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Introduction

The Kuramoto-Sivashinsky equation

Model for long wavelength instabilities in dissipative systems (e.g.,
flame front propagation, reaction-diffusion equations).

Study the problem in a 2D periodic box with sides L1,L2, identified with
a 2D torus T2.

Integral form: φ : T2 × [0,T )→ R,

φt + ∆2φ+ ∆φ+
1
2
|∇φ|2 = 0 (KSE)

Derivative form: u : T2 × [0,T )→ R2, u = ∇φ,

∂tu + ∆2u + ∆u +
1
2
∇|u|2 = 0, curl u = 0.
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Introduction

The equation cont.

Dissipative system with Burgers (for u) or conservation-law (for φ)
nonlinearity and instability at large scales.

Even in 1D non-trivial, long-time dynamics (chaotic trajectories)

Challenges in analysis in 2D:

1 Unstable modes for linearized operator if any period Li > 2π.
Unstable (generalized) modes in R2.

2 No maximum principle (biharmonic op.), no a priori L∞ bounds;

3 No energy identity (
´

u · ∇|u|2 dx 6= 0) for u or φ, no a priori L2

bounds.

No known a priori norm bound (mean of u preserved).
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Introduction

Previous results

1D KS is well understood, global well-posedness. For 2D KS many
basic open problems.

Known results (stated for φ):

1 Local-in-time well-posedness for φ ∈ Lp (Biswas-Swanson),
estimates on determining modes and size of attractor, assuming
global H1 bound (Nikolaenko-Scheuer-Temam);

2 Continuation criteria based on H1 norm (Bellout-Benachour-Titi);

3 Global-in-time well posedness for thin domains (Sell-Taboada,
Molinet, Benachour-Kukavica-Rusin-Ziane, Massatt-Kukavica),
small data in H1 or Wiener algebra B1, one slightly growing mode
in each direction (Ambrose-M.);

4 Analyticity and Gevrey regularity (rough data) for t > 0
(Ambrose-M., Biswas-Swanson, Stanislavova-Stefanov) in a strip.
A. Mazzucato (PSU) 2D KSE 5 / 31
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Introduction

Our results

Work with the integrated form of KSE.

No growing modes (L1, L2 < 2π): Global-in-time existence of mild
solution for small data in L2.

Results can be extended to Lp, 1 < p <∞.

Growing modes (L1 or L2 ≥ 2π): Global-in-time existence for large
data data in L2, if linear advection by mixing or shear flow added:

∂tφ+ v · ∇φ+
1
2
|∇φ|2 = −∆2φ−∆φ, (AKSE)

v a given, possibly time-dependent, divergence-free vector field.

AKSE model passive flame propagation in premixed-combustion.
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Introduction

Evolution of the mean

Set φ̄(t) =
ffl
T2 φ(x , t) dx . Let ψ := P(φ) = φ− φ̄.

P is an orthogonal projection in L2, bounded projection in Lp, Hs,
s > 0, and commutes with all Fourier multipliers.

Denote L̊p(T2) = P(Lp(T2)), H̊s(T2) = P(Hs(T2)), s > 0.

Norm in H̊s(T2) is equivalent to the seminorm in Ḣs(T2).

From KSE, AKSE, it follows that:

d
dt
φ̄ = − 1

2L1L2
‖∇φ‖2L2 = − 1

2L1L2
‖∇ψ‖2L2 .

⇒ have control on φ̄ on [0,T ] if ψ ∈ L2(0,T ; L2(T2)).

Enough to study the evolution of ψ.
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Introduction

Mild formulation

Set ψ(t)(x) = ψ(x, t) and ψ0 = ψ(0).

Say ψ is a mild solution if

ψ(t) = Tψ0(ψ)(t) := e−tLψ0 + B(ψ,ψ)(t) + L(ψ)(t), where

1 Linearized operator: L := ∆2 + ∆, solution operator e−tL, t > 0.
2 Bilinear form:

B(ψ1, ψ2) := −1
2

ˆ t

0
Pe−(t−τ)L∇ψ1(τ) · ∇ψ2(τ) dτ,

3 Linear advection:

L(ψ) := −
ˆ t

0
e−(t−τ)LP(v(τ) · ∇ψ(τ)) dτ .

Seek a solution as a fixed point of the map Tψ0 = T .
A. Mazzucato (PSU) 2D KSE 8 / 31
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Introduction

Properties of etL

L generates an (unbounded) analytic semigroup e−tL on Lp, 1 < p <∞.

No growing modes - exponential stability:
1 ∀T1 > 0, ∃ γ1, β > 0 such that

‖e−tLf‖L̊2 ≤ γ1 h1(t) ‖f‖L̊1 , ∀t > 0,

where

h1(t) =

{
t−1/4, 0 < t ≤ T1,

t−1/2 e−βt , t > T1.

2 ∀s > 0, ∃ γ2,T2 > 0 such that

‖e−tLf‖H̊s ≤ γ2 h2(t) ‖f‖L̊2 , ∀t > 0,

where

h2(t) =

{
t−s/4, 0 < t ≤ T2,

e−βt , t > T2.
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Results for KSE

No advection- no growing modes: small data in L2

Assume L1,L2 < 2π, v = 0.

Define the adapted space:

X∞ := {f : [0,∞)× T2 | sup
t>0

t1/4‖∇f‖L2 <∞}.

Let X̃∞ = C([0,∞); L̊2) ∩ X∞ with induced norm:

‖f‖X̃∞ . := Max(sup
t≥0
‖f‖L2 , sup

t>0
t1/4‖∇f‖L2).

From the semigroup estimates:

B : X̃∞ × X̃∞ → X̃∞,

and there exists η > 0 such that:

‖B(ψ1, ψ2)‖X̃∞ ≤ η ‖ψ1‖X̃∞ ‖ψ2‖X̃∞ ,
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Results for KSE

No growing mode, no advection: global existence cont.

Theorem
Let ψ0 ∈ L̊2(T2). ∃ δ > 0 such that, if ‖ψ0‖L̊2 < δ, ∃ a mild solution ψ of
the projected KSE in X̃∞ such that ψ(0) = ψ0.

1 Proof is by Banach Contraction Theorem in a suitable ball
B(0,M) ⊂ X̃∞.

2 Solution is unique in X̃∞.

3 Smallness of data is used to control linear trend etLψ0.

If one sightly growing mode present in each direction, can essentially
separate evolution of growing modes from remainder.

Growing modes controlled via a Lyapunov function argument.
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2 Results for KSE
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Enhanced dissipation

Dissipation time

Consider the hyperdiffusion-advection equation:

∂t f + v · ∇f + ∆2f = 0.

Denote the associated evolution system by Ss,t , 0 ≤ s ≤ t .

The number τ∗ ≥ 0, where

τ∗ = inf
{

t ≥ 0 | ‖Ss,s+t‖L2→L2 ≤
1
2
, for all s ≥ 0

}
,

is called the dissipation time associated to the system Ss,t , s ≤ t .

One has 0 < τ∗ <∞. τ∗ depends on v and τ∗(v) ≤ τ∗(0).
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Enhanced dissipation

Enhanced dissipation

Call τ∗(v) the dissipation time of (flow of) v.

Assume v ∈ L∞([0,∞); W 1,∞(T2)).

Study whether ∃ flows with velocity v for which τ∗(v) < τ∗(0).
Seek examples where τ∗ can be made arbitrarily small.

Flow of A v, A > 0 amplitude, is said to be relaxation enhancing if
τ∗(A v)→ 0 as A→∞.

Examples:
1 Spectral characterization for steady flows

(Constantin-Kiselev-Ryzhik-Zlatǒs for ∆);

2 Weakly mixing C2 flows (informally, f ◦ Φ−1 ⇀ 0, Φ flow of v).
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Enhanced dissipation

More on enhanced dissipation

Say that flow of v mixes with rate h if, for all f ∈ H̊1(T2),

‖f ◦ Φ−1(·, t)‖Ḣ−1 ≤ h(t) ‖f‖H̊1 .

Mixing enhances dissipation by transfering energy to small scales.

Examples:
1 deterministic examples of exponentially mixing flows with

W 1,p-regolarity, 1 ≤ p ≤ ∞ (Alberti-Crippa-M., Elgindi-Zlatǒs,
Yao-Zlatǒs);

2 random generic examples of exponentially mixing flows, smooth
in space (Bedrossian-Blumenthal-Punshon Smith).

Flows can enhance dissipation without being mixing (for special data):
1 Certain cellular flows (Iyer-Xu-Zlatǒs);
2 Certain shear flows, by hypocoercivity (Albritton-Beekie-Novack,

Bedrossian-Coti Zelati, Elgindi, Vicol, .... mostly for ∆).
A. Mazzucato (PSU) 2D KSE 16 / 31
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Enhanced dissipation

Effects of enhanced dissipation

Enhanced dissipation can also be measured in terms of decay rates in
the diffusion coefficient ν.

• It may prevent finite-time blow-up due to concentration, e.g. in
aggregation-diffusion (Keller-Segel) models ( He-Kiselev,
Hopf-Rodrigo, Kiselev-Xu).

• It may stabilize the flow, c.f. inviscid damping for Euler
(Bedrossian-Masmoudi, Bedrossian-Coti Zelati).

• It may prevent phase separation, e.g. in Cahn-Hilliard (Feng-Iyer).

For AKSE, we show that small diffusion time leads to global existence
with growing modes and large data.
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• It may prevent phase separation, e.g. in Cahn-Hilliard (Feng-Iyer).

For AKSE, we show that small diffusion time leads to global existence
with growing modes and large data.

A. Mazzucato (PSU) 2D KSE 17 / 31



Enhanced dissipation

Effects of enhanced dissipation

Enhanced dissipation can also be measured in terms of decay rates in
the diffusion coefficient ν.

• It may prevent finite-time blow-up due to concentration, e.g. in
aggregation-diffusion (Keller-Segel) models ( He-Kiselev,
Hopf-Rodrigo, Kiselev-Xu).

• It may stabilize the flow, c.f. inviscid damping for Euler
(Bedrossian-Masmoudi, Bedrossian-Coti Zelati).

• It may prevent phase separation, e.g. in Cahn-Hilliard (Feng-Iyer).

For AKSE, we show that small diffusion time leads to global existence
with growing modes and large data.

A. Mazzucato (PSU) 2D KSE 17 / 31



Results for AKSE:mixing

1 Introduction

2 Results for KSE

3 Enhanced dissipation

4 Results for AKSE:mixing

5 Results for AKSE: shear

A. Mazzucato (PSU) 2D KSE 18 / 31



Results for AKSE:mixing

Gobal existence with mixing

Theorem
Let φ(0) = φ0 ∈ L2(T2). Then, there exists a mild solution φ of AKSE
on [0,∞), which satisfies:

‖φ(t)‖L2 ≤ C1, t ≥ 0,

where C1 depends only on φ0, provided the dissipation time of v is
small enough.

The bound on τ∗ can be made explicit in terms of the size of the initial
data.

By contrast, the L2-norm of the solution to the linearized KSE without
advection can grow exponentially.

A. Mazzucato (PSU) 2D KSE 19 / 31



Results for AKSE:mixing

Gobal existence with mixing

Theorem
Let φ(0) = φ0 ∈ L2(T2). Then, there exists a mild solution φ of AKSE
on [0,∞), which satisfies:

‖φ(t)‖L2 ≤ C1, t ≥ 0,

where C1 depends only on φ0, provided the dissipation time of v is
small enough.

The bound on τ∗ can be made explicit in terms of the size of the initial
data.

By contrast, the L2-norm of the solution to the linearized KSE without
advection can grow exponentially.

A. Mazzucato (PSU) 2D KSE 19 / 31



Results for AKSE:mixing

Strategy of the proof

Prove short-time existence of mild solutions ψ of the projected
AKSE with data in L̊2 (same as for KSE).

Establish a continuation principle based on the L2 norm (same for
KSE).

Prove that ψ is also a weak solution in L2(0,T ; H̊2(T2)), ∀T > 0,
satisfying an energy inequality (same for KSE).

Show that, if the dissipation time of v is small enough, there is a
priori exponential decay of ‖ψ(t)‖L2 by energy estimates.

Conclude using the ODE for the mean of φ.
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Results for AKSE:mixing

Key Lemma: exponential decay of ‖ψ(t)‖L2

Let B := ‖ψ0‖L2 . Fix µ > 0.

Define, with C the constant in the energy inequality:

T0(B) =

ˆ 4B2

B2

1
Cy + Cy3 dy ,

T1(B) =
1

4C(2µ+ 4C + 64CB4)B + 4C(2µ+ 4C + 64CB4)1/2 .

On t0 ≤ t ≤ t0 + T0(B), 0 ≤ t0 ≤ T , ‖ψ(t)‖L2 can at most double.

If dissipation alone is large enough for 0 < τ < T0(B),

1
τ

ˆ t0+τ

t0
‖∆ψ(t)‖2L2 dt ≥ 2µ‖ψ(t0)‖2L2 + 4C‖ψ(t0)‖2L2 + 64C‖ψ(t0)‖6L2 ,

then ‖ψ(t0 + τ)‖L2 ≤ e−µτ‖ψ(t0)‖L2 .
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Results for AKSE:mixing

Key Lemma cont.

If dissipation alone is not large enough, then τ∗ must be small
enough:

τ∗ ≤ min
(

T0(B), T1(B),
1

4µ

)
.

⇒ still have ‖ψ(t0 + τ)‖L2 ≤ e−µτ‖ψ(t0)‖L2 , 0 < τ < τ∗.

Conclude by dividing the interval [0,T ], T > 0, into subintervals of
length τ .

If v is a shear flow (v(x , y) = (u(y),0) ), expect global existence if
growing modes only along shear (0 < L2 < 2π):

the horizontal modes decay fast by enhanced dissipation;

nonlinearity couples all modes.
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Results for AKSE: shear

1 Introduction

2 Results for KSE

3 Enhanced dissipation

4 Results for AKSE:mixing

5 Results for AKSE: shear
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Results for AKSE: shear

Global existence with advection by a shear flow

Consider 2D KSE with advection by a shear flow v = A (u(y),0):

∂tφ+ u(y)∂xφ+
ν

2
|∇φ|2 + ν∆2φ+ ν∆φ = 0,

where ν = A−1, on the torus T2 = [0,L1]× [0,L2]per , 0 < L2 < 2π.

Given g ∈ L2(T2), we denote

〈g〉(y) =
1
L1

ˆ
T1

g(t , x , y)dx , g 6=(x , y) = g(x , y)− 〈g〉(y).

〈g〉 projection onto the kernel of the advection operator u(y)∂x ,
g6= projection onto the orthogonal complement in L2.

Refer to 〈φ〉 and φ 6= as the kernel and projected components.
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Results for AKSE: shear

Projected equations

〈φ〉 satisfies

∂t〈φ〉+
ν

2L1

ˆ
T1
|∇φ 6= +∇〈φ〉|2 dx + ν∂4

y 〈φ〉+ ν∂2
y 〈φ〉 = 0,

while φ 6= satisfies

∂tφ 6= + u(y)∂xφ 6= + ν∆2φ 6= = −ν
2
|∇φ 6= +∇〈φ〉|2

+
ν

2L1

ˆ
T1
|∇φ 6= +∇〈φ〉|2 dx − ν∆φ 6=

= −ν
2
|∇φ 6=|2 +

ν

2
〈|∇φ 6=|2〉 − ν∂yφ 6= ∂y 〈φ〉 − ν∆φ 6= .

Set ψ = ∂y 〈φ〉. Then

∂tψ +
ν

2L1

ˆ
T1
∂y |∇φ 6=|2 dx + νψ∂yψ + ν∂4

yψ + ν∂2
yψ = 0.
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Results for AKSE: shear

Pseudo-spectral properties and enhanced dissipation

Let (X , ‖ · ‖) be a complex Hilbert space.
Let H be a closed, densely defined operator on X .

If H is an m-accretive operator on X , then decay of the semigroup e−tH

depends on (Wei ’18):

Ψ(H) = inf {‖(H − iλ)g‖ : g ∈ D(H), λ ∈ R, ‖g‖ = 1}.

Set Hν,k := ν∆2
k + iku(y), ∆k := −k2 + ∂yy . Then:

‖e−Hν,k t‖op ≤ e−tΨ(Hν,k )+π/2, ∀t ≥ 0,

where ‖ · ‖op denotes the operator norm.

Decay Hν,k gives decay of Hν := ν∆2 + u(y)∂x .
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Results for AKSE: shear

Pseudo-spectral property cont.

Assume the following condition on the shear (after Gallay):

Assumption
There exist m,N ∈ N, c1 > 0 and δ0 ∈ (0,L2) with the property that, for
any λ ∈ R and any δ ∈ (0, δ0), there exist n ≤ N and points
y1, . . . yn ∈ [0,L2) such that

|u(y)− λ| ≥ c1

(
δ

L2

)m

, ∀ |y − yj | ≥ δ, ∀j ∈ {1, . . .n}.

Example: u(y) = sin(y)m.
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Results for AKSE: shear

Enhanced dissipation

Proposition

Let u satisfy the Assumption. Assume k 6= 0 and ν|k |−1 ≤ 1.
There exists ε′0 > 0, independent of ν and k , such that

Ψ(Hν,k ) ≥ ε′0 ν
m

m+4 |k |
4

m+4 .

Corollary

Let Pk be L2 projection onto the k-th horizontal mode. Then

‖e−Hν t Pk‖op ≤ e−ε
′
0 ν

m
m+4 |k |

4
m+4 t+π/2, ∀t ≥ 0,

⇒ ‖e−Hν t‖op ≤ e−λ
′
ν t+π/2, t > 0,

where λ′ν = ε′0ν
m

m+4 .
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Results for AKSE: shear

Global existence with shear

Main Result
Let φ0 ∈ L2(T2), 0 < L2 < 2π, and let u : [0,L2)→ R satisfy the
Assumption.
Then there exists 0 < ν0 < 1 depending on L1, L2,u and ‖φ0‖L2 such
that for any 0 < ν < ν0, there is a global weak solution φ of AKSE with
initial data φ0.

Theorem extends to u with a finite number of critical points of order at
most m ≥ 2, but with a worse decay rate λν for the semigroup.

ν0 depends on the rate at which ν/λν vanishes as ν → 0.
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Results for AKSE: shear

Bootstrap

Local existence and energy estimates imply (cf. Bedrossian-He ’17):

Bootstrap assumptions
For small t > 0 and 0 ≤ s ≤ t ,

1 ‖φ 6=(t)‖L2 ≤ 8e−λν t/4‖φ 6=(s)‖L2 ,

2 ν
´ t

s ‖∆φ 6=(τ)‖2L2 dτ ≤ 4‖φ 6=(s)‖2L2 .

Let t0 > 0 be the maximal time such that the estimates hold on [0, t0].

⇒ ∃ ν-independent C1 = C1(‖φ 6=(0)‖L2 , ‖ψ(0)‖L2
y
) such that on [0, t0]

‖ψ(t)‖2L2
y

+ ν

ˆ t

0
‖∂2

yψ(s)‖2L2
y

ds ≤ C1

(
‖φ 6=(0)‖L2 , ‖ψ(0)‖L2

y

)
.

For ν small, decay of semigroup implies bootstrap.
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Results for AKSE: shear

Proof of main result

Lemma-Bootstrap estimates
If ν0 > 0 small enough and ν < ν0, then for all 0 ≤ s ≤ t ≤ t0,

1 ‖φ 6=(t)‖L2 ≤ 4e−λν t/4‖φ 6=(s)‖L2 ,
2 ν
´ t

s ‖∆φ 6=(τ)‖2L2 dτ ≤ 2‖φ 6=(s)‖2L2 .

Proof of Main Result:
1 By continuation in L2 and Lemma, t0 =∞ ⇒
φ 6= ∈ L∞([0,∞); L2(T2)) ∩ L2([0,∞); H2(T2)).

2 Hence ψ = ∂y 〈φ〉 ∈ L∞([0,T ); L2(T1)) ∩ L2([0,T ); H1(T1)) ⇒
φ̄ ∈ L∞([0,T )), ∀ 0 < T <∞.

3 By Poincaré + triangle inequality, 〈φ〉 ∈ L∞([0,T ); L2(T1)) and
φ = 〈φ〉+ φ 6= ∈ L∞([0,T ); L2(T2)).

4 Finally ∇2φ = ∇2φ 6= +∇ψ ∈ L2([0,T ); L2(T2)).
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s ‖∆φ 6=(τ)‖2L2 dτ ≤ 2‖φ 6=(s)‖2L2 .

Proof of Main Result:
1 By continuation in L2 and Lemma, t0 =∞ ⇒
φ 6= ∈ L∞([0,∞); L2(T2)) ∩ L2([0,∞); H2(T2)).

2 Hence ψ = ∂y 〈φ〉 ∈ L∞([0,T ); L2(T1)) ∩ L2([0,T ); H1(T1)) ⇒
φ̄ ∈ L∞([0,T )), ∀ 0 < T <∞.

3 By Poincaré + triangle inequality, 〈φ〉 ∈ L∞([0,T ); L2(T1)) and
φ = 〈φ〉+ φ 6= ∈ L∞([0,T ); L2(T2)).

4 Finally ∇2φ = ∇2φ 6= +∇ψ ∈ L2([0,T ); L2(T2)).
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