \|\psi(t_0)\|_{L^2}^2 + 4C \|\psi(t_0)\|_{L^2}^2 + 64C \|\psi(t_0)\|_{L^2}^6,$

then $\|\psi(t_0+\tau)\|_{L^2} \le e^{-\mu\tau} \|\psi(t_0)\|_{L^2}$.

Key Lemma: exponential decay of $\|\psi(t)\|_{L^2}$

• Let $B := \|\psi_0\|_{L^2}$. Fix $\mu > 0$.

Define, with C the constant in the energy inequality:

$$\begin{split} T_0(B) &= \int_{B^2}^{4B^2} \frac{1}{Cy+Cy^3} \, dy, \\ T_1(B) &= \frac{1}{4C(2\mu+4C+64CB^4)B+4C(2\mu+4C+64CB^4)^{1/2}}. \end{split}$$

- On $t_0 \le t \le t_0 + T_0(B)$, $0 \le t_0 \le T$, $\|\psi(t)\|_{L^2}$ can at most double.
- If dissipation alone is large enough for $0 < \tau < T_0(B)$,

 $\frac{1}{\tau}\int_{t_0}^{t_0+\tau} \|\Delta\psi(t)\|_{L^2}^2 dt \geq 2\mu \|\psi(t_0)\|_{L^2}^2 + 4C \|\psi(t_0)\|_{L^2}^2 + 64C \|\psi(t_0)\|_{L^2}^6,$

then $\|\psi(t_0+\tau)\|_{L^2} \le e^{-\mu\tau} \|\psi(t_0)\|_{L^2}$.

Key Lemma: exponential decay of $\|\psi(t)\|_{L^2}$

• Let $B := \|\psi_0\|_{L^2}$. Fix $\mu > 0$.

Define, with *C* the constant in the energy inequality:

$$T_0(B) = \int_{B^2}^{4B^2} \frac{1}{Cy + Cy^3} \, dy,$$

$$T_1(B) = \frac{1}{4C(2\mu + 4C + 64CB^4)B + 4C(2\mu + 4C + 64CB^4)^{1/2}}.$$

- On $t_0 \le t \le t_0 + T_0(B)$, $0 \le t_0 \le T$, $\|\psi(t)\|_{L^2}$ can at most double.
- If dissipation alone is large enough for $0 < \tau < T_0(B)$,

 $\frac{1}{\tau}\int_{t_0}^{t_0+\tau} \|\Delta\psi(t)\|_{L^2}^2 dt \ge 2\mu \|\psi(t_0)\|_{L^2}^2 + 4C \|\psi(t_0)\|_{L^2}^2 + 64C \|\psi(t_0)\|_{L^2}^6,$

then $\|\psi(t_0+\tau)\|_{L^2} \leq e^{-\mu\tau} \|\psi(t_0)\|_{L^2}$.

Key Lemma cont.

• If dissipation alone is not large enough, then τ^* must be small enough:

$$au^* \leq \min\left(T_0(B), \ T_1(B), \ rac{1}{4\mu}
ight).$$

 $\Rightarrow \textbf{still have } \|\psi(\textbf{\textit{t}}_0 + \tau)\|_{L^2} \leq \textbf{\textit{e}}^{-\mu\tau} \|\psi(\textbf{\textit{t}}_0)\|_{L^2}, \textbf{0} < \tau < \tau^*.$

Conclude by dividing the interval [0, *T*], *T* > 0, into subintervals of length *τ*.

If **v** is a **shear** flow (**v**(x, y) = (u(y), 0)), expect global existence if growing modes only along shear (0 < L_2 < 2 π):

- the horizontal modes decay fast by enhanced dissipation;
- nonlinearity couples all modes.

イロト (過) (ヨト (ヨト (ヨト (の)))

Key Lemma cont.

• If dissipation alone is not large enough, then τ^* must be small enough:

$$au^* \leq \min\left(T_0(B), \ T_1(B), \ rac{1}{4\mu}
ight).$$

 $\Rightarrow \text{ still have } \|\psi(t_0+\tau)\|_{L^2} \leq e^{-\mu\tau} \|\psi(t_0)\|_{L^2}, 0 < \tau < \tau^*.$

Conclude by dividing the interval [0, *T*], *T* > 0, into subintervals of length *τ*.

If **v** is a **shear** flow ($\mathbf{v}(x, y) = (u(y), 0)$), expect global existence if growing modes only along shear ($0 < L_2 < 2\pi$):

- the horizontal modes decay fast by enhanced dissipation;
- nonlinearity couples all modes.

Introduction

2 Results for KSE

- 3 Enhanced dissipation
- 4 Results for AKSE:mixing
- 5 Results for AKSE: shear

Global existence with advection by a shear flow

Consider 2D KSE with advection by a **shear flow v** = A(u(y), 0):

$$\partial_t \phi + u(\mathbf{y})\partial_{\mathbf{x}}\phi + \frac{\nu}{2}|\nabla \phi|^2 + \nu \Delta^2 \phi + \nu \Delta \phi = \mathbf{0},$$

where $\nu = A^{-1}$, on the torus $\mathbb{T}^2 = [0, L_1] \times [0, L_2]_{per}$, $0 < L_2 < 2\pi$.

Given $g \in L^2(\mathbb{T}^2)$, we denote

 $\langle g \rangle(y) = rac{1}{L_1} \int_{\mathbb{T}^1} g(t,x,y) \mathrm{d} x, \qquad g_{\neq}(x,y) = g(x,y) - \langle g \rangle(y).$

 $\langle g \rangle$ projection onto the kernel of the advection operator $u(y)\partial_x$, g_{\neq} projection onto the orthogonal complement in L^2 .

Refer to $\langle \phi \rangle$ and ϕ_{\neq} as the *kernel* and *projected components*.

Global existence with advection by a shear flow

Consider 2D KSE with advection by a **shear flow v** = A(u(y), 0):

$$\partial_t \phi + u(\mathbf{y})\partial_{\mathbf{x}}\phi + \frac{\nu}{2}|\nabla \phi|^2 + \nu \Delta^2 \phi + \nu \Delta \phi = \mathbf{0},$$

where $\nu = A^{-1}$, on the torus $\mathbb{T}^2 = [0, L_1] \times [0, L_2]_{per}$, $0 < L_2 < 2\pi$.

Given $g \in L^2(\mathbb{T}^2)$, we denote

 $\langle g \rangle(y) = rac{1}{L_1} \int_{\mathbb{T}^1} g(t,x,y) \mathrm{d} x, \qquad g_{\neq}(x,y) = g(x,y) - \langle g \rangle(y).$

 $\langle g \rangle$ projection onto the kernel of the advection operator $u(y)\partial_x$, g_{\neq} projection onto the orthogonal complement in L^2 .

Refer to $\langle \phi \rangle$ and ϕ_{\neq} as the *kernel* and *projected components*.

Projected equations

 $\langle \phi \rangle$ satisfies

$$\partial_t \langle \phi \rangle + \frac{\nu}{2L_1} \int_{\mathbb{T}^1} |\nabla \phi_{\neq} + \nabla \langle \phi \rangle|^2 \, \mathrm{d}x + \nu \partial_y^4 \langle \phi \rangle + \nu \partial_y^2 \langle \phi \rangle = \mathbf{0},$$

while ϕ_{\neq} satisfies

$$\begin{split} \partial_t \phi_{\neq} + u(\mathbf{y}) \partial_{\mathbf{x}} \phi_{\neq} + \nu \Delta^2 \phi_{\neq} &= -\frac{\nu}{2} |\nabla \phi_{\neq} + \nabla \langle \phi \rangle|^2 \\ &+ \frac{\nu}{2L_1} \int_{\mathbb{T}^1} |\nabla \phi_{\neq} + \nabla \langle \phi \rangle|^2 \, \mathrm{d}\mathbf{x} - \nu \Delta \phi_{\neq} \\ &= -\frac{\nu}{2} |\nabla \phi_{\neq}|^2 + \frac{\nu}{2} \langle |\nabla \phi_{\neq}|^2 \rangle - \nu \partial_{\mathbf{y}} \phi_{\neq} \, \partial_{\mathbf{y}} \langle \phi \rangle - \nu \Delta \phi_{\neq} \, . \end{split}$$

Set $\psi = \partial_y \langle \phi \rangle$. Then

$$\partial_t \psi + \frac{\nu}{2L_1} \int_{\mathbb{T}^1} \partial_y |\nabla \phi_{\neq}|^2 \, \mathrm{d}x + \nu \psi \partial_y \psi + \nu \partial_y^4 \psi + \nu \partial_y^2 \psi = 0.$$

Projected equations

 $\langle \phi \rangle$ satisfies

$$\partial_t \langle \phi \rangle + \frac{\nu}{2L_1} \int_{\mathbb{T}^1} |\nabla \phi_{\neq} + \nabla \langle \phi \rangle|^2 \, \mathrm{d}x + \nu \partial_y^4 \langle \phi \rangle + \nu \partial_y^2 \langle \phi \rangle = \mathbf{0},$$

while ϕ_{\neq} satisfies

$$\partial_t \phi_{\neq} + u(\mathbf{y}) \partial_x \phi_{\neq} + \nu \Delta^2 \phi_{\neq} = -\frac{\nu}{2} |\nabla \phi_{\neq} + \nabla \langle \phi \rangle|^2 + \frac{\nu}{2L_1} \int_{\mathbb{T}^1} |\nabla \phi_{\neq} + \nabla \langle \phi \rangle|^2 \, \mathrm{d} \mathbf{x} - \nu \Delta \phi_{\neq} = -\frac{\nu}{2} |\nabla \phi_{\neq}|^2 + \frac{\nu}{2} \langle |\nabla \phi_{\neq}|^2 \rangle - \nu \partial_y \phi_{\neq} \, \partial_y \langle \phi \rangle - \nu \Delta \phi_{\neq} \, .$$

Set $\psi = \partial_y \langle \phi \rangle$. Then

$$\partial_t \psi + \frac{\nu}{2L_1} \int_{\mathbb{T}^1} \partial_y |\nabla \phi_{\neq}|^2 \, \mathrm{d}x + \nu \psi \partial_y \psi + \nu \partial_y^4 \psi + \nu \partial_y^2 \psi = 0.$$

Pseudo-spectral properties and enhanced dissipation

Let $(X, \|\cdot\|)$ be a complex Hilbert space.

Let H be a closed, densely defined operator on X.

If *H* is an *m*-accretive operator on *X*, then decay of the semigroup e^{-tH} depends on (Wei '18):

 $\Psi(H) = \inf \{ \| (H - i\lambda)g\| : g \in D(H), \lambda \in \mathbb{R}, \|g\| = 1 \}.$

Set
$$H_{\nu,k} := \nu \Delta_k^2 + iku(y), \ \Delta_k := -k^2 + \partial_{yy}$$
. Then:

$$\|\mathrm{e}^{-H_{\nu,k}t}\|_{\mathrm{op}} \leq \,\mathrm{e}^{-t\Psi(H_{\nu,k})+\pi/2}, \qquad \forall t \geq 0,$$

where $\|\cdot\|_{op}$ denotes the operator norm.

Decay $H_{\nu,k}$ gives decay of $H_{\nu} := \nu \Delta^2 + u(y) \partial_x$.

イロト 不得 トイヨト イヨト 正言 ろくの

Pseudo-spectral properties and enhanced dissipation

Let $(X, \|\cdot\|)$ be a complex Hilbert space.

Let H be a closed, densely defined operator on X.

If *H* is an *m*-accretive operator on *X*, then decay of the semigroup e^{-tH} depends on (Wei '18):

 $\Psi(H) = \inf \{ \| (H - i\lambda)g\| : g \in D(H), \lambda \in \mathbb{R}, \|g\| = 1 \}.$

Set
$$H_{\nu,k} := \nu \Delta_k^2 + iku(y), \ \Delta_k := -k^2 + \partial_{yy}$$
. Then:

$$\|\mathrm{e}^{-H_{\nu,k}t}\|_{\mathrm{op}} \leq \,\mathrm{e}^{-t\Psi(H_{\nu,k})+\pi/2}, \qquad \forall t \geq 0,$$

where $\|\cdot\|_{op}$ denotes the operator norm. Decay $H_{\nu,k}$ gives decay of $H_{\nu} := \nu \Delta^2 + u(y) \partial_x$.

イロト 不得 トイヨト イヨト 正言 ろくの

Pseudo-spectral property cont.

Assume the following condition on the shear (after Gallay):

Assumption

There exist $m, N \in \mathbb{N}$, $c_1 > 0$ and $\delta_0 \in (0, L_2)$ with the property that, for any $\lambda \in \mathbb{R}$ and any $\delta \in (0, \delta_0)$, there exist $n \leq N$ and points $y_1, \ldots, y_n \in [0, L_2)$ such that

$$|u(y) - \lambda| \ge c_1 \left(\frac{\delta}{L_2}\right)^m, \quad \forall |y - y_j| \ge \delta, \quad \forall j \in \{1, \dots n\}.$$

Example: $u(y) = \sin(y)^m$.

《曰》《圖》《曰》《曰》 되는

Pseudo-spectral property cont.

Assume the following condition on the shear (after Gallay):

Assumption

There exist $m, N \in \mathbb{N}$, $c_1 > 0$ and $\delta_0 \in (0, L_2)$ with the property that, for any $\lambda \in \mathbb{R}$ and any $\delta \in (0, \delta_0)$, there exist $n \leq N$ and points $y_1, \ldots y_n \in [0, L_2)$ such that

$$|u(y) - \lambda| \ge c_1 \left(\frac{\delta}{L_2}\right)^m, \quad \forall |y - y_j| \ge \delta, \quad \forall j \in \{1, \dots n\}.$$

Example: $u(y) = \sin(y)^m$.

소리 에 소문에 이 것 같아. 소문 이 모님의

Results for AKSE: shear

Enhanced dissipation

Proposition

Let *u* satisfy the Assumption. Assume $k \neq 0$ and $\nu |k|^{-1} \leq 1$. There exists $\varepsilon'_0 > 0$, independent of ν and *k*, such that

 $\Psi(H_{\nu,k}) \geq \varepsilon'_0 \nu^{\frac{m}{m+4}} |k|^{\frac{4}{m+4}}.$

Corollary

Let P_k be L^2 projection onto the k-th horizontal mode. Then

$$\begin{split} \| \mathrm{e}^{-H_{\nu}t} \, P_k \|_{op} &\leq \mathrm{e}^{-\varepsilon'_0 \, \nu \frac{m}{m+4} \, |k| \frac{4}{m+4} t + \pi/2}, \qquad \forall t \geq 0 \\ \Rightarrow \qquad \| \mathrm{e}^{-H_{\nu}t} \|_{op} &\leq \mathrm{e}^{-\lambda'_{\nu}t + \pi/2}, \qquad t > 0, \end{split}$$

where $\lambda_
u' = arepsilon_0'
u^{rac{m}{m+4}}$.

A. Mazzucato (PSU)

Results for AKSE: shear

Enhanced dissipation

Proposition

Let *u* satisfy the Assumption. Assume $k \neq 0$ and $\nu |k|^{-1} \leq 1$. There exists $\varepsilon'_0 > 0$, independent of ν and *k*, such that

$$\Psi(H_{\nu,k}) \geq \varepsilon'_0 \nu^{\frac{m}{m+4}} |k|^{\frac{4}{m+4}}.$$

Corollary

Let P_k be L^2 projection onto the k-th horizontal mode. Then

$$\|e^{-H_{\nu}t} P_{k}\|_{op} \leq e^{-\varepsilon_{0}' \nu \frac{m}{m+4}} |k|^{\frac{4}{m+4}} t + \pi/2, \qquad \forall t \geq 0.$$
$$\Rightarrow \qquad \|e^{-H_{\nu}t}\|_{op} \leq e^{-\lambda_{\nu}' t + \pi/2}, \qquad t > 0,$$

where $\lambda'_{\nu} = \varepsilon'_0 \nu^{\frac{m}{m+4}}$.

Global existence with shear

Main Result

Let $\phi_0 \in L^2(\mathbb{T}^2)$, $0 < L_2 < 2\pi$, and let $u : [0, L_2) \to \mathbb{R}$ satisfy the Assumption. Then there exists $0 < \nu_0 < 1$ depending on L_1 , L_2 , u and $\|\phi_0\|_{L^2}$ such that for any $0 < \nu < \nu_0$, there is a global weak solution ϕ of AKSE with initial data ϕ_0 .

Theorem extends to *u* with a finite number of critical points of order at most $m \ge 2$, but with a worse decay rate λ_{ν} for the semigroup.

 ν_0 depends on the rate at which ν/λ_{ν} vanishes as $\nu \to 0$.

イロト 不得 トイヨト イヨト 正言 ろくの

Global existence with shear

Main Result

Let $\phi_0 \in L^2(\mathbb{T}^2)$, $0 < L_2 < 2\pi$, and let $u : [0, L_2) \to \mathbb{R}$ satisfy the Assumption. Then there exists $0 < \nu_0 < 1$ depending on L_1 , L_2 , u and $\|\phi_0\|_{L^2}$ such that for any $0 < \nu < \nu_0$, there is a global weak solution ϕ of AKSE with initial data ϕ_0 .

Theorem extends to *u* with a finite number of critical points of order at most $m \ge 2$, but with a worse decay rate λ_{ν} for the semigroup.

```
\nu_0 depends on the rate at which \nu/\lambda_{\nu} vanishes as \nu \to 0.
```

イロト 不得 トイヨト イヨト 正言 ろくの

Bootstrap

Local existence and energy estimates imply (cf. Bedrossian-He '17):

Bootstrap assumptions

For small t > 0 and $0 \le s \le t$,

 $\ \, \bullet \ \ \|\phi_{\neq}(t)\|_{L^2} \leq 8 e^{-\lambda_{\nu}t/4} \|\phi_{\neq}(s)\|_{L^2},$

2
$$\nu \int_{\mathcal{S}}^{t} \|\Delta \phi_{\neq}(\tau)\|_{L^{2}}^{2} \mathrm{d} \tau \leq 4 \|\phi_{\neq}(\mathbf{S})\|_{L^{2}}^{2}.$$

Let $t_0 > 0$ be the *maximal* time such that the estimates hold on $[0, t_0]$.

 $\Rightarrow \exists \nu$ -independent $C_1 = C_1(\|\phi_{\neq}(0)\|_{L^2}, \|\psi(0)\|_{L^2_\nu})$ such that on $[0, t_0]$

$$\|\psi(t)\|_{L^2_y}^2 +
u \int_0^t \|\partial_y^2 \psi(s)\|_{L^2_y}^2 \,\mathrm{d} s \leq C_1 \left(\|\phi_{
eq}(0)\|_{L^2}, \|\psi(0)\|_{L^2_y}
ight).$$

Bootstrap

Local existence and energy estimates imply (cf. Bedrossian-He '17):

Bootstrap assumptions

For small t > 0 and $0 \le s \le t$,

 $\| \phi_{\neq}(t) \|_{L^2} \leq 8 e^{-\lambda_{\nu} t/4} \| \phi_{\neq}(s) \|_{L^2},$

$$2 \nu \int_{\boldsymbol{s}}^t \|\Delta \phi_{\neq}(\tau)\|_{L^2}^2 \,\mathrm{d}\tau \leq 4 \|\phi_{\neq}(\boldsymbol{s})\|_{L^2}^2.$$

Let $t_0 > 0$ be the *maximal* time such that the estimates hold on $[0, t_0]$.

 $\Rightarrow \exists \nu$ -independent $C_1 = C_1(\|\phi_{\neq}(0)\|_{L^2}, \|\psi(0)\|_{L^2_{\nu}})$ such that on $[0, t_0]$

$$\|\psi(t)\|_{L^2_y}^2 +
u \int_0^t \|\partial_y^2 \psi(s)\|_{L^2_y}^2 \,\mathrm{d}s \leq C_1 \left(\|\phi_{
eq}(0)\|_{L^2}, \|\psi(0)\|_{L^2_y}
ight).$$

For ν small, decay of semigroup implies bootstrap.

Lemma-Bootstrap estimates

If $\nu_0 > 0$ small enough and $\nu < \nu_0$, then for all $0 \le s \le t \le t_0$,

Proof of Main Result:

- By continuation in L^2 and Lemma, $t_0 = \infty \Rightarrow \phi_{\neq} \in L^{\infty}([0,\infty); L^2(\mathbb{T}^2)) \cap L^2([0,\infty); H^2(\mathbb{T}^2)).$
- Hence $\psi = \partial_y \langle \phi \rangle \in L^\infty([0, T); L^2(\mathbb{T}^1)) \cap L^2([0, T); H^1(\mathbb{T}^1)) \Rightarrow$ $\bar{\phi} \in L^\infty([0, T)), \forall 0 < T < \infty.$
- Solution By Poincaré + triangle inequality, $\langle \phi \rangle \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{1}))$ and $\phi = \langle \phi \rangle + \phi_{\neq} \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{2})).$

Lemma-Bootstrap estimates

If $\nu_0 > 0$ small enough and $\nu < \nu_0$, then for all $0 \le s \le t \le t_0$,

- **1** $\|\phi_{\neq}(t)\|_{L^2} \leq 4e^{-\lambda_{\nu}t/4}\|\phi_{\neq}(s)\|_{L^2},$
- $2 \nu \int_{\boldsymbol{s}}^{t} \|\Delta \phi_{\neq}(\tau)\|_{L^{2}}^{2} \,\mathrm{d}\tau \leq 2 \|\phi_{\neq}(\boldsymbol{s})\|_{L^{2}}^{2}.$

Proof of Main Result:

- By continuation in L^2 and Lemma, $t_0 = \infty \Rightarrow \phi_{\neq} \in L^{\infty}([0,\infty); L^2(\mathbb{T}^2)) \cap L^2([0,\infty); H^2(\mathbb{T}^2)).$
- Hence $\psi = \partial_y \langle \phi \rangle \in L^\infty([0, T); L^2(\mathbb{T}^1)) \cap L^2([0, T); H^1(\mathbb{T}^1)) \Rightarrow$ $\bar{\phi} \in L^\infty([0, T)), \forall 0 < T < \infty.$
- Subscript{By Poincaré + triangle inequality, $\langle \phi \rangle \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{1}))$ and $\phi = \langle \phi \rangle + \phi_{\neq} \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{2})).$

• Finally $\nabla^2 \phi = \nabla^2 \phi_{\neq} + \nabla \psi \in L^2([0,T); L^2(\mathbb{T}^2))$.

Lemma-Bootstrap estimates

If $\nu_0 > 0$ small enough and $\nu < \nu_0$, then for all $0 \le s \le t \le t_0$,

Proof of Main Result:

- By continuation in L^2 and Lemma, $t_0 = \infty \Rightarrow \phi_{\neq} \in L^{\infty}([0,\infty); L^2(\mathbb{T}^2)) \cap L^2([0,\infty); H^2(\mathbb{T}^2)).$
- Prove the set of the se
- Subscript{By Poincaré + triangle inequality, $\langle \phi \rangle \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{1}))$ and $\phi = \langle \phi \rangle + \phi_{\neq} \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{2})).$

• Finally $\nabla^2 \phi = \nabla^2 \phi_{\neq} + \nabla \psi \in L^2([0, T); L^2(\mathbb{T}^2))$.

Lemma-Bootstrap estimates

If $\nu_0 > 0$ small enough and $\nu < \nu_0$, then for all $0 \le s \le t \le t_0$,

Proof of Main Result:

- By continuation in L^2 and Lemma, $t_0 = \infty \Rightarrow \phi_{\neq} \in L^{\infty}([0,\infty); L^2(\mathbb{T}^2)) \cap L^2([0,\infty); H^2(\mathbb{T}^2)).$
- Prove the set of the se
- Solution By Poincaré + triangle inequality, $\langle \phi \rangle \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{1}))$ and $\phi = \langle \phi \rangle + \phi_{\neq} \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{2})).$
Proof of main result

Lemma-Bootstrap estimates

If $\nu_0 > 0$ small enough and $\nu < \nu_0$, then for all $0 \le s \le t \le t_0$,

Proof of Main Result:

- By continuation in L^2 and Lemma, $t_0 = \infty \Rightarrow \phi_{\neq} \in L^{\infty}([0,\infty); L^2(\mathbb{T}^2)) \cap L^2([0,\infty); H^2(\mathbb{T}^2)).$
- Prove the set of the se
- Solution By Poincaré + triangle inequality, $\langle \phi \rangle \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{1}))$ and $\phi = \langle \phi \rangle + \phi_{\neq} \in L^{\infty}([0, T); L^{2}(\mathbb{T}^{2})).$

 $\textbf{ Sinally } \nabla^2 \phi = \nabla^2 \phi_{\neq} + \nabla \psi \in L^2([0,T); L^2(\mathbb{T}^2)).$

THANK YOU!