Recovering a Riemannian metric from

least-area data

Tracey Balehowsky
Collaborators: Spyros Alexakis, Adrian Nachman
October 26, 2021

Outline

1. Boundary rigidity
2. A lower codimensional rigidity problem
3. Sketch of the proof
4. Future projects

Boundary rigidity

A classical geometric question

The boundary rigidity problem
$■(M, g)$ a Riemannian manifold with boundary ∂M.

- Know the geodesic distance between any two boundary points $x, y \in \partial M$.
■ Does this information determine the Riemannian metric g ?

Obstructions

- Boundary-fixing diffeomorphisms.
- Regions of large positive curvature.

- Manifolds without such regions are called simple.

■ Conjecture (Michel 1981): All simple manifolds are boundary rigid.

Selected results on boundary rigidity

- Special cases were shown by Michel, Gromov, and Croke.

■ Lassas, Sharafutdinov, Uhlmann (2003): g is C^{k}-close to Euclidean.
■ Stefanov and Uhlmann (2005): g, \tilde{g} are simple and \tilde{g} is C^{k}-close to g.

- Pestov and Uhlmann (2005): Simple 2-manifolds are boundary rigid.
- Burago and Ivanov (2010 and 2013): g is simple and either C^{2}-close to Euclidean or C^{3}-close to a hyperbolic metric.
- Graham, Guillarmou, Stefanov, Uhlmann (2019):

Asymptotically hyperbolic setting.
■ Stefanov, Uhlmann, and Vasy (2021): Manifolds with a convex foliation condition + lens data.

A lower codimensional rigidity problem

Determining the metric from area data

■ Let us consider a codimension $n-2$ version of boundary rigidity.

- Consider least-areas of minimal surfaces instead of distances of geodesics.

Question

■ (M, g) a Riemannian manifold with boundary ∂M.
■ For any simple closed curve $\gamma \subset \partial M$, we know the area of the least-area surface(s) circumscribed by γ.
■ Does this information determine the Riemannian metric?

Answer

- Yes! (under certain geometric conditions.)
- In some cases, we only require the area data for a much smaller subclass of curves.

Further work

$■$ N. Bao, CJ. Cao, S. Fischetti, C. Keeler (2019). Higher dimensions.

- N. Bao, CJ. Cao, S. Fischetti, J. Pollack, Y. Zhong (2020). Higher genus minimal surfaces + higher dimensions.

Obstruction: minimal spheres

- Minimal surfaces never pass through the sphere.
- Can detect this: area functional is not C^{1}.

Our main results on recovering a Riemannian metric from area data:

We can determine a Riemannian metric from knowledge of least-areas for three classes of manifolds, as well as a local result.

Briefly:

- The first two classes of manifolds arise from the tradeoff: less area data available \longrightarrow more restrictions on the geometry.
- The third class of manifolds arise from the tradeoff: more data available \longrightarrow fewer restrictions on the metric.

I will discuss a result for classes 1 and 2 today.

Our global result

Theorem (Alexakis, B., Nachman, 2020)
■ (M, g) a manifold of Class 1 or Class 2.

- $\left.g\right|_{\partial м}$ given.
- Suppose for the given family of simple closed curves $\gamma(t) \subset \partial M$ and any nearby perturbations $\gamma(s, t) \subset \partial M$, we know the area of the properly embedded surface $Y(s, t) \subset M$ which solves the least-area problem for $\gamma(s, t)$.

Then, the metric g is uniquely determined up to diffeomorphisms which fix ∂M.

Set up

Determining a Riemannian metric from least-area surfaces:

The first and second class of manifolds:

Let (M, g) be a Riemannian manifold with boundary ∂M satisfying

- (M, g) is C^{4}-smooth.
- $\operatorname{dim}(M)=3$.
- (M, g) has strictly mean convex boundary ∂M.
- there is a foliation of ∂M by simple closed curves
$\{\gamma(t)\}_{t \in(-1,1)}$ which satisfy some technical curvature bounds.
- the foliation $\{\gamma(t)\}_{t \in(-1,1)}$ induces a foliation of M by area minimizing discs $\{Y(t)\}_{t \in(-1,1)}$.

Class 1:

Class 1: For (M, g) as described, we additionally have g is C^{3}-close to Euclidean.

Figure 1: g "looks flat" even when zoomed to level of curvature.

Class 2:

Class 2: For (M, g) as described, (M, g) is also straight-thin: the minimal surfaces $Y(t)$ have area bounded above by a (small) number and (M, g) is not too "curvy".

Figure 2: Cross-sectional area is small.

Figure 3: Wider cross-section compensated by "straightness".

Sketch of the proof

Overview of global result proof:

Want to show: least-area data for the foliation
$\{Y(t): t \in(-1,1)\}=M$ and its nearby perturbations $\Longrightarrow g$ is uniquely determined.

■ Solve for the metric by moving along the foliation $Y(t)$.

- Use conformal structure of each $Y(t)$ to write the metric as

$$
g=\left(\begin{array}{ccc}
e^{2 \phi} & 0 & g_{31} \\
0 & e^{2 \phi} & g_{32} \\
g_{13} & g_{23} & g_{33}
\end{array}\right) .
$$

■ Note: by extending (M, g) to an asymptotically flat manifold, ϕ is unique on each $Y(t)$.

Main proof ideas:

■ Key: Use variations of the foliation to relate geometric data to PDE data.
■ By considering a normal variation of $Y(0)$ to $Y(t)$, we find that $\left.\frac{\partial^{2}}{\partial t^{2}} A(Y(t))\right|_{t=0}$ determines the Dirichlet-to-Neumann map

$$
\Lambda_{g_{Y(0)}}: \psi_{0} \mapsto \frac{\partial \psi}{\partial \nu}
$$

for

$$
\begin{align*}
\Delta_{g_{Y(0)}} \psi+\left(\operatorname{Ric}_{g}(\vec{n}, \vec{n})+\|A\|_{g}^{2}\right) \psi & =0 & & \text { on } Y(0) \tag{1}\\
\psi & =\psi_{0} & & \text { on } \partial Y(0) .
\end{align*}
$$

where $\psi: Y(0) \rightarrow \mathbb{R}, \vec{n}$ is a unit normal vector field on $Y(0)$, and ν is the outward unit normal vector field on $\partial Y(0)$.

Main proof ideas:

- In our conformal coordinates, we determine the Dirichlet-to-Neumann map

$$
\Lambda_{g_{\mathbb{E}}}: \psi_{0} \mapsto \frac{\partial \psi}{\partial \nu}
$$

for

$$
\begin{align*}
\Delta_{g_{\mathbb{E}}} \psi+e^{2 \phi}\left(\operatorname{Ric}_{g}(\vec{n}, \vec{n})+\|A\|_{g}^{2}\right) \psi & =0 & & \text { on } D \subset \mathbb{R}^{2} \tag{2}\\
\psi & =\psi_{0} & & \text { on } \partial D .
\end{align*}
$$

■ Nachman (1996):
$\Lambda_{g_{\mathbb{E}}}$ determines $e^{2 \phi}\left(\operatorname{Ric}_{g}(\vec{n}, \vec{n})+\|A\|_{g}^{2}\right)$.
■ Thus we know any solution ψ to (1).

Main proof ideas:

■ For the foliation $\{Y(t)\}_{t \in(-1,1)}$, the lapse function $\psi:=\|N\|_{g}$ is a solution to (1).

Figure 4: The lapse function is $\|N\|_{g}$.

Main proof ideas:

■ Variations $Y(s, t)$ of $Y(t)$ lead to knowledge of new lapse functions $\psi(s, t):=\|N(s, t)\|_{g}$.

Main proof ideas:

Next steps:
■ Linearizing $\|N(s, t)\|_{g}$ about $s=0$ gives nonlinear, non-local equations for the components of g^{-1}.

- Get an evolution equation for ϕ from the minimality of each $Y(t)$.
- We show uniqueness for this system by considering two metrics g_{1} and g_{2} for which we have the same area data.

Main proof ideas:

- Obtain $\delta g^{33}:=g_{1}^{33}-g_{2}^{33}=0$ in the coordinates $\left(x^{\alpha}\right)$.
- Taking differences of the equations we derived:

$$
\begin{aligned}
0= & \delta g^{31}(p)+\partial_{k}\left\|\nabla x^{3}\right\|_{g_{1}}(p) \delta \dot{x}_{1}^{k}(p) \\
0= & \delta g^{32}(p)+\partial_{k}\left\|\nabla x^{3}\right\|_{g_{1}}(p) \delta \dot{x}_{2}^{k}(p) \\
0= & g_{1}^{k 3} \partial_{k}(\delta \phi)+g_{1}^{33} \partial_{3}(\delta \phi) \\
& \quad+\left(\partial_{k} \phi_{2}-\frac{1}{2} \partial_{k} \log \left(g_{1}^{33}\right)\right) \delta g^{k 3}+\frac{1}{2} \partial_{k}\left(\delta g^{3 k}\right) .
\end{aligned}
$$

in the differences $\delta g^{31}, \delta g^{32}$, and $\delta \phi$.

- Here $\delta \dot{x}_{i}^{k}$ is a pseudodifferential operator (UDO) acting on $\delta g^{31}, \delta g^{32}, \delta \phi$ and $\partial_{3} \delta \phi$.

Main ideas of the proof

- We show $\delta g^{31}, \delta g^{32}$ are ψ DOs acting on $\delta \phi$ and $\partial_{3} \delta \phi$.
- The conditions of close to Euclidean or straight-thin are used to invert the system.
- Then, the equation for $\delta \phi$ becomes a hyperbolic Cauchy problem:

$$
\begin{aligned}
& \partial_{3} \delta \phi+P(\delta \phi)=0 \\
& \text { on } M \\
& \delta \phi=0 \\
& \text { on } \partial M .
\end{aligned}
$$

where P is an order $1 \Psi \mathrm{DO}$ in the tangential directions.
■ The uniqueness of this Cauchy problem gives us uniqueness of the metric components.

Future projects

Future projects

- Asymptotically hyperbolic + renormalized area information.

■ Larger classes of 3-manifolds.
■ Higher co-dimensional surfaces.
■ When does a manifold admit a foliation by minimal surfaces?

Thanks!

$$
\begin{aligned}
\Delta_{g_{0}} \dot{x}^{k}= & -2 \psi_{p} A^{i j} \Gamma_{i j}^{k}\left(g_{0}\right)-2 g_{0}^{i j} \nabla_{j}\left(\psi_{p} A_{i}^{k}\right) \\
=- & g_{0}^{i j} \nabla_{j}\left(\psi_{p}\right) \frac{e^{-2 \phi}\left(g_{\mathbb{E}}\right)^{j k}}{2\left\|\nabla x^{3}\right\|_{g}}\left(g_{\alpha j} \partial_{i} g^{3 \alpha}+g_{i \alpha} \partial_{j} g^{3 \alpha}+g^{3 \alpha} \partial_{\alpha} g_{i j}\right) \\
& +2 g_{0}^{i j} \psi_{p} \frac{e^{-2 \phi}\left(g_{\mathbb{E}}\right)^{j k}}{2\left\|\nabla x^{3}\right\|_{g}}\left(g_{\alpha j} \partial_{i} g^{3 \alpha}+g_{i \alpha} \partial_{j} g^{3 \alpha}+g^{3 \alpha} \partial_{\alpha} g_{i j}\right) \\
& +g_{0}^{i j} \psi_{p} \frac{1}{\left\|\nabla x^{3}\right\|_{g}} \partial_{j}\left\|\nabla x^{3}\right\|_{g} \frac{e^{-2 \phi}\left(g_{\mathbb{E}}\right)^{j k}}{2\left\|\nabla x^{3}\right\|_{g}}\left(g_{\alpha j} \partial_{i} g^{3 \alpha}+g_{i \alpha} \partial_{j} g^{3 \alpha}+g^{3 \alpha} \partial_{\alpha} g_{i j}\right) \\
& -g_{0}^{i j} \psi_{p} \frac{e^{-2 \phi}\left(g_{\mathbb{E}}\right)^{j k}}{\left\|\nabla x^{3}\right\|_{g}}\left\{\partial_{j} g_{\alpha m} \partial_{i} g^{3 \alpha}+g_{\alpha m} \partial_{j} \partial_{i} g^{3 \alpha}+\partial_{j} g_{\alpha i} \partial_{m} g^{3 \alpha}+g_{\alpha i} \partial_{j} \partial_{m} g^{3 \alpha}\right. \\
& \left.+2 e^{2 \phi}\left(g_{\mathbb{E}}\right)_{i m} \partial_{j} g^{3 \alpha} \partial_{\alpha} \phi+2 e^{2 \phi}\left(g_{\mathbb{E}}\right)_{i m} g^{3 \alpha} \partial_{j} \partial_{\alpha} \phi-4 e^{2 \phi}\left(g_{\mathbb{E}}\right)_{i m} g^{3 \alpha} \partial_{\alpha} \phi \partial_{j} \phi\right\} \\
& -8 \psi_{p} e^{-4 \phi}\left\{g_{\mathbb{E}}^{k m} g_{\mathbb{E}}^{j l} g_{3 l} \partial_{m} g^{33} \partial_{j} \phi+g_{\mathbb{E}}^{i m} g_{\mathbb{E}}^{k l} g_{3 l} \partial_{m} g^{33} \partial_{i} \phi-g_{\mathbb{E}}^{k j} g_{\mathbb{E}}^{m l} g_{3 l} \partial_{m} g^{33} e^{2 \phi} \partial_{j} \phi\right. \\
& \left.+g_{\mathbb{E}}^{k m} e^{2 \phi} \partial_{m} g^{3 j} \partial_{j} \phi+g_{\mathbb{E}}^{i m} e^{2 \phi} \partial_{m} g^{3 k} \partial_{i} \phi-g_{\mathbb{E}}^{k j} \partial_{m} g^{3 m} e^{4 \phi} \partial_{j} \phi\right\} \\
=: & \mathcal{F}^{k}\left(g^{13}, g^{23}, \phi, \psi_{p, i}, d \psi_{p, i}, p\right) .
\end{aligned}
$$

Here $\delta \dot{x}_{i}^{k}$ is a pseudodifferential operator ($\Psi \mathrm{DO}$) acting on $\delta g^{31}, \delta g^{32}$, $\delta \phi$ and $\partial_{3} \delta \phi$:

$$
\begin{aligned}
\Delta_{g_{\mathbb{E}}} \delta \dot{x}^{k}=\psi_{p, i} & \bar{A}_{m}^{j k l} \partial_{l} \partial_{j} \delta g^{3 m}(w)+\psi_{p, i} \bar{B}^{j k \alpha} \partial_{j} \partial_{\alpha} \delta \phi(w) \\
& +\left(\psi_{p, i} \bar{C}_{1}^{k \alpha}+\partial_{j} \psi_{p, i} \bar{C}_{2}^{j k \alpha}\right)(w) \partial_{\alpha} \delta \phi(w) \\
& +\left(\psi_{p, i} \bar{C}_{3}+\partial_{j} \psi_{p, i} \bar{C}_{4}^{j}\right) \delta \phi \\
& +\left(\psi_{p, i} \bar{D}_{1 m}^{j k}+\partial_{l} \psi_{p, i} \bar{D}_{2 m}^{j k l}\right)(w) \partial_{j} \delta g^{3 m}(w) \\
& +\left(\psi_{p, i} \bar{F}_{1 m}^{k}+\partial_{l} \psi_{p, i} \bar{F}_{2 m}^{k l}\right)(w) \delta g^{3 m}(w)
\end{aligned}
$$

for smooth functions $\bar{A}_{m}^{j k l}, \ldots, \bar{F}_{2 m}^{k l}$ in the unknown metric coefficients g_{1}^{13}, g_{1}^{23} and g_{2}^{13}, g_{2}^{23} and their first and second derivatives at q.

