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DIFFUSION-BASED MORPHOGEN GRADIENTS1

A spatially varying concentration of a morphogen protein drives a corresponding spatial
variation in gene expression through a thresholding mechanism.

Continuously varying morphogen concentration =⇒ discrete spatial pattern of
differentiated gene expression across a cell population.

Basic mechanism of morphogen gradient formation involves a localized source of protein
production within the embryo, combined with diffusion away from the source and
subsequent degradation.

1L. Wolpert 1969
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CYTONEME-BASED MORPHOGEN GRADIENTS2

wing imaginal disc and air sac primordium

(ASP) of Drosophila (Kornberg et al)

Cytonemes are long, thin actin-rich protrusions varying in length from 1-200 µm. Allow for
the active transport of morphogens or their cognate receptors between cells.

They have been observed in many types of cells and in many developmental contexts,
including the imaginal wing disc of Drosophila (Dpp and Hh), sonic hedgehog (Shh)
cell-to-cell signaling in chicken limb buds, and Wnt signaling in zebrafish.

2T. Kornberg 2014
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FILOPODIA PLAY A ROLE IN WITHIN-HOST SPREAD OF COVID-193
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protrusions with budding virus

• Infection promotes host MAPK

cascade activity and shutdown

of mitotic kinases

3Bouhaddu et al Cell 182 (3) 2020
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CYTONEME-BASED MORPHOGENESIS

direct contact synaptic contact

actin filament

active transport of morphogens

along cytonemes

Drosophila wing disc and Shh signaling in chicks

Wnt signaling in zebrafish

search-and-capture

morphogens located at the tip of a

growing cytoneme
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DIRECTED SEARCH-AND-CAPTURE MODEL OF CYTONEMES4

Single cytoneme nucleates in a random direction from a source cell. Probability of
orientation to kth target cell is pk with

∑
k pk < 1.

One end of the cytoneme is fixed at x = 0, and the position of the other end is taken
to be a stochastic variable X(t) (length of the cytoneme).

Filament randomly switches from a growing state with tip speed v+ to retraction
phase with tip speed v−. Switching times distributed exponentially with rate r.

source cell

cytoneme

target cell

xi

Ω

pi

4PCB and Kim 2019,PCB 2020
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SINGLE TARGET

source cell

cytoneme

v+ 

v- 

growth

phase

retraction

phase

refractory

period

resetting
target cell

L

1 - p

p

nucleation

(i)

(ii)

• Chapman-Kolmogorov equation

∂p+

∂t
= −v+

∂p+

∂x
− rp+, x ∈ (0, L),

∂p−
∂t

= v−
∂p−
∂x

+ rp+,

dP0

dt
= v−p−(0, t)− ηP0(t),

with boundary conditions

v+p+(0, t) = ηP0(t), p−(L, t) = 0.

and initial conditions

P0(0) = 0, pn(x, 0) = δn,+δ(x).

• resetting rate r, nucleation rate η
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MEAN FIRST PASSAGE TIME (MFPT) FOR p = 1

Given the boundary conditions one finds that

d
dt

∫ L

0
p(x, t)dx +

dP0

dt
= −v+p+(L, t) ≡ −J(t),

where J(t) is the probability flux into the target.

Introduce the survival probability

Q(t) =

∫ L

0
p(x, t)dx + P0(t),

The first passage time density f (t) is

f (t) = −
dQ(t)

dt
= J(t).

and the MFPT T for the cytoneme to be captured by the target is

T = −
∫ ∞

0
t
dQ(t)

dt
dt =

∫ ∞
0

Q(t)dt.
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RENEWAL METHOD

Exploits the fact that resetting eliminates any memory of previous search stages.

Consider the following set of first passage times;

T = inf{t > 0; X(t) = L}, FPT with an arbitrary number of resettings

S = inf{t > 0; X(t) = 0}, FPT for the first resetting and return to the origin

R = inf{t > 0; X(t + S + τ) = L}, FPT with at least one resetting.
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RENEWAL METHOD

Let Ω = {T <∞} be the set of all events for which the particle is eventually
absorbed by the target (which has measure one),

Let Γ = {S < T <∞} ⊂ Ω be the subset of events in Ω for which the particle resets
at least once.

It follows that Ω\Γ = {T < S =∞} is the set of all events for which the particle is
captured by the target without any resetting.

Introduce the decomposition

E[T ] = E[T 1Ω\Γ] + E[T 1Γ].

Probability of no resetting up to time t is Ψ(t) = e−rt and the survival probability
without resetting is Q0(t) = H(L/v+ − t). Hence

E[T 1Ω\Γ] = −
∫ ∞

0
te−rt dQ0(t)

dt
dt =

(
1 + r

d
dr

)
Q̃0(r),

where

Q̃0(r) =
1
r

(
1− e−rL/v+

)
.
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RENEWAL METHOD

The second expectation can be further decomposed as

E[T 1Γ] = E[(S + τ +R)1Γ] = E[S1Γ] + (τ + T)P[Γ].

where E[τ ] = τ is the mean refractory (nucleation) period

The result E[R1Γ] = TP[Γ] follows from the fact that return to the origin restarts the
stochastic process without any memory.

Calculation of E[S1Γ]: first resetting occurs with probability re−rtQ0(t)dt in the
interval [t, t + dt]. At time t the particle is at position v+t and thus takes an
additional time v+t/v− to return to x = 0. Hence

E[S1Γ] =

∫ ∞
0

re−rtt
(

1 +
v+

v−

)
Q0(t)dt = −r

(
1 +

v+

v−

)
d
dr

Q̃0(r).

From the definitions of the first passage times and the effect of resetting,

P[Γ] = P[S <∞]P[R <∞],

with P[R <∞] = 1 and

P[S <∞] =

∫ ∞
0

re−rtQ0(t)dt = rQ̃0(r).
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FINAL RESULT5

Combining the various results yields an implicit equation for T:

T =

(
1 + r

d
dr

)
Q̃0(r) + rτQ̃0(r)− r

(
1 +

v+

v−

)
d
dr

Q̃0(r) + rQ̃0(r)T.

Rearranging this equation yields the final result

T =
Q̃0(r) + rτQ̃0(r)− r v+

v− Q̃′0(r),

1− rQ̃0(r)
.

This is a general formula for a dynamical process with stochastic resetting, finite
return times and refractory periods. For our particular model,

T = T(L) :=
1
r

[
(erL/v+ − 1)(1 + rτ + v+/v−)−

rL
v−

]
.

In the limit r→ 0, T(L)→ L/v+, which is simply the deterministic time for the
cytoneme tip to travel the distance L.

5PCB 2020
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SEARCH WITH p < 1: OPTIMAL RESETTING RATES
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MULTIPLE TARGETS

Can extend the renewal method to multiple targets

Introduce the FPT to find the j-th target:

Tj = inf{t ≥ 0; X(t) = Lj, I(t) ≥ 0}

with Tj =∞ if another target is found.

Introduce the set of events that particle finds j-th target: Ωj = {Tj <∞}

The splitting probability that the cytoneme finds the j-th target is

πj = E[1Ωj ] = P[Ωj] =
pje
−rLj/v+∑N

l=1 ple−rLl/v+
,

Since MFPT to find a given target is infinite, we need to condition on the set of
events Ωj. Define conditional MFPT as

πjTj = E[Tj1Ωj ].
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MULTIPLE SEARCH-AND-CAPTURE EVENTS6

grow

 nucleate

deliver and retract

morphogen bursts

time

target cell

reset

degrade

pk

1-pk

Stages of a single search-and-capture process culminating in delivery of a burst of
morphogen to the kth target cell.

(i) Alternating periods of growth, shrinkage.

(ii) Nucleation whenever the cytoneme shrinks to zero

(iii) When a cytoneme is captured by a target cell, it delivers a morphogen burst and
then retracts back to the nucleation site.

6PCB and Kim 2019, PCB 2020
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MAPPING BETWEEN QUEUING THEORY AND MORPHOGEN BURSTING

(i) arriving

customers
(ii) queue

(iii) exiting

customers
server

(a)

(i) morphogen bursts

(b)

(ii) accumulation of

morphogen in cell

(iii) degradation

Multiple search-and-capture events generates a sequence of morphogen bursts
within a target cell - analogous to the arrival of customers in a queuing model.

Accumulation of morphogen within the cell, is the analog of a queue.

Independent particle degradation corresponds to exiting of customers after being
serviced by an infinite number of servers
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QUEUING MODEL G/M/∞

The particular queuing model is the G/M/∞ system.

Here the symbol G denotes a general inter-arrival time distribution

The symbol M stands for a Markovian or exponential service-time distribution
H(t) = 1− e−γt for morphogen degradation at a rate γ, and ‘∞’ denotes infinite
servers.

We can write for each inter-event time ∆ and target K(∆)

Fj(t) := P[∆ < t,K(∆) = k] = P[∆ < t, |K(∆) = k]P[K(∆) = k]

= πj

∫ t

0
fj(τ)dτ

fj(τ) is the conditional FPT density for a single search-and-capture event that
terminates at the jth cell.

Tj =

∫ ∞
0

τ fj(τ)dτ
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RESULTS: MULTIPLE SEARCH-AND-CAPTURE EVENTS

Let Mk be the steady-state number of resource packets in the k-th target. The mean is
(Little’s law)

Mk =
πk

γ
∑N

j=1 πj(Tj + τcap)
=

πk

γ(T + τcap)
,

where τcap =
∫∞

0 ρ(τ)dτ is the mean loading/unloading time and T =
∑N

j=1 πjTj is
the unconditional MFPT

T + τcap is the mean time for one successful delivery of a packet to any one of the
targets and initiation of a new round of search-and-capture. Its inverse is the mean
rate of capture events and πk is the fraction that are delivered to the k-th target (over
many trials).

The k-dependence of Mk specifies the morphogen gradient

The variance is

Var[Mk] = Mk

 πk f̃k(γ)

1−
∑N

j=1 πj f̃j(γ)
+ 1−Mk

 .
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EXAMPLE: SINGLE LAYER OF TARGET CELLS

source cell
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Single 1D layer: Suppose that the k-th target cell subtends an angle ∆φk and that the
distribution of cytoneme directions is uniform on [0, π/2].

Moreover, ∆φk+1 ≈ φ(xk + ∆x)− φ(xk), where tanφ(x) = x/L0, L0 is the
perpendicular distance of the source cell from the target layer, and xk = k∆x.

It follows that
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RESULTS AND EXTENSIONS
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OUTLINE OF TALK

I. Cytoneme-based morphogenesis

II. Switching diffusions and protein gradients in C. elegans zygote

III. Intracellular Turing pattern formation

Paul C Bressloff (University of Utah) Biological pattern formation October 19, 2021 22 / 44



INTRACELLULAR PROTEIN CONCENTRATION GRADIENTS

An important difference between intracellular gradients and multicellular
morphogen gradients is that degradation does not play a significant role in the
formation of intracellular gradients.

This is a consequence of the fact that the lifetime of a typical protein exceeds the
duration of the cellular process regulated by the presence of a gradient.

Instead, some modification in the protein, such as its phosphorylation state, changes
as it moves away from the catalytic source of the modification.

Cdr2 inactive

Cdr2 active

Pom1p

nucleus

activating

enzyme
receptor

P P*

P*P

diffusion

deactivating

enzyme

(a) (b)
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PROTEIN GRADIENTS IN C. ELEGANS EMBRYOS7

Intracellular protein gradients regulate cell division in C. elegans one-cell zygote

Mex-5 and PIE-1 form opposing gradients

Both proteins rapidly switch between fast and slow diffusing states with kinetics
that vary along the anterior/posterior axis of the cell

Kinetic polarization generated by PAR polarity system

7Wu et al PNAS 2018
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RAPID DIFFUSION STATE SWITCHING IN C. ELEGANS ZYGOTE
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SPACE-DEPENDENT SWITCHING BROWNIAN MOTIONS8

Suppose switching conformational states have different diffusivities D0
β/ε


α/ε

D1

Consider the hybrid Wiener process

dX(t) =
√

2DN(t)dW(t), N(t) ∈ {0, 1}

Suppose that the switching rates α, β depend on the current position of the particle,
α = α(X(t)), β = β(X(t)).

0 L

D
1

D
0

α(y)

β(y)

x = y

D
1

D
0

α(z)

β(z)

x=z

8PCB and Lawley Phys Rev E 2017, 2019
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REACTION-DIFFUSION EQUATIONS

At the population level we have the densities Cn(x, t), n = 0, 1, evolve according to

∂C0

∂t
= D0

∂2C0

∂x2
− β(x)C0 + α(x)C1

∂C1

∂t
= D1

∂2C1

∂x2
+ β(x)C0 − α(x)C1,

with reflecting boundary conditions

∂xC0(0, t) = ∂xC1(0, t) = 0, ∂xC0(L, t) = ∂xC1(L, t) = 0.

and the initial conditions Cn(x, 0) = C∗n .

Typical length of C. elegans is L = 32µm and switching rates are around 0.1 s−1.

Introducing the fundamental time-scale τ = L2/D with D ∼ 1µm2/s yields
τ ∼ 1000s.

Fast switching regime: rescale switching rates α, β → α/ε, β/ε with α, β = O(1)
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FAST SWITCHING LIMIT

Decompose the density Cn as

Cn(x, t) = C(x, t)ρn(x) + εwn(x, t),

where
∑

n wn(x, t) = 0 and

ρ0(x) =
α(x)

α(x) + β(x)
, ρ1(x) = 1− ρ0(x).

Substituting this decomposition into RD equations and then adding the pair of
equations gives

∂C
∂t

=
∂2D(x)C
∂x2

+ ε
∑

n=0,1

Dn
∂2wn

∂x2
,

where
D(x) =

∑
n=0,1

Dnρn(x).
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BROWNIAN MOTION WITH ITO SPACE-DEPENDENT DIFFUSIVITY

Taking limε→0 yields the diffusion equation

∂C
∂t

=
∂2

∂x2
(D(x)C),

with no-flux boundary conditions ∂xD(x)C(x, t) = 0 at x = 0, L.

At single particle level have the Ito SDE

dX(t) =

√
2D(X(t)) dW(t), D(x) =

∑
n=0,1

ρn(x)Dn

The steady-state solution takes the form

C∗(x) =
A

D(x)
,

∫ L

0
C∗(x)dx = L[C∗0 + C∗1 ]

Normalization condition implies that

A = L[C∗0 + C∗1 ]

[∫ L

0

dx
D(x)

]−1

.
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REPRODUCE RESULTS OF WU ET AL. 2018

Approximate the switching rates for MEX-5 and PIE-1 using piecewise constant
functions.
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BOUNDARY LAYERS

Original RD system involves two coupled diffusion equations so that at each
boundary there are two boundary conditions: reflecting BCs for C0 and C1.

On the other hand, the reduced diffusion equation for the scalar C = C0 + C1 has a
single boundary condition at each end.

Singular perturbation problem: solution to the scalar equation represents an outer
solution that is valid in the bulk of the domain, but has to be matched to an inner
solution at each boundary.
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CLASSICAL TURING MECHANISM9

Two nonlinearly interacting chemical species differing significantly in their rates of diffusion
can amplify spatially periodic fluctuations in their concentrations, resulting in the formation
of a stable periodic pattern.

∂u
∂t

= Du∇2u + f (u, v),
∂v
∂t

= Dv∇2v + g(u, v).

k

+ + + + +

fastest growing mode

σ(k)

dispersion curve

=

d
e

n
s
it
y

space

d
e

n
s
it
y

space

time

activator u

inhibitor v
+

Du

Dv

-bu

-v

+

_

Gierer and Meinhardt: one way to generate a Turing instability is an activator-inhibitor
system: a slowly diffusing chemical activator and a quickly diffusing chemical inhibitor.

9Turing 1952
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INTRACELLULAR TURING PATTERN FORMATION

Many examples of spatiotemporal patterns of signaling molecules at the intracellular level –
regulate downstream structures that drive cell polarization and cell division (cytoskeleton,
cell membrane)

Classical Turing mechanism does not work at subcellular length and time scales.

Many intracellular processes are mass-conserving

Intracellular patterns typically involve the dynamical exchange of proteins between the
cytoplasm and plasma membrane, resulting in associated changes of conformational state
and a spatial redistribution of mass.

membrane
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(a) (b)

cytosolic diffusion

membrane diffusion

Hybrid reaction transport models that couple diffusion and active motor-driven transport eg.
synaptogeneisis in C. elegans

Paul C Bressloff (University of Utah) Biological pattern formation October 19, 2021 34 / 44



MASS CONSERVATION10

Mass-conserving RD system

∂u
∂t

= Du
∂2u
∂x2

+ f (u, v),
∂v
∂t

= Dv
∂2v
∂x2
− f (u, v),

Mass conservation condition

n̄ =

∫ L

0
n(x, t)dx, n(x, t) = u(x, t) + v(x, t).

Let (u∗, v∗) denote a fixed point of the system, which satisfies the pair of equations

f (u∗, v∗) = 0, u∗ + v∗ = n̄ :=
N
L
. (0.1)

Linearizing about (u∗, v∗) using uniform perturbations yields the following eigenpairs:

σ1 = 0, e1 =

(
−fv/fu

1

)
; σ2 = fu − fv, e2 =

(
−1
1

)
.

Marginally stable to perturbations that change the mass density – eigenvector tangential to
the reactive nullcline f (u, v) = 0. The second eigenpair determines the local stability of fixed
points against mass-conserving perturbations.

10Ishihara et al 2007, Halatek and Frey 2018
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MASS CONSERVATION

Suppose that fu < fv. Inclusion of diffusion can induce a spatially periodic redistribution of
the mass density, resulting in corresponding displacements of the local equilibria.
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CELL POLARIZATION IN FISSION YEAST

Fission yeast is a rod-shaped cell consisting of two hemispheres of constant radius that cap a
cylinder of increasing length.

Immediately following cell division, the cell initially grows at one end only, namely, the “old
end” of the previous cell cycle (monopolar growth).

Later in the cell cycle, the cell also starts growing from the new end (bipolar growth), in a
process known as “new end take off” (NETO) Cell growth then ceases during cell division.

NETO

new end–+
– ++

actin patch

microtubules

old end

actin cable

cell division

unipolar growth

bipolar growth

The Rho GTPase Cdc42 plays an important role in regulating polarized growth in fission
yeast. NETO is correlated with a switch from asymmetric to symmetric out-of-phase Cdc42
oscillations at the poles of the cell
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PDE-ODE MODEL OF CDC42 OSCILLATIONS IN FISSION YEAST11

Let C(x, t) be the cytosolic concentration of Cdc42 at x and Xi(t), i = 1, 2, the concentration of
Cdc42 at the i-th compartment, where t, t > 0, denotes time.The PDE-ODE model is taken to
be

∂C(x, t)
∂t

= D
∂2C(x, t)
∂x2

, 0 < x < L, t > 0,

with flux boundary conditions

−D∂xC(0, t) = −f (X1(t),C(0, t)), −D∂xC(L, t) = f (X2(t),C(L, t))

dX1

dt
= f (X1(t),C(0, t)),

dX2

dt
= f (X2(t),C(L, t))

X1 X2

L

a
u

to
c
a

ta
ly

s
is

cytoplasm

diffusive flux

11PCB and Xu 2018
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HOMEOSTATIC CONTROL OF SYNAPTIC DENSITY IN C elegans

During larval development of C. elegans, the density of ventral and dorsal cord synapses
containing the glutamate receptor GLR-1 is maintained despite significant changes in neurite
length12.

early stage C elegans 

ventral cord synaptic punta

late stage C elegans 

12Rongo et al 1999
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(a) Calcium influx through voltage-gated calcium channels activates CaMKII, which enhances
the active transport and delivery of GLR-1 to synapses 13.

(b) Under conditions of increased excitation, higher calcium levels results in constitutively active
CaMKII failing to localize at synapses, leading to the removal of GLR-1 from synapses

cell body synapse

CaMKII

maintenance

Ca2+ channel

CaMKII
GLR-1

trafficking

cell body synapse

delocalization

of CaMKII

Ca2+ channel

CaMKIIGLR-1

trafficking

(a)

(b)

removal

high Ca2+

low Ca2+

How do interactions between diffusing CaMKII molecules and GLR-1 establish and
maintain synaptic density during growth?

13Maricq et al Neuron 2013, 2015
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HYBRID TRANSPORT MODEL14

Hypothesis I: the formation of a regularly spaced distribution of synaptic puncta at an early
stage of development is due to a spontaneous pattern forming mechanism

Hypothesis II: Nonlinear interactions between a slowly diffusing species (CaMKII) with
concentration U and a rapidly advecting species (GLR-1) switching between anterograde
(R+) and retrograde (R−) motor-driven transport.

GLR-1

v

x

motor
-v

CaMKII

14PCB and Heather Brooks SIADS 2016, Phys. Rev. E 2017
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∂U
∂t

= D
∂2U
∂x2

+ f (R+ + R−,U),
∂U(x, t)
∂x

∣∣∣∣
x=0,L

= 0

∂R+

∂t
= −v

∂R+

∂x
+ αR− − βR+ + g(R+,U), vR+(0, t) = vR−(0, t)

∂R−
∂t

= v
∂R−
∂x

+ βR+ − αR− + g(R−,U), vR+(L, t) = vR−(L, t)

U

R+

R_

α α

+

_

autocatalysis

diffusion 

D

μ1 μ2ø ø

Choose the classical activator-inhibitor
system of Gierer and Meinhardt

f (R,U) = ρ1
U2

R
− µ1U

g(R,U) = ρ2U2 − µ2R.

ρ1, ρ2 are strength of interactions, µ1 and µ2
are decay rates.

Hypothesis III: the maintenance of synaptic density as the organism grows is due to “pulse or
stripe insertion” of a spatially periodic pattern on a growing domain.
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STEADY-STATE SOLUTIONS

Steady-state equations are equivalent to classical GM model.

Introduce the flux J = v(R+ − R−) and total concentration R = R+ + R−.

0 = D
d2U
dx2

+ ρ1
U2

R
− µ1U,

0 = −v
dR+

dx
+ αR− − βR+ + ρ2U2 − µ2R+,

0 = v
dR−
dx

+ βR+ − αR− + ρ2U2 − µ2R−.

0 = D
d2U
dx2

+ ρ1
U2

R
− µ1U,

0 = −
dJ
dx

+ ρ2U2 − µ2R,

0 = −v2 dR
dx
− (2α+ µ2)J.

Use third equation on RHS to eliminate J:

0 = D
d2U
dx2

+ ρ1
U2

R
− µ1U,

0 = D̂
d2R
dx2

+ ρ2U2 − µ2R, D̂ =
v2

2α+ µ2

However, linear stability analysis of full model differs from reduced model
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PUNCTA INSERTION ON A SLOWLY GROWING DOMAIN

Numerical simulations showing temporal evolution of U,R± on a slowly growing domain.
Length changes from 10µm to 100µm in 2 hours.

Insertion of new peaks maintains synaptic density (2-3 per 10 µm).
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Prediction: Pattern depends on the diffusivity of CaMKII, the speed and switching rates
of molecular motors, and the rate of CaMKII phosphorylation. Manipulation of these
parameters should change the synaptic spacing, but the insertion of new puncta should
persist.
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