The probability of generating invariably a finite simple group

Eilidh McKemmie (HUJI), joint work with Daniele Garzoni (Padova)

Invariable generation

Definition

Let G be a finite group and let $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq G$. The subgroup of G invariably generated by S is

$$
\bigcap_{g_{1}, \ldots, g_{k} \in G}\left\langle s_{1}^{g_{1}}, \ldots, s_{k}^{g_{k}}\right\rangle
$$

Invariable generation

Definition

Let G be a finite group and let $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq G$. The subgroup of G invariably generated by S is

$$
\bigcap_{g_{1}, \ldots, g_{k} \in G}\left\langle s_{1}^{g_{1}}, \ldots, s_{k}^{g_{k}}\right\rangle
$$

Proposition

A set of elements in S_{n} fails to generate a transitive subgroup if and only if the elements fix a common set.

Invariable generation

Definition

Let G be a finite group and let $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq G$. The subgroup of G invariably generated by S is

$$
\bigcap_{g_{1}, \ldots, g_{k} \in G}\left\langle s_{1}^{g_{1}}, \ldots, s_{k}^{g_{k}}\right\rangle
$$

Proposition

A set of elements in S_{n} fails to invariably generate a transitive subgroup if and only if the elements fix sets of a common size.

Motivation

Given a polynomial $f \in \mathbb{Z}[x]$ of degree $n, \operatorname{Gal}(f) \leq S_{n}$.
Question
Does $\operatorname{Gal}(f)=S_{n}$?

Motivation

Given a polynomial $f \in \mathbb{Z}[x]$ of degree $n, \operatorname{Gal}(f) \leq S_{n}$.
Question
Does $\operatorname{Gal}(f)=S_{n}$?

- Take a prime $p \nmid \operatorname{disc}(f)$.
- factorises into pairwise distinct irreducible factors modulo p.
- The set of degrees of factors is a partition λ_{p} of n.
- There is an element of $\operatorname{Gal}(f)$ with cycle type λ_{p}.

Motivation

Given a polynomial $f \in \mathbb{Z}[x]$ of degree $n, \operatorname{Gal}(f) \leq S_{n}$.
Question
Does $\operatorname{Gal}(f)=S_{n}$?

- Take a prime $p \nmid \operatorname{disc}(f)$.
- f factorises into pairwise distinct irreducible factors modulo p.
- The set of degrees of factors is a partition λ_{p} of n.
- There is an element of $\operatorname{Gal}(f)$ with cycle type λ_{p}.

Proposition

If there is a set of primes P which do not divide the discriminant such that $\left\{\lambda_{p}\right\}_{p \in P}$ invariably generates S_{n} then $\operatorname{Gal}(f)=S_{n}$.

Question

How likely is it that we get a false negative after choosing k primes?

Question

How likely is it that we get a false negative after choosing k primes?

Proposition (Frobenius Density Theorem)

Let λ be a partition of n.

$$
\left\{\begin{array}{c}
\text { proportion of elements } \\
\text { of } G a l(f) \text { with cycle } \\
\text { type } \lambda
\end{array}\right\}=\left\{\begin{array}{c}
\text { proportion of primes } \\
p \nmid \operatorname{disc}(f) \text { for which } \\
\lambda_{p}=\lambda
\end{array}\right\}+o(1)
$$

Question

How likely is it that we get a false negative after choosing k primes?

Proposition (Frobenius Density Theorem)

Let λ be a partition of n.
$\left\{\begin{array}{c}\text { proportion of elements } \\ \text { of } \operatorname{Gal}(f) \text { with cycle } \\ \text { type } \lambda\end{array}\right\}=\left\{\begin{array}{c}\text { proportion of primes } \\ p \nmid \operatorname{disc}(f) \text { for which } \\ \lambda_{p}=\lambda\end{array}\right\}+o(1)$

Answer

The probability of getting a false negative is the probability that k random elements of S_{n} do not invariably generate.

Invariable vs classical generation

Definition
$\mathbb{P}_{(\text {inv })}(G, k)=$ the probability k random elements (invariably) generate G.

Invariable vs classical generation

Definition
$\mathbb{P}_{(\text {inv })}(G, k)=$ the probability k random elements (invariably) generate G.

Theorem (Liebeck-Shalev)
For a finite simple group $G, \lim _{|G| \rightarrow \infty} \mathbb{P}(G, 2)=1$
Theorem (Kantor-Lubotzky-Shalev,
Guralnick-Malle)
If G is a finite simple group, $\mathbb{P}_{\text {inv }}(G, 2)>0$.

Invariable vs classical generation

Definition

$\mathbb{P}_{(\text {inv })}(G, k)=$ the probability k random elements (invariably) generate G.

Theorem (Liebeck-Shalev)
For a finite simple group $G, \lim _{|G| \rightarrow \infty} \mathbb{P}(G, 2)=1$
Theorem (Kantor-Lubotzky-Shalev,
Guralnick-Malle)
If G is a finite simple group, $\mathbb{P}_{\text {inv }}(G, 2)>0$.
Theorem (Kantor-Lubotzky-Shalev)
There is an absolute constant ε such that for all G and k, $\mathbb{P}_{\text {inv }}(G, k) \leq 1-\varepsilon^{k}$.

Symmetric group

Theorem (Pemantle-Peres-Rivin, Eberhard-Ford-Green)
There is $\varepsilon>0$ such that $\mathbb{P}_{\text {inv }}\left(S_{n}, 4\right) \geq \varepsilon$ for all n.
$\lim _{n \rightarrow \infty} \mathbb{P}_{\text {inv }}\left(S_{n}, 3\right)=0$.
Theorem (McK)
Let $G_{r}(q)$ be a finite classical group of rank r over a field of q elements.
There is $\varepsilon>0$ such that $\mathbb{P}_{\text {inv }}\left(G_{r}(q), 4\right) \geq \varepsilon$ for all r and large enough q.
$\lim _{q \rightarrow \infty} \lim _{r \rightarrow \infty} \mathbb{P}_{\text {inv }}\left(G_{r}(q), 3\right)=0$.

Invariable vs classical generation

Definition

Let $A \subseteq G$.
$\mathbb{P}_{(\text {inv })}(G, A)=$ the probability that a random element from G (invariably) generates with some element of A.

Invariable vs classical generation

Definition
Let $A \subseteq G$.
$\mathbb{P}_{(\text {inv })}(G, A)=$ the probability that a random element from G (invariably) generates with some element of A.

Theorem (Guralnick-Kantor)
If G is a finite simple group then $\mathbb{P}(G, G)=1$. This is called $3 / 2$-generation.

Theorem (Burness-Harper)
For infinitely many finite simple groups G, there is a subset A with $|A|=2$ and $\mathbb{P}(G, A)=1$.

Results (joint with Daniele Garzoni)

Let G be a finite simple group.

Theorem

There exist $\varepsilon>0$ and $x \in G$ such that $\mathbb{P}_{\text {inv }}(G,\{x\}) \geq \varepsilon$.
Theorem
There exists a set $A \subseteq G$ such that $|A| \leq 6$ and

$$
\lim _{|G| \rightarrow \infty} \mathbb{P}_{i n v}(G, A)=1
$$

unless $G=G_{2}\left(3^{a}\right), P S p_{2 m}(q)$ for q even and bounded, $P \Omega_{2 m+1}(q)$ for q odd and bounded. Then $\mathbb{P}_{\text {inv }}(G, G)$ is bounded away from 1.

Results (joint with Daniele Garzoni)

Let $G_{r}(q)$ be a finite group of Lie type of rank r over a field of order q.

Theorem

There is an absolute constant $c>0$ such that for almost all $x \in G_{r}(q)$ (or for around half the elements $x \in G_{2}\left(3^{a}\right)$),

$$
\mathbb{P}_{\text {inv }}(G,\{x\}) \geq \frac{c}{r}+O\left(\frac{r^{r}}{q}\right)
$$

Corollary

For each rank r there is a constant $\varepsilon_{r}>0$ such that $\mathbb{P}_{\text {inv }}\left(G_{r}(q), 2\right) \geq \varepsilon_{r}$ for all q.

Conjecture

For G a finite simple group $\mathbb{P}_{\text {inv }}(G, 4)$ is bounded away from 0 as $|G| \rightarrow \infty$.

Maximal subgroups

Proposition

Let

$$
\mathcal{M}(x)=\cup_{x \in M \leq_{\max } G} \cup_{g \in G} M^{g} .
$$

Then

$$
1-\mathbb{P}_{i n v}(G, A)=\frac{\left|\cap_{x \in A} \mathcal{M}(x)\right|}{|G|}
$$

Aim: find elements x such that $\mathcal{M}(x)$ is small.

Alternating groups

Example

Let $n=2 m+1$ be odd, and $G=A_{n}$.
$x=$ an n-cycle.
$\mathcal{M}(x)=$ union of all transitive subgroups.
Łuczak and Pyber show

$$
\lim _{m \rightarrow \infty} \frac{|\mathcal{M}(x)|}{\left|A_{2 m+1}\right|}=0 .
$$

Groups of Lie type with fixed rank

X is a linear algebraic group W is the Weyl group of X σ is a Steinberg endomorphism of X G is the set of fixed points X_{σ} $W .\langle\sigma\rangle$ is the extended Weyl group

$$
X=S L_{n}\left(\overline{\mathbb{F}_{p}}\right)
$$

$$
W \cong S_{n}
$$

$$
\sigma\left(x_{i j}\right)=\left(x_{i j}^{q}\right)
$$

$$
G=S L_{n}(q)
$$

$$
W \cdot\langle\sigma\rangle \cong S_{n}
$$

Definition

A regular semisimple element s in X is a diagonalisable element contained in a unique σ-stable maximal torus $T=C_{X}(s)^{\circ}$ of X.

$$
\begin{aligned}
\Delta:= & \{x \in G \text { regular semisimple } \mid \text { maximal } \\
& \text { overgroups have maximal rank }\}
\end{aligned}
$$

Proposition (Fulman-Guralnick)

The proportion of elements of G in Δ is $1-O\left(\frac{r^{r}}{q}\right)$.

Maximal tori

Definition
$\mathcal{T}(x)$ is the set of conjugates of maximal tori of G contained in some K_{σ}° for K a maximal subgroup of X containing x.

Theorem
If $\cap_{a \in A} \mathcal{T}(a)=\emptyset$ then for every $x \in \Delta$ there is some $a \in A$ such that x, a invariably generate G.

Exceptional groups

Example

$G=E_{8}(q)$. Guralnick and Malle identify a cyclic maximal torus $T=\langle a\rangle$ of order $\Phi_{30}(q)$ whose only maximal overgroup is $N_{G}(T)$. So $\mathcal{T}(a)=T^{G}$.
Pick a^{\prime} not in any conjugate of $N_{G}(T)$. For example, there is an element of order $\Phi_{30}(-q)$ which, by its order alone, cannot be in $N_{G}(T)$.

The Weyl group

There is a natural bijection

$$
\begin{gathered}
\left\{\begin{array}{c}
G \text {-conjugacy classes of } \\
\sigma \text {-stable maximal tori of }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
W \text {-conjugacy classes in } \\
\text { the coset } \sigma W \text { of } \sigma \text { in }
\end{array}\right\} \\
X . W
\end{gathered}
$$

Write T_{w} for $\left(T_{w}\right)_{\sigma}$.

More exceptional groups

Example

$G_{2}(q)$ has Weyl group D_{12} and so it has 6 conjugacy classes of maximal tori, called $T_{1}, \ldots T_{6}$.
T_{1}, T_{2} contain around half the elements in the group.
If $q \nmid 3$ we can pick x_{1}, x_{2} such that $\mathcal{T}\left(x_{1}\right)=$ conjugates of
T_{1}, T_{3}, T_{5} and $\mathcal{T}\left(x_{2}\right)=$ conjugates of T_{2}, T_{4}, T_{6}.
In characteristic 3 , there is a graph automorphism which conjugates T_{1} to T_{2}.

Classical groups with fixed rank

Example

$G=S L_{n}(q), W \cong S_{n}$. Let a be a regular semisimple element in
$T_{(n-1,1)}$. Then $\mathcal{T}(a)=T_{(n-1,1)}^{G}$. If $a^{\prime} \in T_{(n)}$ is regular
semisimple then its overgroups are extension field subgroups $S L_{\frac{n}{b}}\left(q^{b}\right)$ which do not fix any 1 -spaces.
So $\mathcal{T}(a) \cap \mathcal{T}\left(a^{\prime}\right)=\emptyset$.

Large rank

Example

$G=S L_{2 m+1}(q)$ with q fixed and $m \rightarrow \infty$.
Guralnick and Kantor give an element a such that $\mathcal{M}(a)$ is the union of groups which fix an m-space and an $m+1$-space.
Fulman and Guralnick show that the proportion of elements in $S L_{n}(q)$ fixing a k-space is at most

$$
\frac{A}{k^{0.005}}
$$

for an absolute constant A.

Example

Let $G=S p_{2 m}(q)$ where q is even and fixed and $m \rightarrow \infty$. Let $R^{ \pm}$be the union of the stabilisers of hyperplanes of \pm-type. Then $G=R^{+} \cup R^{-}$but

$$
\frac{\left|R^{+} \cap R^{-}\right|}{|G|} \geq \frac{1}{4 q^{3}}
$$

and so $\mathbb{P}_{\text {inv }}(G, G) \leq 1-\frac{1}{4 q^{3}}$.

