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Backward iterates of a random point f (z) = 3z−z3
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Backward iterates of a random point f (z) = 3z−z3
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Backward iterates of a random point f (z) = 3z−z3
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Backward iterates of a random point f (z) = 3z−z3
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Zoran Šunić, Hofstra University IMGs of conservative polynomials



Backward iterates of a random point f (z) = 3z−z3
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The backward iterates of a randomly chosen point, generation 8
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Backward iterates of a random point f (z) = 3z−z3
2

The backward iterates of a randomly chosen point, generation 9
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Backward iterates of two loops f (z) = 3z−z3
2

a b
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Backward iterates of two loops f (z) = 3z−z3
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Backward iterates of two loops f (z) = 3z−z3
2

a b
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Monodromy group and iterated monodromy group

Let f : M1 → M0 be d-to-1 covering map, t any point in M0, and
t0, t1, . . . , td−1 the d preimages of t under f .
Any loop a based at t lifts to d paths starting at
T = t0, t1, . . . , td−1.
The loop a induces a (bijective) transformation a : T → T given by

a(tx) = the end point of the lift of a starting at tx

This is the monodromy action (monodromy transformation) of
the loop a.
The monodromy group of f is the subgroup of Sym(T )
consisting of the monodromy transformations induced by the
fundamental group of M0 based at t.
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A 3-to-1 covering (take t = 1 and lift a2, ab2a)
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aa(10) = 11 aa(11) = 10 aa(12) = 12

ab2a(10) = 11 ab2a(11) = 12 ab2a(12) = 10

Zoran Šunić, Hofstra University IMGs of conservative polynomials



. . .
f // M3

f // M2
f // M1

f // M0

. . . •
,, •

))
. . . •

22

•

##

. . . •
,, •

55

. . . •
22

•
. . . •

,, •

))
. . . •

22

•

;;

. . . •
,, •

55

. . . •
22
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Definition of IMG

Definition (Nekrashevych)

Each loop based at t in M0 induces an automorphism of the tree
of pre-images of t. The group of all these tree automorphisms is
called the iterated monodromy group of f .
Thus,

IMG (f ) = π1(M0)/Ker(action of π1 on the tree of preimages)
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Lift twice (take t = 1 and lift ab2a)
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ab2a : 100→ 110→ 121→ 101→ 111→ 000→ 120→ 102→ 112→ 122
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Post-critically finite polynomials

f = a post-critically finite polynomial of degree d
f (z) = 2z3 − 3z2 + 1/2
f ′(z) = 6z(z − 1) so critical points 0 and 1 with orbits

•
2
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2 •
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1 •
��
− 1

2

M0 = C− PCV(f ) (the post-critical value set removed)
M1 = f −1(M0) = C− f −1(PCV(f )) (the post-critical value set
removed along with its preimages)
M0 = C− {1/2, − 1/2, 0} and M1 =
C−{1/2, −1/2, 0}∪{two preimages of 0}∪{one preimage of 1/2}
Then f restricted to

f : M1 → M0

is a d-to-1 covering.
Moreover, M1 ⊆ M0 and we can keep taking preimages and lift
loops forever.

. . .
f // M4

f // f // M3
f // M2

f // M1
f // M0
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Conservative polynomials

Definition (Smale)

A polynomial is conservative if all of its critical points are fixed (in
particular, such polynomials are post-critically finite).
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f4,3(z) = 15z4 − 24z5 + 10z6: Behavior near 0
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Zoran Šunić, Hofstra University IMGs of conservative polynomials



f4,3(z) = 15z4 − 24z5 + 10z6: Behavior near 0
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f4,3(z) = 15z4 − 24z5 + 10z6: Behavior near 0
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Near 0, the term 15z4 in 15z4 − 24z5 + 10z6 dominates ...

... and everything looks more and more like z 7→ z4
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What about near 1?

We have

f (z)−1 = 5z4−4z5−1 = 20(z−1)3+45(z−1)4+36(z−1)5+10(z−1)6

Near 1, the term 20(z − 1)3 dominates, things wrap around 1
thrice and behave like z 7→ z3
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r -ary odometer, corresponding to z 7→ z r
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Applying f deletes the last digit.
The loop a acts by “adding 1” on the tree of preimages of t = 1.

a(0w) = 1w a(1w) = 0a(w)
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r -ary odometer, corresponding to z 7→ z r , as a transducer

Ternary odometer (adding 1 ternary)

(012)

a(0w) = 1w a(1w) = 2a(w) a(2w) = 0a(w)

#
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$$

1/2

::2/0
##
a
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id
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Parametrization by bi-colored trees
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Parametrization by bi-colored trees
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Parametrization by bi-colored trees
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From bi-colored trees to finite transducers

α4 = (0, 1, 2, 3, 4) α5 = (05) α7 = (6, 7) α8 = (6, 8)

α10 = (9, 10) α12 = (0, 6, 9, 11, 12) α14 = (0, 13, 14)
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From transducers to group actions

#1  
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\\

id
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0/2

zz
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G = 〈a, b〉 acts on words over X = {0, 1, 2} as follows

a(0w) = 1w b(0w) = 2w

a(1w) = 0aw b(1w) = 1w

a(2w) = 2w b(2w) = 0bw

They act as binary odometers over two binary alphabets that share
the 0 digit, but not not the nonzero digit.
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Rooted tree automorphisms

Rooted ternary tree X ∗ X = {0, 1, 2}

X ∗ is the set of all words over the 3-letter alphabet X = {0, 1, 2}.

X ∗ = {ε, 0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22, . . . } = X 0∪X 1∪X 2∪. . .

X 0 = level 0 ε

X 1 = level 1 0 1 2

X 2 = level 2 00 01 02 10 11 12 20 21 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Schreier graph = graph of the action of a and b
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Schreier graph = graph of the action of a and b
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The sequence of Schreier graphs approximates the Julia set
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The topological closure of IMG (f ) (the even case)

Theorem

Let f be a conservative polynomial and G = IMG(f ).
If all critical points of f have even multiplicities, then

G = Alt(d) oX G = Alt(d) n G × G × · · · × G︸ ︷︷ ︸
d

and, consequently, G is a finitely generated, self-replicating, regular
branch group, branching over itself.

Corollary

The group G is dense in the iterated permutational wreath product

Alt(d) oX (Alt(d) oX (Alt(d) o ...

In other words, the closure of G consists of all tree automorphisms
whose local permutation at every vertex is even.
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The topological closure of IMG (f ) (the odd case)

Theorem

Let f have at least one odd multiplicity. Denote by E the subgroup
of index 2 in G consisting of the elements whose top permutation
is even. Then G is a finitely generated, self-replicating, regular
branch group, branching over E . Moreover,

G ≤2 Sym(d) oX G = Sym n G × G × · · · × G︸ ︷︷ ︸
d

consisting of the elements α(g0, . . . , gd−1) for which the product
of the top permutations in g0, . . . , gd−1 has the same parity as α.

In other words, the closure consists of all tree automorphisms for
which the parity of the local permutation at every vertex agrees
with the total parity of the local permutations of its d children.
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On closures of branch groups

α

α0 α1 . . . αd−1

parity of α = sum of the parities of α0, α1, . . . , αd−1

Theorem (Garrido-Š)

Let G be a self-similar, self-replicating, regular branch group of
tree automorphisms in Aut(X ∗). Then its closure in Aut(X ∗) is
finitely constrained (a group tree-shift of finite type).
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The semigroup generated by the odometers

Theorem

Let f be a conservative polynomial, G = IMG(f ), with the
standard generating set S coming from the bi-colored tree.
The semigroup generated by S is the free partially commutative
semigroup on S (called trace in CS), with the commuting (called
independence in CS) relations

axay = ayax ⇐⇒ ax and ay share a digit
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Group presentations (we have one for every G = IMG(f ))

Theorem

The map
a 7→ a2 b 7→ b2

extends to an injective homomorphism φ : G → G.
A presentation for G (2; 2) is given by

〈a, b | R ∪ φ(R) ∪ φ2(R) ∪ . . . }

where

R = {(aba−1b−1)3,

aba−1b−1abab−1aba−1b−1a−2,

bab−1a−1baba−1bab−1a−1b−2,

ab−1a−1baba−1b−1(a−1b−1a2ba−1bab−1a−1)−1}
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The spectrum of G (r ; k) (G (3; 5))

k = # of odometers = # of critical points = the rank of π1
r = the odometer arity = local degree near critical pts = multiplicity +1
d = the degree of the polynomial = # fixed points = # vertices =
k(r − 1) + 1
The k odometers share the digit 0 but none of the other digits.
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The spectrum of G (2, 2)

b

a

a

a1 0 2

b

b

b

00

20

02

2210

01

11
21

b

b

12

a

a

a

a

b a

a

a b

b

b

b

a

a b

b

bb

b

b

b

b

b
b

a

a

a

a

a

a

a

a

000

200

020

220

202

022

222100

010

110

001

101

011

111

120211

201

021

221 102

012

112

121

a
b

ba

a b a

b

bb

a

b a

a

b

b

a

ab

b a

002 212

210 122

a

b

b a a

a

a

a

b

b

a

b

a b

a b

a b
01 2

a b
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Spectrum of G(2;2)

Pn+1(x) = (x − 2)3
n · Pn(x2 − 2x − 4)

Denote q(x) = x2 − 2x − 4.

P0(x) = x − 4

P1(x) = (x − 2)(q(x)− 4)

P2(x) = (x − 2)3(q(x)− 2)(q(q(x))− 4)

P3(x) = (x − 2)3
2
(q(x)− 2)3(q(q(x))− 2)(q(q(q(x)))− 4)

So, the spectrum on level n is

q−n(4) ∪
n−1⋃
i=0

q−i (2)
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Spectrum of G(r;k)

Fix k and set k0 = k − 1.
Let pr and qr , be the polynomials recursively defined by

p0(x) = 1, q0(x) = 2k,

p1(x) = x − 2k0, q1(x) = x ,

pr (x) = (x − 2k0) · pr−1(x) − pr−2(x), qr (x) = (x − 2k0) · qr−1(x) − qr−2(x).

When k = 2,

p0(x) = 1 q0(x) = 4

p1(x) = x − 2 q1(x) = x

p2(x) = x2 − 4x + 3 q2(x) = x2 − 2x − 4

p3(x) = x3 − 6x2 + 10x − 4 q3(x) = x3 − 4x2 − x + 8

. . .
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Spectrum of G(r;k)

Theorem

The characteristic polynomial of the adjacency matrix of the nth
level Schreier graph of G (r ; k) is given recursively by

Pn+1(x) = (pr−1(x))(k−1)d
n
Pn(qr (x))

The spectrum of the corresponding infinite Schreier graph (coming
from the action on right-infinite words) is a set of isolated points
together with its closure, which is a Cantor set (and is the Julia set
of qr )
The sequence of scaled Laplacians rnLn on level n converges to a
Laplacian on the Julia set of f .
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Spectrum of the monoid M(r ; k) (M(5, 3))

Theorem

The spectrum of the adjacency matrix of the nth level Schreier
graph of the monoid M(r ; k) is given by backward iterations of the
polynomial

qr (x) = x(x − k0)r−1
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