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The starting point of our work was:

Theorem (Arzhantseva-Paunescu 2015)

For every € > 0 there exists ¢ > 0 such that if A, B € Sym(n)
satisfying d,,([A, B], id) < 0, then there exists A’, B’ € Sym(n) s.t.
dn(A', A), do(B',B) < e and [A',B'] = A'~'B''A'B' = id
here: .

dn(o,7) = E#{z € [n]lo(i) £ 7(i)} for o, T, € Sym(n).

Namely: if two permutations nearly commute then they are

near permutations that truly commute.
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This result is inspired by a long tradition in mathematical physics,

where it has been studied:

Assume A, B are n X n complex matrices satisfying some property P
(e.g. self adjoint/unitary) and almost commute w.r.t. some norm
(e.g. Hilbert-Schmidt operator, etc.). Are they near (w.r.t. this norm)

matrices (with P) which truly commute?

Many papers; the answer(s) depend on P and the norm.

A. Lubotzky (Hebrew University)

/20



One can ask such question w.r.t. any system of equations:
Let

(X) = (1'1,...,(£d)
R = {ri(X) ?:1

when r;(X) € Fy - the free group on X.
Say R is stable if Ve > 0, 30 > 0 s.t. if (A) = (A1,..., Ag) € (Sym(n))?
and dp(1;(4), id) <9
then 3(4") = (A, ..., A}) € (Sym(n))?
with d, (A}, A;) <e, VI <j<d
and r;((A") =id, V1<i<k.
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Crucial observation (Glebsky-Rivera 2009, [AP])
The stability of R depends only on I'!

i.e. if
'=(X;R)~(Y:S)

then R is stable iff S is stable so we can define

I" to be stable iff the relations presenting it are stable
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This notion of stability can be generalized to any (finitely generated) group, not
necessarily finitely presented.

T is stable if whenever @, : ' — Sym/(n) maps satisfying:

for every g,h € T,

then there exist homomorphisms ¥,, : I' — Sym(n),

st. VgerT,
lim d,(¥,(9), ¢n(g) =0

n—oo
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So basic question:
Till a few years ago only handful of results were known:

(1) Free groups are stable (trivial)
(2) [GR] finite groups are stable
(3) [AP] Abelian groups are stable

Now we know more: [AP] was very influential as it presented
many open problems.

The same true for [GR] for the following observation.
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Observation:

If T" is a sofic group which is stable then I is residually finite.

Recall e T is residually finite if 3¥,, : I' — Sym(n) homomorphisms s.t.
V1 # g, dn (¥, (g),id) =1 for n suff. large

e I'is sofic if 3, : I' = Sym(n) maps s.t.
Vg,h €T, lim dn(en(yh), on(9)en(h)) =0

and
Vi#£gel, ILm dn(pn(g),id) =1

Pf of observation.

If " a sofic there exists almost-homomorphisms as in the definition. If also stable,

they can be replaced by nearby homo's W¥,, and so I' is residually finite. O
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If T is stable and not residually finite then it is not sofic.

This gives a potential method to answer the long standing open problem:

Problem (Gromov-Weiss, 80's)

Are all groups sofic?

In the last few years this philosophy was implemented in other categories, but still
open for sofic & symmetric groups.

Before describing what is known here, let’s point out a connection with TCS.

A. Lubotzky (Hebrew University) 9/20



Connection with

(based on: Becker-Lubotzky-Mosheiff 2021)

Def: (A (g,¢)-testability) Let A = finite set, P, C A™.

The membership of « € P, is testable (or P, is (g, ¢)-testable)
if 30 < e € R, g € N and a random algorithm (“tester”)

which queries only ¢ (independent of n) coordinates of «

and answers YES if « € P,

while the answer is NO with probability > e dist (o, P,,)

- dist = normalized Hamming distance
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Observation 1

Stability implies Testability of the set of solutions P, € Sym(n)?, w.r.t. the
algorithm: Given a € Sym(n)¢, a = (a1, ...,aq). Close random i € [n] and
check if rj(aq,...,aq)(i) =i forevery j =1,...,k

R = the commutative relation = (A4, B) choose i € [n] and check if
AB(i) = BA(1).

If true for ¢ = g(g) of the i's then with high probability (A, B) is near
W = {(A",B") € Sym(n)?|A’B’ = B’ A’} by [AP]-theorem!

Observation 2
Testability of the relations R also depends only on I' = (X; R) and not on R.

Program

Develop methods to decide for a group I" whether it is testable? stable?
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Summary of various results

() T = (S) amenable
(i.e. Ve > 0, IF C T finite with [sFAF| < ¢|F|, Vs € S)

Theorem 1 [BLM, 2021]

Every amenable group is testable.

The proof follows from deep results of Orenstein-Weiss (1980) and
Newman-Sohler (2013) ( “hyperfinite")

Theorem 2 [Becker-Lubotzky-Thom, 2019]

A f.g. amenable group T is stable iff the finite index IRSs of I" are dense in the
space of all IRSs of "

.
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Recall: An IRS (Invariant Random Subgroup) 1 on I' is a
probability measure on the (compact) space Sub(T")
of all subgroups of ' (Sub(T') is considered as a subset of {0,1}1)

which is invariant under conjugation.

Ex: (i) Every N T defines a Dirac measure.
(ii) p is finite index IRS if its support is entirely on finite index subgroups

(iii) Prop. (Abert-Glasner-Virag 2014)
If T acts p.m.p. (probability measure preserving) on a probability space (Y, ),
then the stabilizer of a 7-random point is IRS.

Moreover, every IRS is obtained like that!
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Cor to [BLT]

Virtually polycyclic groups are stable ([AP] proved for abelian; was not known for
virt. abelian, not even abelian x finite).

Baumslag-Solitor group BS(1,n) is stable.

But not all solvable groups are stable

Theorem 3 [BLT] The Abels group (1979); p prime

1 x *x %
Ptk % 1
o €GL4(Z[Z;]) m,n € 7
1

is not stable

Reason: It has a finitely generated normal subgroup (in fact, central) which is
not closed in the profinite topology
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Open Problem. Characterize the solvable stable groups!

Conjecture. Meta-abelian groups are stable!

If true it will be a significant strengthening of the classical result of P. Hall
asserting the meta-abelian groups are residually finite.

While Hall's thm is proved by comm. alg. methods, the conjecture probably
needs dynamic & ergodic theory.

Theorem 4 [Levit-Lubotzky 2021]
The lamp-lighter groups (and many others) are stable.

This uses works of Lindenstrauss and Weiss.

But open for the free meta-abelian.
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[LL] result on the lamp-lighter group gave the first non finitely presented stable
group, and parallely also:

Theorem 5 [Zheng 2021]
The Grigorchuk groups are stable.

Now we have many more:

Theorem 6 [Levit-Lubotzky, Zheng 2021]

There exist uncountably many stable groups

The examples we gave are the groups constructed by
B.H. Newmann in 1937:
Let M be an infinite subset of N and G(M) the subgroup of [][ Sym(n)
neM
generated by 7 = (7,) and 0 = (0,) when 7, = (1,2) and 0,, = (1,2,...,n). He
showed they are all different. Lubotzky-Weiss showed (1993) they are amenable
and now we show they all satisfy the IRS criterion
Zheng's examples are branch groups.
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Now, assume I' has Kazhdan Property (T')

i.e. every non-trivial irreducible representation of I is “bounded away” from the
trivial representation. This implies that any two fin. dim. irr. rep. are “bounded
away"” from each other.

Ex: T'=SL,(Z), n> 3 (but not n =2)
and more generally all lattices in simple Lie groups of rank > 2

Theorem 7 [Becker-Lubetzky 2020]
If T is a sofic group (e.g. res. finite, linear) with (') then T is not stable.

Theorem 8 [B-L-Mosheiff 2021]
It is also not testable

Similar results with (7) instead of (T")
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Sketch of proof for I' = SL3(Z) (4 la Ozawa)

SL3(Z) acts, via SL3(FF,), 2-transitively on X = pairs of 1-dim
subspaces of 3.

Thus the rep

o on L3(x) = {f : 2 — Clef(z) = 0} is irreducible

Let n = |X| and drop on point zy of X, to get an “almost action” on
Y =X\ {0}

If T is stable, then this almost action is near

true action on Y which induces a rep g on LZ(Y') nearby .
This contradicts (7). O
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This led [BL] to define:

I is flexible stable if every almost action ¢ : ' — Sym(n) is near a true action
p: T — Sym(N) with N =n(1 + o(1)).

Question: IsT' = SL, (Z) flexible stable?

Remark (1) T sofic & flexible stable = T' res. finite

(2) Up to now we do not know any group which is flexible stable and
known to be not stable.
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Theorem 9 [Lazarovich-Levit-Minsky 2021]

g
Surface groups Ty = {a1,...,aq4, b1,...,bg| [][as,b;] =1} are flexible stable
i=1

Theorem 10 [Bowen-Burton 2021]

If for some n > 5, I' = SL,(Z) is flexible stable then there exists a non-sofic
group.

A\

Finally:
Theorem 11 [Levit-Lazarovich 2021]

Virtually free groups are stable.

Open problem: Assume (I' : A) < co. Is T stable < A stable?

A. Lubotzky (Hebrew University)



