
Replica Wormholes and
Holographic Entanglement Negativity

Xi Dong

October 25, 2021

BIRS Workshop on “Gravitational Emergence in AdS/CFT”



This talk is

based on work with Sean McBride and Wayne Weng (just appeared)
[2110.11947]

related to previous work with Xiaoliang Qi and Michael Walter
[2101.11029]

Xi Dong (UCSB) Replica Wormholes and Holographic Entanglement Negativity 2



We will learn:

What is negativity?

Why negativity?

Negativity in JT gravity with end-of-the-world (EOW) branes.

Four phases for negativity.

Replica wormholes that break the replica symmetry spontaneously.

Resolvent, Schwinger-Dyson equation, and negativity spectrum near
phase transitions.
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What is negativity?

Negativity is a measure of quantum entanglement in mixed states.
Definition:

Given ρR1R2 on HR1 ⊗HR2 , choose an orthonormal basis |i⟩ for R1

and an orthonormal basis |j⟩ for R2.

Partial transpose ρT2

R1R2
on R2:

⟨ij |ρT2

R1R2
|i ′j ′⟩ ≡ ⟨ij ′|ρR1R2 |i ′j⟩

Its eigenvalues λi are real (and sum to one), but can be negative.

How negative?

Negativity: N ≡
∑
i

|λi | − λi
2

Logarithmic negativity: E ≡ log

(∑
i

|λi |

)
= log (2N + 1)
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N ≡
∑
i

|λi | − λi
2

, E ≡ log

(∑
i

|λi |

)
Both vanish if all λi ≥ 0.
This is true if e.g. ρR1R2 is a separable (unentangled) state:

ρR1R2 =
∑
k

pkρ
(k)
R1

⊗ ρ
(k)
R2
,

∑
k

pk = 1

How about an entangled state? Consider an EPR pair:

ρR1R2 =
1

2
(|00⟩+ |11⟩)(⟨00|+ ⟨11|) = 1

2

00 01 10 11


1 0 0 1 00
0 0 0 0 01
0 0 0 0 10
1 0 0 1 11

⇒ ρT2

R1R2
=

1

2


(
1 0
0 0

)T (
0 1
0 0

)T

(
0 0
1 0

)T (
0 0
0 1

)T

 =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⇒ λi =

1

2
,
1

2
,
1

2
,−1

2
⇒ N =

1

2
, E = log 2
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In general, logarithmic negativity ≥ distillable entanglement.

Negativity is an entanglement monotone – does not increase under
any LOCC (Local Operations and Classical Communication).
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Renyi negativity

Similar to the generalization of von Neumann entropy to Renyi entropy:

Renyi negativity: Nn ≡ Tr(ρT2

R1R2
)n

Analytic continuations from integer to real n are different for even and
odd cases (as λi can be negative):

N
(even)
2m =

∑
i

|λi |2m

N
(odd)
2m−1 =

∑
i

sgn(λi )|λi |2m−1

Recovers logarithmic negativity E (and N ):

E ≡ log

(∑
i

|λi |

)
= lim

m→1/2
logN

(even)
2m
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Why negativity?

Negativity and its Renyi versions provide useful (and relatively
tractable) measures of multipartite entanglement (R1, R2, R1R2).

In general quantum states, the structure of multipartite
entanglement is very rich and not well-understood.

Holographic states have highly constrained – and often more
tractable – structure of multipartite entanglement.

It is thus important to understand holographic negativity to gain
insight on gravitational questions such as the black hole information
problem.

This is particularly true in light of recent work on understanding the
von Neumann entropy of Hawking radiation from replica wormholes,
as we need more detailed information about the structure of its
quantum state to fully understand the dynamics of black hole
evaporation.

Xi Dong (UCSB) Replica Wormholes and Holographic Entanglement Negativity 8



The Model
A generalization of the 2d gravity model in [Penington, Shenker, Stanford,

Yang].

Consider a black hole (BH) in Jackiw-Teitelboim (JT) gravity with
an EOW brane behind the horizon:

IJT = − S0
4π

∫ √
gR − 1

2

∫ √
gϕ(R + 2) + Ibdy

E
O

W
 b

ra
n

e

E
O

W
 b

ra
n

e

The EOW brane has a large number k of internal states.
To model an evaporating black hole B, entangle it with an auxiliary
system R modeling the early radiation:

|Ψ⟩ = 1√
k

k∑
i=1

|ψi ⟩B |i⟩R
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Entropy of the radiation

The entropy of the radiation follows the Page curve: [Penington, Shenker,

Stanford, Yang]

SR = min{log(k),SBH}

Phases:

Disconnected Fully connected
(replica wormhole)
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Negativity of the radiation

Now divide the radiation R into two subsystems R1, R2:

HR = HR1 ⊗HR2 , k = k1 × k2.

To measure the entanglement between R1 and R2 in the mixed state
ρR1R2 , we now study the negativities: N , E , Nn.

✓ Leads to a rich phase diagram:

Xi Dong (UCSB) Replica Wormholes and Holographic Entanglement Negativity 11



To see this, use the 2d gravitational path integral to calculate the Renyi
negativity of ρR1R2 .

The natural generalization of |Ψ⟩ = 1√
k

∑k
i=1 |ψi ⟩B |i⟩R is

|Ψ⟩ = 1√
k

k1∑
i=1

k2∑
j=1

|ψij⟩B |ij⟩R1R2

|ij⟩R1R2 ≡ |i⟩R1 |j⟩R2 is an orthonormal basis of R.

The EOW brane carries two flavor indices i , j .

The density matrix

ρR1R2 =
1

k

k1∑
i,i ′=1

k2∑
j,j′=1

|i ′j ′⟩⟨ij |R1R2⟨ψij |ψi ′j′⟩B

Partial transpose on R2

ρT2

R1R2
=

1

k

k1∑
i,i ′=1

k2∑
j,j′=1

|i ′j ′⟩⟨ij |R1R2⟨ψi j′ |ψi ′j⟩B
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ρT2

R1R2
=

1

k

k1∑
i,i ′=1

k2∑
j,j′=1

|i ′j ′⟩⟨ij |R1R2⟨ψi j′ |ψi ′j⟩B

The matrix element ⟨i ′j ′|ρT2

R1R2
|ij⟩ ∝ ⟨ψi j′ |ψi ′j⟩B is found by a

gravitational path integral with boundary condition

Renyi negativity Nn ≡ Tr(ρT2

R1R2
)n is found by (e.g., n = 3)

= + · · ·
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= + · · ·

1 Disconnected geometry: k1k2Z
3
1 ∼ k1k2e

3S0

2 Cyclically connected wormhole: k3
1k2Z3 ∼ k3

1k2e
S0

3 ‘Anti-cyclically’ connected wormhole: k1k
3
2Z3 ∼ k1k

3
2 e

S0

4 Pairwise connected wormhole: k2
1k

2
2Z1Z2 ∼ k2

1k
2
2e

2S0

If k ≪ eS0 , disconnected geometry dominates.

If k ≫ eS0 , the other three compete:

If k1 ≫ k2e
S0 , cyclic geometry dominates.

If k2 ≫ k1e
S0 , anti-cyclic geometry

dominates.
If e−S0 ≪ k1

k2
≪ eS0 , pairwise geometries

dominate, spontaneously breaking the replica
symmetry. (A compromise between cyclic
and anti-cyclic geometries.)
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Negativity in four phases

⇒

log(k)

ℰ
k1=k2

Disconnected

Pairwise

⇒

log(k2)

ℰ
k=k1k2 fixed

Cyclic

Pairwise

Anti-cyclic

Agrees with general holographic settings studied in [XD, Qi, Walter].
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Near the disconnected-pairwise transitions

⇒

log(k)

ℰ
k1=k2

Disconnected

Pairwise

Here, both disconnected and pairwise geometries could dominate,
along with all other geometries made of single-boundary disks and
pairwise connected wormholes:
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Renyi negativity is found by summing these geometries.

To do this, define the resolvent matrix of ρT2

R1R2
:

Rij,i ′j′(λ) =

(
1

λ1− ρT2

R1R2

)
ij,i ′j′

=
∞∑
n=0

1

λn+1

[
(ρT2

R1R2
)n
]
ij,i ′j′

In the bulk, sum over geometries with any number of boundaries:
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Can be summed by a Schwinger-Dyson equation:

It indeed generates the infinite sum over geometries made of
single-boundary and pairwise components (on the top of this slide).

Taking the trace R =
∑k1

i=1

∑k2
j=1 Rij,ij :

λR = k +
R

k
+

Z2R
2

(kZ1)2
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λR = k +
R

k
+

Z2R
2

(kZ1)2

Negativity spectrum: eigenvalue density D(λ) = 1
2πi [R(λ− iϵ)− R(λ+ iϵ)]

D(λ) =
2k

πA2

√
A2 −

(
λ− 1

k

)2

, A ≡

√
4Z2

kZ 2
1

∼ 1√
keS0

Is the Wigner semicircle distribution on [ 1k − A, 1k + A]:

λ

D(λ)

1

k
> A

λ

D(λ)

1

k
 A

λ

D(λ)

1

k
< A

Negativity turns on at 1
k = A (or k ∼ eS0)

All Renyi negativities can be calculated analytically.
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For example, logarithmic negativity:

E ≡ log
∑
i

|λi | = log

∫
dλD(λ)|λ|

= log

[
2

π

(√
k2A2 − 1(2k2A2 + 1)

3k2A2
+ arccsc(kA)

)]
IkA>1

Smooth out the sharp transition:

⇒

log(k)

ℰ

Disconnected

Pairwise

Actual

⇒ O(1) correction at this disconnected-pairwise transition.
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Near the cyclic-pairwise transition

⇒

log(k2)

ℰ
k=k1k2 fixed

Cyclic

Pairwise

Anti-cyclic

Here, the dominant geometries include the cyclic and pairwise
wormholes, as well as more generic wormholes that connect more
than 2 boundaries:

Let us simply sum over all planar geometries.

Doing so is in fact valid in a larger regime than we need.

Valid anywhere away from the anti-cyclic phase, including the
disconnected-pairwise transition and the (cyclic) triple point.

The price we pay: it is more difficult.

But if done, the anti-cyclic-pairwise transition follows by k1 ↔ k2.
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Sum planar geometries by a Schwinger-Dyson equation (now with
higher-order terms):

λR = k +
R

k
+

Z2R
2

(kZ1)2
+ k2

∑
n≥3, odd

Zn

kn
2

Rn

(kZ1)n
+ k2

2

∑
n≥4, even

Zn

kn
2

Rn

(kZ1)n

Setting k2 = 1 recovers the result of [Penington, Shenker, Stanford, Yang].

Can be solved exactly if black hole is in a microcanonical ensemble.

Can be solved approximately for a canonical ensemble, leading to
enhanced corrections at the phase transition.
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Microcanonical ensemble

λR = k +
R

k
+

Z2R
2

(kZ1)2
+ k2

∑
n≥3, odd

Zn

kn
2

Rn

(kZ1)n
+ k2

2

∑
n≥4, even

Zn

kn
2

Rn

(kZ1)n

In a microcanonical ensemble, Zn = eS(#)n.

The resolvent equation can be resummed:

λR = k +
R

k

1 + e−SR/k

1− (e−SR/kk2)2

Solving this cubic equation gives the exact negativity spectrum:

⇒

Start: Wigner semicircle distribution (in disconnected and pairwise phase)
⇒ develops singularities (at pairwise-cyclic transition).
⇒ two disjoint Marchenko-Pastur distributions (in cyclic phase).
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A topological aside

Instead of JT gravity, we could also study a topological model of 2d
gravity [Marolf, Maxfield]:

Stop = −S0χ(M)− S∂ |∂M|

Repeating our analysis gives a cubic equation very similar to

λR = k +
R

k

1 + e−SR/k

1− (e−SR/kk2)2

The topological model is analogous to the microcanonical JT model.

Both models are in fact similar to negativity in random mixed states
[Shapourian, Liu, Kudler-Flam, Vishwanath; Kudler-Flam, Narovlansky, Ryu].
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Back to JT: canonical ensemble

λR = k +
R

k
+

Z2R
2

(kZ1)2
+ k2

∑
n≥3, odd

Zn

kn
2

Rn

(kZ1)n
+ k2

2

∑
n≥4, even

Zn

kn
2

Rn

(kZ1)n

In a canonical ensemble, Zn = eS0

∫ ∞

0

dsρ(s)y(s)n, where

ρ(s) =
s

2π2
sinh (2πs) , y(s) ≡ e−

βs2

2 21−2µ

∣∣∣∣Γ(µ− 1

2
+ is

)∣∣∣∣2
The resolvent equation can be resummed inside the s-integral:

λR = k + k2
2 e

S0

∫ ∞

0

dsρ(s)
w(s)R(k + w(s)R)

k2k2
2 − w(s)2R2

.

Can be solved (in a complicated way) in the semiclassical limit
(β → 0).
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Results near the cyclic-pairwise transition

Negativity spectrum:

Eigenvalues in the uncontrolled region cause a very small error.

Smooth out the sharp transition in e.g. logarithmic negativity:

⇒

log(k2)

ℰ
k=k1k2 fixed

Cyclic

Pairwise

Anti-cyclic

Actual

⇒ ∆E ≡ Eactual − Enaive = − π2

8β : enhanced correction from infinite sum of

saddles (similar to O(1/β) correction to Sn with n < 1 at Page transition)
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Results near the cyclic-pairwise transition

Mostly similar behaviors in other Renyi negativities, but one stands out:

Refined Rényi-2 negativity: ST2(2) ≡ −
∑

i λ
2
i log λ

2
i , λ2i ≡

λ2
i∑
j λ

2
j
.

⇒

log(k2)

S
T2(2)

k=k1k2 fixed

Cyclic

Pairwise

Anti-cyclic

Actual

⇒ ∆ST2(2) ≡ S
T2(2)
actual − S

T2(2)
naive = −2

√
π
β

This enhanced correction is similar to the O(1/β) correction to the
von Neumann entropy at the Page transition [Penington, Shenker,

Stanford, Yang; XD, Wang; Marolf, Wang, Wang].

This is perhaps not surprising once we recall holographically ST2(2)

can be written as the sum of von Neumann entropies [XD, Qi, Walter].
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Questions

What is the interpretation of the O(1/β) enhanced correction to the
logarithmic negativity at the phase transition? Can it be explained in
a way similar to the diagonal approximation (for von Neumann)?

Can we connect these results to other entanglement measures, such
as the reflected entropy and entanglement of purification? What
does the phase diagram look like for them?

Can we generalize our analysis to other toy models of evaporating
black holes, such as the examples in [Almheiri, Hartman, Maldacena,

Shaghoulian, Tajdini].

How can we use these results to understand holography as a very
special type of quantum error-correcting code, or as some improved
type of tensor network?
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Thank you.
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