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Boundary rigidity



A classical geometric question

The boundary rigidity problem

(M, g) a Riemannian manifold with boundary ∂M.

Know the geodesic distance between any two boundary points

x , y ∈ ∂M.

Does this information determine the Riemannian metric g?

(M, g)

y

x
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Obstructions

Boundary-fixing diffeomorphisms.

Regions of large positive curvature.

(M, g)

y

x

Manifolds without such regions are called simple.

Conjecture (Michel 1981): All simple manifolds are boundary

rigid.

4



Selected results on boundary rigidity

Special cases were shown by Michel, Gromov, and Croke.

Lassas, Sharafutdinov, Uhlmann (2003): g is C k -close to

Euclidean.

Stefanov and Uhlmann (2005): g , g̃ are simple and g̃ is

C k -close to g .

Pestov and Uhlmann (2005): Simple 2-manifolds are

boundary rigid.

Burago and Ivanov (2010 and 2013): g is simple and either

C 2-close to Euclidean or C 3-close to a hyperbolic metric.

Graham, Guillarmou, Stefanov, Uhlmann (2019):

Asymptotically hyperbolic setting.

Stefanov, Uhlmann, and Vasy (2021): Manifolds with a

convex foliation condition + lens data.
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A lower codimensional rigidity

problem



Determining the metric from area data

Let us consider a codimension n − 2 version of boundary

rigidity.

Consider least-areas of minimal surfaces instead of distances

of geodesics.
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Question

(M, g) a Riemannian manifold with boundary ∂M.

For any simple closed curve γ ⊂ ∂M, we know the area of the

least-area surface(s) circumscribed by γ.

Does this information determine the Riemannian metric?

(M, g)

�
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Answer

Yes! (under certain geometric conditions.)

In some cases, we only require the area data for a much

smaller subclass of curves.

(M, g)

�
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Further work

N. Bao, CJ. Cao, S. Fischetti, C. Keeler (2019). Higher

dimensions.

N. Bao, CJ. Cao, S. Fischetti, J. Pollack, Y. Zhong (2020).

Higher genus minimal surfaces + higher dimensions.
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Obstruction: minimal spheres

<latexit sha1_base64="eZYcstEAx0YhWF0HUQKPg+9GlXM=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahgpRdEfVY9OJFqOC2hXYp2TTbhibZJckKZelv8OJBEa/+IG/+G9N2D9r6YODx3gwz88KEM21c99sprKyurW8UN0tb2zu7e+X9g6aOU0WoT2Ieq3aINeVMUt8ww2k7URSLkNNWOLqd+q0nqjSL5aMZJzQQeCBZxAg2VvKr92eD01654tbcGdAy8XJSgRyNXvmr249JKqg0hGOtO56bmCDDyjDC6aTUTTVNMBnhAe1YKrGgOshmx07QiVX6KIqVLWnQTP09kWGh9ViEtlNgM9SL3lT8z+ukJroOMiaT1FBJ5ouilCMTo+nnqM8UJYaPLcFEMXsrIkOsMDE2n5INwVt8eZk0z2veZc17uKjUb/I4inAEx1AFD66gDnfQAB8IMHiGV3hzpPPivDsf89aCk88cwh84nz+WlY3j</latexit>

(M, g)

<latexit sha1_base64="b8QZDZSQDhw92RsMLhLLy1qbxSE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeiz14rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LivedcVrXJWrtTyOApzCGVyABzdQhXuoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBllmMzA==</latexit>

B

Minimal surfaces never pass through the sphere.

Can detect this: area functional is not C 1.
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Our main results on recovering a Riemannian metric from area

data:

We can determine a Riemannian metric from knowledge of

least-areas for three classes of manifolds, as well as a local result.

Briefly:

The first two classes of manifolds arise from the tradeoff:

less area data available −→ more restrictions on the geometry.

The third class of manifolds arise from the tradeoff:

more data available −→ fewer restrictions on the metric.

I will discuss a result for classes 1 and 2 today.
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Our global result

Theorem (Alexakis, B., Nachman, 2020)

(M, g) a manifold of Class 1 or Class 2.

g |∂M given.

Suppose for the given family of simple closed curves

γ(t) ⊂ ∂M and any nearby perturbations γ(s, t) ⊂ ∂M, we

know the area of the properly embedded surface Y (s, t) ⊂ M

which solves the least-area problem for γ(s, t).

Then, the metric g is uniquely determined up to diffeomorphisms

which fix ∂M.
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Set up

(M, g)

�(t)Y (t)
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Determining a Riemannian metric from least-area surfaces:

The first and second class of manifolds:

Let (M, g) be a Riemannian manifold with boundary ∂M satisfying

(M, g) is C 4-smooth.

dim(M) = 3.

(M, g) has strictly mean convex boundary ∂M.

there is a foliation of ∂M by simple closed curves

{γ(t)}t∈(−1,1) which satisfy some technical curvature bounds.

the foliation {γ(t)}t∈(−1,1) induces a foliation of M by area

minimizing discs {Y (t)}t∈(−1,1).
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Class 1:

Class 1: For (M, g) as described, we additionally have g is

C 3-close to Euclidean.

Figure 1: g “looks flat” even when zoomed to level of curvature.
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Class 2:

Class 2: For (M, g) as described, (M, g) is also straight-thin: the

minimal surfaces Y (t) have area bounded above by a (small)

number and (M, g) is not too “curvy”.

Figure 2: Cross-sectional area is

small.
Figure 3: Wider cross-section

compensated by “straightness”. 16



Sketch of the proof



Overview of global result proof:

Want to show: least-area data for the foliation

{Y (t) : t ∈ (−1, 1)} = M and its nearby perturbations =⇒ g is

uniquely determined.

Solve for the metric by moving along the foliation Y (t).

Use conformal structure of each Y (t) to write the metric as

g =

e2φ 0 g31

0 e2φ g32

g13 g23 g33

 .

Note: by extending (M, g) to an asymptotically flat manifold,

φ is unique on each Y (t).
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Main proof ideas:

Key: Use variations of the foliation to relate geometric data

to PDE data.

By considering a normal variation of Y (0) to Y (t), we find

that ∂2

∂t2
A(Y (t))

∣∣∣
t=0

determines the Dirichlet-to-Neumann

map

ΛgY (0)
: ψ0 7→

∂ψ

∂ν

for

∆gY (0)
ψ +

(
Ricg (~n, ~n) + ||A||2g

)
ψ = 0 on Y (0) (1)

ψ = ψ0 on ∂Y (0).

where ψ : Y (0)→ R, ~n is a unit normal vector field on Y (0),

and ν is the outward unit normal vector field on ∂Y (0).
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Main proof ideas:

In our conformal coordinates, we determine the

Dirichlet-to-Neumann map

ΛgE : ψ0 7→
∂ψ

∂ν

for

∆gEψ + e2φ
(
Ricg (~n, ~n) + ||A||2g

)
ψ = 0 on D ⊂ R2 (2)

ψ = ψ0 on ∂D.

Nachman (1996):

ΛgE determines e2φ
(
Ricg (~n, ~n) + ||A||2g

)
.

Thus we know any solution ψ to (1).
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Main proof ideas:

For the foliation {Y (t)}t∈(−1,1), the lapse function

ψ := ||N||g is a solution to (1).

Y (t1)

@M

N

Y (t2)

Figure 4: The lapse function is ||N||g .
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Main proof ideas:

Variations Y (s, t) of Y (t) lead to knowledge of new lapse

functions ψ(s, t) := ||N(s, t)||g .

@M

Y (t)

N(t)

N(s, t)

Y (s, t)
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Main proof ideas:

Next steps:

Linearizing ||N(s, t)||g about s = 0 gives nonlinear, non-local

equations for the components of g−1.

Get an evolution equation for φ from the minimality of each

Y (t).

We show uniqueness for this system by considering two

metrics g1 and g2 for which we have the same area data.
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Main proof ideas:

Obtain δg33 := g33
1 − g33

2 = 0 in the coordinates (xα).

Taking differences of the equations we derived:

0 = δg31(p) + ∂k ||∇x3||g1(p)δẋk1 (p)

0 = δg32(p) + ∂k ||∇x3||g1(p)δẋk2 (p)

0 = gk3
1 ∂k(δφ) + g33

1 ∂3(δφ)

+

(
∂kφ2 −

1

2
∂k log(g33

1 )

)
δgk3 +

1

2
∂k(δg3k).

in the differences δg31, δg32, and δφ.

Here δẋki is a pseudodifferential operator (ΨDO) acting on

δg31, δg32, δφ and ∂3δφ.
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Main ideas of the proof

We show δg31, δg32 are ΨDOs acting on δφ and ∂3δφ.

The conditions of close to Euclidean or straight-thin are used

to invert the system.

Then, the equation for δφ becomes a hyperbolic Cauchy

problem:

∂3δφ+ P(δφ) = 0 on M

δφ = 0 on ∂M.

where P is an order 1 ΨDO in the tangential directions.

The uniqueness of this Cauchy problem gives us uniqueness of

the metric components.
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Future projects



Future projects

Asymptotically hyperbolic + renormalized area information.

Larger classes of 3-manifolds.

Higher co-dimensional surfaces.

When does a manifold admit a foliation by minimal surfaces?
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Thanks!
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ẋk equation

∆g0 ẋ
k = −2ψpA

ijΓk
ij(g0)− 2g ij

0∇j(ψpA
k
i )

= −g ij
0∇j(ψp)

e−2φ(gE)jk

2||∇x3||g
(gαj∂ig

3α + giα∂jg
3α + g3α∂αgij)

+ 2g ij
0 ψp

e−2φ(gE)jk

2||∇x3||g
(gαj∂ig

3α + giα∂jg
3α + g3α∂αgij)

+ g ij
0 ψp

1

||∇x3||g
∂j ||∇x3||g

e−2φ(gE)jk

2||∇x3||g
(gαj∂ig

3α + giα∂jg
3α + g3α∂αgij)

− g ij
0 ψp

e−2φ(gE)jk

||∇x3||g
{
∂jgαm∂ig

3α + gαm∂j∂ig
3α + ∂jgαi∂mg

3α + gαi∂j∂mg
3α

+ 2e2φ(gE)im∂jg
3α∂αφ+ 2e2φ(gE)img

3α∂j∂αφ− 4e2φ(gE)img
3α∂αφ∂jφ

}
− 8ψpe

−4φ
{
gkm
E g jl

Eg3l∂mg
33∂jφ+ g im

E gkl
E g3l∂mg

33∂iφ− gkj
E gml

E g3l∂mg
33e2φ∂jφ

+ gkm
E e2φ∂mg

3j∂jφ+ g im
E e2φ∂mg

3k∂iφ− gkj
E ∂mg

3me4φ∂jφ
}

=: Fk(g13, g23, φ, ψp,i , dψp,i , p).



δẋk equation

Here δẋki is a pseudodifferential operator (ΨDO) acting on δg31, δg32,

δφ and ∂3δφ:

∆gEδẋ
k = ψp,i Ā

jkl
m ∂l∂jδg

3m(w) + ψp,i B̄
jkα∂j∂αδφ(w)

+ (ψp,i C̄
kα
1 + ∂jψp,i C̄

jkα
2 )(w)∂αδφ(w)

+ (ψp,i C̄3 + ∂jψp,i C̄
j
4)δφ

+ (ψp,i D̄
jk
1m + ∂lψp,i D̄

jkl
2m)(w)∂jδg

3m(w)

+ (ψp,i F̄
k
1m + ∂lψp,i F̄

kl
2m)(w)δg3m(w),

for smooth functions Ājkl
m , . . . , F̄ kl

2m in the unknown metric coefficients

g13
1 , g23

1 and g13
2 , g23

2 and their first and second derivatives at q.
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