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Suppose G acts on T' as a group of automorphisms

Local action of G at vertex v: (closure of)
Perm gp induced by action of Stabg(v) on neighbours of v

Examples: Consider T3 ’
e Aut(T3)
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e Q: Local action C3?
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Q: How “close” to Aut (73) can G be?

A: Not very — our specified local actions “collide” to restrict G
Stabg(v) induces C3 on neighbours of v

So Stabg (v, w) fixes all neighbours of v . ..

... and all neighbours of w

etc. Hence Stabg (v, w) is trivial and G is discrete

Moral: choice of local
action can severely
restrict global behaviour
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Main tool for groups acting on trees is Bass—Serre Theory

e Bass—Serre Theory is of limited use when constructing non-discrete
groups needed in the theory of locally compact groups
(more later)

e An emergent idea of local-to-global universal groups is more useful
in this situation

e Our theory of local action diagrams is a local-to-global complement
to Bass—Serre Theory

Conventions:

e Graphs are in the sense of Serre, except loops may or may not
equal their own reverse

e Trees have no loops or multiple edges

¢ All topological statements wrt permutation topology and <. means
closed subgroup
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Primary tool: Bass—Serre Theory

Graph of groups (G,T') is a graph T" “decorated” with groups:
e Each P € VT is decorated with a group G p (vertex groups)
e Each Y € AT is decorated with a group Gy (edge groups)

o Gy =Gy forally € AT
(and a monomorphism Gy — Gy is specified for all Y € AT')

Bass—Serre Structure Theorem. Suppose G ~ T without inversion.
@® There is a graph of groups I associated to (7', G), and G can be
identified with the fundamental group of T'.
© GConversely, given a graph of groups T', its fundamental group IT acts
on atree T in such a way that its associated graph of groups is T".

Remarks:
® Decomposition —  works well for locally compact groups
© Construction — problems arise if you want to specify the

action ...
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Primary tool: Bass—Serre Theory
Small example. Imagine you want to build G ~ T3 with 2 vertex orbits &
specific permutation representations for your vertex stabilisers.
E.g. Stabg(v) = CoWrCs at each vertex v
o Bass—Serre says take G' = Stabg(v) *stabe (v,w) Staba(w) for

adjacent v, w
e We've already seen desired action is impossible

Moral: For Bass—Serre to construct what you want, you already need
to know that your desired stabiliser arises as a stabiliser of an e.g.

almost transitive subgroup of Aut (T')

Local-to-global constructions avoid this. We have a local-to-global
complement to Bass—Serre theory
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groups in .
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Independence Property (P)

e Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in

.. Achieved via groups acting on trees
(answering a question due to Serre)

e Tits’ result relies on Tits’ Independence Property (P) for G ~ T

e (Q (finite or infinite) path in T

e Does Stabg(Q) act
independently on each of
the subtrees “hanging off”
Q7

e If “YES” for all choices for @
then G has Property (P)
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Groups in .7

e For G ~ T let Gt := (pointwise stabilisers in G of edges in T')

Theorem. (Tits, ’70) Suppose T is an infinite tree and G < Aut T has
Property (P). If G does not preserve any nonempty proper subtree, nor
fix any end, then G is abstractly simple.

Corollary. If n € N>3 then (AutT,,)* € . and is nonlinear.
(Note: Serre already knew (Aut 7,,)* was topologically simple)

Flawed plan to generate groups in . from G ~ T
e Use Bass—Serre to find “large” (i.e. nondiscrete) subgroups of
Aut T,, with Property (P) and apply theorem
Breakthrough:
e Local-to-global universal groups
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M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U (M)
There is a “universal” locally-M subgroup U (M) < Aut (T},,) that:

e has Property (P) and the universal property
e has a simple subgroup of index 2 (gen. by vertex stabs)

(2017, S.) Box product U(M, N)
There is a “universal” locally-(M, N) subgroup U (M, N) < Aut (T, ,) that:

e has Property (P) and the universal property
e is simple when M, N are generated by point stabilisers

o Majority of new constructions of nonlinear groups in . have used the ideas
of Tits and Burger and Mozes.

e (2017, S.) There are precisely 2% isomorphism classes in .
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Theory of local action diagrams (la0s)

e Analogous to Bass—Serre Theory for ‘local actions’

e Gives a general way of completely describing and classifying closed
subgroups of Aut 7" with Property (P) (call such groups (P)-closed)

Definition. A local action diagram A = (T, (X,), (G(v))) consists of:
e A connected graph T"
e For each arc a of ', a nonempty set X, (called the colour set of a).
e Vv € VT, a group G(v) (called the local action at v) with the following
properties:

e Write X, := |—|an*1(1)) X,
(disjoint union)
e G(v) < Sym(X,) is closed
e Sets X, are the orbits of
G(v)on X,
Isomorphisms of local action diagrams: the graphs are isomorphic (with iso. 6) &
the local actions are perm. isomorphic via X, — Xp(,) around each vertex
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Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)
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Outline of argument:
1. Every lad A gives rise to a special arc-coloured tree T called a A-tree

e Ais a graph I' with arc-colours X,
(local actions play no part here)

e A A-tree T is a tree T with: .‘

- A colouring map
L:AT = | ,car Xa

- A surjective homomorphism
m:T—1T

E

such that
Vu; € VT and Va € o~ (7(v;))
L restricts to a bijection:
{beo () :7(b) =a} — X,
e For A-trees T, T’
3 graph isomorphism
0:T—T' st o=
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e Automorphism gp of A-tree T is: 5
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Outline of argument:

2. We define a “universal” group U(T,A) < AutT

e Automorphism gp of A-tree T is: 5

Aut,T:={0 e AwtT: 7m0 =7} K(V.\:V )

i Q)
e The local action of g € Aut, T .‘
atv < V1 GINT= 60
£9£|;,11 (v) € Sym(Xﬂ'(v)) *x
e g€ Aut,Tliesin U(T,A) iff Vo € VT Q‘i/"‘/' AW,
the local action of g at v lies in G(7(v)). o oV,
998t
e Choice of T doesn’t matter, W L,
results in perm. iso. universal groups. o v,
Write U(A) for the universal group X = E/ / } o
v P

Wy
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Outline of argument:

3. Foratree T and G < Aut T, there is a [ad A associated to (7', G) and T can be
arc-coloured to be a A-tree T

Proof idea: pick representative vertices in T' and use their arcs in T as the colours in A



Theory of local action diagrams (lads)



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T is a tree and G <. AutT has
Property (P)

Outline of argument:



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams
e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)
Outline of argument:
Initial things to prove:



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams
e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)
Outline of argument:
Initial things to prove:
e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)
Outline of argument:
Initial things to prove:
e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)

e For A and T, we define the universal group U(A) = U(T,A) < AwtT



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
e Isomorphism classes of local action diagrams
e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)
Outline of argument:
Initial things to prove:
e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)
e For A and T, we define the universal group U(A) = U(T,A) < AwtT
e Foratree 7" and G < AutT’, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T'.



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)

Outline of argument:
Initial things to prove:

e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)

e For A and T, we define the universal group U(A) = U(T,A) < AwtT

e Foratree 7" and G < AutT’, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T".

Consequences:



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)

Outline of argument:
Initial things to prove:

e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)

e For A and T, we define the universal group U(A) = U(T,A) < AwtT

e Foratree 7" and G < AutT’, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T".

Consequences:
e The lad associated to U(A) is A (up to isom.)



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)

Outline of argument:
Initial things to prove:

e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)

e For A and T, we define the universal group U(A) = U(T,A) < AwtT

e Foratree 7" and G < AutT’, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T".

Consequences:
e The lad associated to U(A) is A (up to isom.)
e U(A) <. AutT has Property (P)



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)

Outline of argument:
Initial things to prove:

e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)

e For A and T, we define the universal group U(A) = U(T,A) < AwtT

e Foratree 7" and G < AutT’, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T".

Consequences:
e The [ad associated to U(A) is A (up to isom.)
e U(A) <. AutT has Property (P)
e For any G < AutT with associated [ad A, then (up to perm isom)



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
e Isomorphism classes of local action diagrams
e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)
Outline of argument:
Initial things to prove:
e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)
e For A and T, we define the universal group U(A) = U(T,A) < AwtT
e Foratree 7" and G < AutT”, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T'.

Consequences:
e The [ad associated to U(A) is A (up to isom.)
e U(A) <. AutT has Property (P)
e For any G < AutT with associated [ad A, then (up to perm isom)

G < U(A) with equality iff G is closed with Property (P).



Theory of local action diagrams (la0s)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:
¢ |somorphism classes of local action diagrams

e Isomorphism classes of pairs (T, G) where T'is a tree and G <. AutT has
Property (P)

Outline of argument:
Initial things to prove:

e Every [ad A gives rise to a special arc-coloured tree T called a A-tree
(underlying uncoloured tree will be T)

e For A and T, we define the universal group U(A) = U(T,A) < AwtT

e Foratree 7" and G < AutT”, there is a lad A’ associated to (7”,G) and T”
can be arc-coloured to be a A’-tree T".

Consequences: Groups U(A) are precisely the (P)-closed groups up to isom.

e The lad associated to U(A) is A (up to isom.)
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Remarks

o All possible local action diagrams arise
e Examples:

e Burger—Mozes framework: T is a single vertex with a set of loops, each
of which is its own reverse
(cf graph of groups of an HNN extension)
e Box product framework: I" has two vertices and no loops.
(cf graph of groups of an amalgamated free product)

e Properties of G <. Aut T with Property (P) can be read directly from A
For example:

Proper nonempty invariant subtrees and fixed ends of G
(arise from non-empty “strongly confluent partial orientations” of A)

Hence: simplicity of G+



Thank you

Papers to read for more info:

e Marc Burger & Shahar Mozes, ‘Groups acting on trees: from local to global
structure’, Publications mathématiques de I'l.H.E.S. (2000)

e Colin D. Reid, Simon M. Smith with an appendix by Stephan Tornier, ‘Groups
acting on trees with Tits’ independence property (P)’, arXiv:2002.11766

e Simon M. Smith, ‘A product for permutation groups and topological groups’,
Duke Math. J. (2017)

e Stephan Tornier, ‘Groups Acting on Trees With Prescribed Local Action’,
arXiv:2002.09876
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X, is union of these X,

e G(v) is closure of the permutation
group induced by Stabg(v*) ~ X,

\/*
i - —1.
e Finally arc-colour 7' to form a A-tree: oF {
L] Q- ?
e Yw € VT choose g, € G s.t. f

. %Zj*ﬁu(w) set £(b) := gub. T I ) G=Au'fl:_
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Enumerating all (P)-closed groups
Let C(n, d) be the class of (P)-closed actions on trees (T, G) such that G has at
most n orbits on vertices and no vertex has degree greater than d. Then:
e There are only finitely many conjugacy classes in C(n, d)
e The number of conjugacy classes grows rapidly with n and d. Forn =1
there are more than just the Burger-Mozes groups.

e Stephan Tornier has an appendix in our paper where he uses GAP to find all
(up to conjugacy) (P)-closed groups on T, the d-regular tree, for d < 5.



