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Notations

Abbreviations: locally compact is abbreviated as lc and totally
disconnected locally compact is abbreviated as tdlc

For a lc group G , an automorphism of G would always mean
bicontinuous automorphism.

Group action: Suppose G and X are two lc groups. Action
of G on X (by automorphisms) is a continuous map
φ : G × X → X such that for each g ∈ G , φg (x) = φ(g , x) is
an automorphism of X and g 7→ φg is a homomorphism of G .
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Examples

(1) If f : G → GL(V ) is a continuous homomorphism where V is a
finite dimensional vector space over a local field, then
φ(g , v) = f (g)v defines an action of G on V and these type of
actions are known as linear action.

(2) If H is a closed subgroup of a lc group G , then H acts on G by
inner autormorphisms, that is φ(h, g) = hgh−1 for h ∈ H and
g ∈ G .
(3) If H is a closed normal subgroup of G , then G acts on H by
inner autormorphisms (restricted to H).
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semi-direct product

Given an action of G on X by automorphism of X

or simply take
G to be a subgroup of automorphisms of X
Semidirect product of G and X is denoted by G n X and is
defined to be {(g , x) | g ∈ G , x ∈ X} with binary operation
(g , x)(h, y) = (gh, x(gy)).
G n X is a also a lc group.
G and X may be identified as closed subgroups of G n X by the
maps g 7→ (g , e) and x 7→ (e, x).
X is a normal subgroup of G n X
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Tdlc groups and scale function

G - tdlc group

COS(G ) - the set of all compact open subgroups of G .

Following are results of Willis mostly from [Math. Ann. 1994]
For each automorphism α, scale of α, denoted by s(α) is defined by

s(α) = mini{[U : U ∩ α(U)] | U ∈ COS(G )}

and U which attains the minimum is called tidy subgroup of α.
For each g ∈ G , if αg is the inner automorphism on G defined by
g (recall, αg (h) = ghg−1), then the scale of g , s(g) = s(αg ).

Theorem [Wi-94]

s(α) = 1 = s(α−1) if and only if α fixes a compact open
subgroup U, that is, α(U) = U.

s(αn) = s(α)n.

the scale s is continuous on G .
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Power maps

Let G be a tdlc group.

For a k ≥ 1, define the k-th power map Pk : G → G by

Pk(g) = gk , g ∈ G .

Aim: Structural conditions related to power map having dense
image or surjective.
We first recall the following

Theorem [Wi-94]

If G is a tdlc group and gkn
n → g a and kn →∞ as n→∞, then

s(g) = 1.
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Power maps contd.,

If Pk(G ) is dense in G , then for g ∈ G , using the continuity of Pk ,
we can find a sequence (gn) in G such that gkn

n → g .

Thus, s(g) = 1
Therefore each g ∈ G fixes a compact open subgroup.
Considering group actions we obtained

Proposition [MaR-20]

If G as above acts on a tdlc group X , then each g ∈ G , fixes a
compact open subgroup of X .
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linear actions

An automorphism α of a lc group X is called distal if e is not a
limit point of {αn(x) | n ∈ Z} for any x ∈ X \ {e}.
The following gives structural condition for linear actions by distal
maps.

Theorem [CoG-74]

Let G be a subgroup of GL(V ). Then the following are equivalent:

each α ∈ G is distal on V .

eigenvalues of each α ∈ G are of absolute value one.

there is a G -invariant flag of subspaces
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V such that all orbits of G in
Vi/Vi−1 are bounded.
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necessary condition

Assumption

V a finite-dimensional vector space over a non-Arichmedean
local field F.

G is a tdlc group for which

PK : G → G is dense and

ρ : G → GL(V ) is a continuous representation of G .
Using the representation, we consider the action of G on V
and obtain

Theorem [MaR-20]

There is a flag of subspaces with associated unipotent group U
and a compact group L such that ρ(G ) ⊂ LU and the flag is
L-invariant.
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Groups associated to a flag

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V - flag of subspaces of V .

Take H = {α ∈ GL(V ) | α(Vi ) = Vi for all i} and
U = {α ∈ GL(V ) | α(v)− v ∈ Vi−1 for all i and v ∈ Vi}.
U is called unipotent group associated to the flag and H is the
invaraint group of the flag. U is a subgroup of H.

β ∈ H fixes Vi implies U is a normal subgroup of H.

The action of H on U is linear in the sense that there is a
H-invariant central series U0 ⊂ U1 ⊂ · · · ⊂ Un = U such that
U0 is trivial and each Ui/Ui−1 is a vector space and
corresponding H-action on Ui/Ui−1 is linear.
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Sufficient

We now look at sufficient conditions under which the power map is
surjective.

In our case following result is useful

Theorem [DaM-17]

Let L be a compact totally disconnected group and N be a
nilpotent lc group. Suppose L acts on N and the action is linear
over a field F. If Pk is surjective on L and k is co-prime to the
characteristic of F, then Pk is surjective on Ln N.
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Contd.,

We obtain the following

Theorem [MaR-20]

Let F be a non-Archimedean local field and G be a group with a
linear representation ρ : G → GL(d ,F). Suppose that Pk is dense
in G for some k > 1. Then we have the following:

There exists a compact group L ⊂ GL(d ,F) and a split
unipotent algebraic group U ⊂ GL(d ,F) normalized by L such
that L ∩ U is trivial, ρ(G ) ⊂ LU and ρ(G )U is dense in LU.
Moreover, Pk is surjective on LU/U ' L.

If k is co-prime to the characteristic of F, then Pk is surjective
on LU.

If the characteristic p of F divides k , then ρ(G ) is finite.
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Residual characteristic

In the case of characteristic of F not dividing k , considering the
residual characteristic and obtain the following:

Theorem [MaR-19]

If the residual characteristic p of F divides k, then L is finite,
that is ρ(G ) is contained in a finite extension of a split
unipotent algebraic group U and Pk is dense in ρ(G ) ∩ U.

If the residual characteristic p of F divides k and the
characteristic of F is zero (resp., positive), then ρ(G ) is a
finite extension of a split unipotent algebraic group (resp.,
finite).
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Corollaries

We [MaR-19] also obtain following interesting corollaries

Any compactly generated group linear group over F for which
Pk is dense is compact.

Assume that E is a global field and H is a linear group over E such
that Pk is surjective on H for some k > 1.

If the characteristic of E is 0, then H contains an unipotent
normal subgroup of finite index (see [Ch-09] for related
results).

If the characteristic of E is p > 0, then H is locally finite, that
is any finitely generated subgroup of H is finite.

If the characteristic p of E divides k , then H is finite.

If Pk is surjective on H for all k ≥ 1, then either H is a
unipotent group or H is trivial depending on characteristic of
E is 0 or positive. .
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Algebraic groups

Assume that F is a non-Archimedean local field and G is an
algebraic group defined over F: p-adic algebraic group case is
considered in [Ch-09].

Theorem [Mar-20]

Let Rus,F(G ) be the F-split unipotent radical of G . Suppose that
the characteristic of F does not divide k . Then the following are
equivalent:

(a) Pk is dense in G (F);

(b) G (F)/Rus,F(G )(F) is compact and Pk is surjective on
G (F)/Rus,F(G )(F);

(c) Pk is surjective in G (F).

Suppose the residual characteristic of F divides k . Then density of
Pk on G (F) implies that G (F) is a finite extension of a split
unipotent group. In addition if characteristic of F is positive, then
G (F) is finite.
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Algebraic groups contd.,

Theorem [MaR-19]

If Pk is surjective on G (F) and H is an algebraic subgroup of
G defined over F, then Pk is surjective on H(F).

If H is a closed (not necessarily algebraic) normal subgroup in
G (F) and Pk is dense in H as well as in G (F)/H, then Pk is
surjective on G (F)

Suppose Pk is surjective on G (F) for all k ∈ N. Then G (F) is
unipotent. In addition if characteristic of F is positive, then
G (F) = {e}.
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