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1. INTRODUCTION

Let F be a number field. Each automorphic representation π of
GLd(AF ) gives rise to Hecke eigenvalues (also called the Satake
parameter), a d-tuple of (unordered) nonzero complex numbers
H(πv) = (a1v, · · · , adv), at each place v of F where π is unrami-
fied, and thus at almost all places of F .

Let π1 and π2 be two irreducible automorphic representations
of GLn(AF ) which are written as isobaric sums:

π1 = π11 � π12 � · · ·� π1`,

π2 = π21 � π22 � · · ·� π2`′ ,

where π1j and π2k are irreducible cuspidal (unitary) automorphic
representations of GLdj(AF ) and GLdk(AF ) respectively. Then
by the strong multiplicity one theorem due to Jacquet and Shalika,
if π1 and π2 have the same Hecke eigenvalues H(π1,v) = H(π2,v)
at almost all places v of F where π1, π2 are unramified, then ` =
`′, and up to a permutation of indices, π1j = π2j .

In this lecture, we will consider a variant of the strong multi-
plicity one theorem, identified in the following definition.

Definition: Given automorphic representations π1 on GL(m,AF )
and π2 on GL(n,AF ), we say that π1 is immersed in π2, written
π1 � π2, if the Hecke eigenvalues of π1 (counted with multiplic-
ity) are contained in the Hecke eigenvalues of π2 (counted with
multiplicity) for almost all primes of the number field F .

On the other hand, we say that π1 is embedded in π2, written as
π1 ⊂ π2 if there is an automorphic representation π3 such that,

π2 = π1 � π3.
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The following is the motivating question for this lecture.

Question:
(1) Can it happen for distinct cuspidal representations that

π1 � π2?
(2) If yes, can we classify all such pairs of cuspidal represen-

tations π1 � π2?

One would have liked to assert that for cuspidal representations
π1 � π2 never happens if π1 6= π2, but that is not true. For ex-
ample, let π be a cuspidal non-CM automorphic representation
of PGL2(AF ). At any unramified place v of F , if (av, a

−1
v ) are

the Hecke eigenvalues of πv, then for the automorphic represen-
tation Sym2(π) of PGL3(AF ), the Hecke eigenvalues at the place
v of F , are (a2v, 1, a

−2
v ). Thus the Hecke eigenvalues of the triv-

ial representation of GL1(AF ) are contained in the set of Hecke
eigenvalues of the cuspidal automorphic representation Sym2(π)
of PGL3(AF ) at each unramified place of π.

The present work is based on the hope that for cuspidal rep-
resentations π1, π2, although π1 can be immersed in π2, without
π1 being the same as π2, this happens rarely, and only for pairs
of representations (π1, π2) which are related in some well-defined
way, and it is this relationship that we seek to discover!
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2. TWO SAMPLE RESULTS

We begin by proving the following simple proposition.

Proposition 1. Let π1 (resp. π2) be an irreducible cuspidal auto-
morphic representation of GLm(AF ) (resp. GLm+1(AF )). Then
π1 6� π2.

Proof. The proof is a simple consequence of the strong multiplic-
ity one theorem of Jacquet-Shalika recalled at the beginning of
this lecture. Let ω1 (resp. ω2) be the central character of π1 (resp.
π2); these are Grössencharacters of GL1(AF ). It is easy to see
that, if H(π1,v) is contained in H(π2,v) at almost all places v of
F , then,

π1 � (ω2/ω1) = π2,

which is not allowed by the strong multiplicity one theorem. �
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Here is another similarly ‘negative’ result, this time proved
with some more effort.

Proposition 2. Let π be an irreducible cuspidal automorphic rep-
resentation of GL4(AF ). Then 1 6� π.

Proof. We will prove the proposition by contradiction, so assume
that H(πv) contains 1 at almost all places of F where π is un-
ramified. Observe that to say that H(πv) contains 1 is equivalent
to saying that det(1 −H(πv)) = 0, which translates into the fol-
lowing identity (assuming thatH(πv) operates on a 4 dimensional
vector space V ):

1− V + Λ2(V )− Λ3(V ) + Λ4(V ) = 0.

(One way to think of this identity is in the Grothendieck group
of representations of an abstract group G which comes equipped
with a 4-dimensional representation V of G such that the action
of any g ∈ G on V has a nonzero fixed vector.)

Thus we get the identity:

1 + Λ4(V ) + Λ2(V ) = V + Λ3(V ).

Let the central character of π be ω : A×F/F× → C×. Since
we know by a work of Kim, that for π automorphic on GL4(AF ),
Λ2(π) is automorphic on GL6(AF ), by the strong multiplicity one
theorem, we get an identity of the isobaric sum of automorphic
representations:

1 � ω � Λ2(π) = π � ω · π∨.
Observe that the right hand side of this equality is a sum of two

cuspidal representations on GL4(AF ), whereas there are two one
dimensional characters of A×F/F× on the left hand side. This is
not allowed by the strong multiplicity one theorem, therefore the
proof of the proposition is completed. �
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3. A QUESTION

The following precise question lies at the basis of this work
(which one could consider as arising from the most wishful think-
ing!).

Question 1. Let π1 (resp. π2) be an irreducible cuspidal automor-
phic representation of GLm(AF ) (resp. GLm+2(AF )). Suppose
that π1 � π2. Then is there an automorphic representation π of
GL2(AF ) with central character ω : A×F/F× → C×, and a char-
acter χ : A×F/F× → C×, such that,

π1 = χ · ω ⊗ Symm−1(π),

π2 = χ⊗ Symm+1(π),

i.e., up to twist by a character, is it true that:

(π1, π2) = (ω ⊗ Symm−1(π), Symm+1(π)).

We will provide an affirmative answer to this question for m =
1, 2, 3 in this lecture. On the other hand, we will also provide
counter-examples to this question using the strong Artin conjec-
ture for all pairs of integers (q − 1, q + 1) where q ≥ 5 is a prime
power. The work of Calegari proves strong Artin conjecture for
certain cases for q = 5, which allows us to construct an uncondi-
tional counter examples for the pair (GL4,GL6) over Q.

In spite of the counter-example(s), I would like to think that
the question has an answer essentially in the affirmative, as we
discuss later.
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Remark 1. Here is a geometric analogue of the questions being
discussed in this lecture which was settled in a recent work of
Khare and Larsen. Let A and B be abelian varieties over a num-
ber field F with A simple. For v any finite place of F where both
A and B have good reduction, let Av, Bv denote their reductions
mod v (thus Av, Bv are abelian varieties over finite fields). As-
sume that there are isogenies from Av to Bv (not surjective as we
are not assuming dim(A) = dim(B)) for almost all places v of
F where A and B have good reduction. Then the question is if
there is an isogeny from A to B? If dim(A) = dim(B), this is a
consequence of the famous theorem of Faltings.

Remark 2. Most of the lecture deals with cusp forms (π1, π2) on
(GLm(AF ),GLn(AF )) for the restricted pairs (m,n) with n =
m+2, as the first non-obvious case beyondm = n and n = m+1,
such that π1 � π2 However, one might begin at the other extreme
(m,n) = (1, n), and try to classify cuspforms π2 on GLn(AF )
such that 1 � π2. By Theorem 1 below, there is a nice answer
for (m,n) = (1, 3), whereas by Proposition 2, there are none
in the case (m,n) = (1, 4). It is easy to see that the cuspidal
representations π2 of GL6(AF ) which arise as the basechange of
a cuspidal selfdual representation of PGL3(AE) for E/F qua-
dratic, have Hecke eigenvalue 1 at almost all places of F , and a
theorem of Yamana can be used to prove a converse. We have not
investigated the situation for general pairs (1, n).
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4. THEOREMS

Theorem 1. If π is a cuspform on PGL3 with 1GL1 � π, then

π = Sym2(f),

for some f on PGL2.

Theorem 2. If π1 is a cuspform on PGL2 and π2 on PGL4 with
π1 � π2, then

π2 = Sym3(π1).

Theorem 3. If π1 is a cuspform on PGL3 and π2 on PGL5 with
π1 � π2, then for some π on PGL2,

π1 = Sym2(π),

π2 = Sym4(π).

Remark 3. Thus, the first time we do not know how to handle
the question is for the pair (GL4,GL6). We will actually give a
counter-example to the question in this case.
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5. A FORMAL IDENTITY

Lemma 1. If π1 is a cuspform on GLn and π2 on GLn+2 with
central characters ω1, ω2, then if π1 � π2, we have:

π2 � π1 � ω2/ω1 = Λ2(π2) � Sym2(π1),

considered as a formal identity of Hecke eigenvalues on the two
sides.

Proof. The identity in this lemma is nothing but (writing V =
W + [2]):

(W + [2])⊗W + Λ2[2] = Λ2(W + [2]) + Sym2[W ]

which is:

W⊗W+[2]⊗W+Λ2[2] = Λ2(W )+W⊗[2]+Λ2[2]+Sym2[W ].

�
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6. PROOF OF THE THEOREM FOR (GL2,GL4)

In this case, the identity in the previous Lemma becomes:

π2 � π1 � 1 = Λ2(π2) � Sym2(π1).

An important observation is that since RHS is known to be au-
tomorphic by Gelbart-Jacquet and Kim, it follows from the above
identity and the Rankin-Selberg theory that the RHS of the above
equality must contain the trivial representation of GL1 as an iso-
baric direct summand, and therefore π2 � π1 is automorphic, and
the equality above is one of automorphic representations! (Al-
though automorphy of GL(2)×GL(4) is not known in general!).

We will have to deal with 2 cases depending on π1 is CM or
not. Assume it is not CM, then Sym2(π1) is cuspidal, hence the
above identity forces

1 ⊂ Λ2(π2),

and
Sym2(π1) ⊂ π2 � π1,

which is easily seen to be equivalent to (applying Kim-Shahidi
on automorphy of GL2 × GL3 and using the fact that π1 ⊗ π2 is
known to be automorphic which we noted earlier):

π2 ⊂ π∨1 ⊗ Sym2(π1) = Sym3(π1) + π1,

leaving the only option to be:

π2 = Sym3(π1).
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7. ARTIN REPRESENTATIONS

Example 1. The finite group G = PGL2(F5) gives rise to irre-
ducible representations of Gal(Q̄/Q) of dimension 4 correspond-
ing to a cuspidal representation of PGL2(F5) of dimensions 4 =
q − 1, and dimension 6 corresponding to a principal series of di-
mension 6 = q+ 1. It can be seen that the cuspidal representation
of G = PGL2(F5) is immersed in the principal series representa-
tion. Thus, assuming strong Artin conjecture which is known by
the work of Calegari in this case, we find that there are cusp forms
π1, π2 on GL4(AQ),GL6(AQ) with π1 � π2 but which do not arise
from symmetric powers of a cuspform on GL2(AQ) since in this
case, the 4 and 6 dimensional representation of Gal(Q̄/Q) cannot
be written as sym3(σ), Sym5(σ). (Some details are omitted here.)
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8. GROUP THEORETIC CONSIDERATIONS

The question studied in this lecture can be studied from a purely
group theoretic point of view, and seems to be of interest. We are
unaware of this group theoretic point of view to have been put to
use earlier. We will prove that the group theoretic question has an
affirmative answer for groups which are not virtually abelian, i.e.,
do not contain a subgroup of finite index which is abelian.

For representations V1 and V2 of a group G, define a relation-
ship V1 � V2 (read V1 is immersed in V2) if for each element g ∈
G, the set of eigenvalues of the action of g on V1 (counted with
multiplicities) is contained in the set of eigenvalues of g acting on
V2 (counted with multiplicities). Thus if V1 ⊂ V2 as representa-
tions of G, then V1 � V2. If V1 � V2 and dim(V1) = dim(V2),
then of course, V1 ∼= V2 as G-modules as they have the same
characters.

If dim(V1) + 1 = dim(V2), then also V1 � V2 implies V1 ⊂ V2
as G-modules. This is because the representations on the two
sides of the equality below have the same character:

V2 = V1 + det(V2)/ det(V1).
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However, it is not true in general that if V1 � V2, then V1 ⊂ V2
as G-modules as we see in the following proposition.

Proposition 3. Let G = GL2(Fq). Let C be an irreducible cus-
pidal representation of GL2(Fq) of dimension (q − 1), and P an
irreducible principal series representation of GL2(Fq) of dimen-
sion (q + 1). Assume that the central character of C and P are
the same, which is ω : Z = F×q → C×. Then C � P , with

dimP − dimC = 2.
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The aim of this work is to understand the relationship V1 � V2,
in the first non-trivial case of dim(V1) = dim(V2) − 2. Let’s
formulate the following questions.

Question 1: Let G be a compact, possibly disconnected, Lie
group of dimension> 0. Classify triples (G, π1, π2) of irreducible
representations π1 and π2 of G with π1 � π2, such that G acts
faithfully on π1 + π2, and

dim(π2)− dim(π1) = 2.

Here is the harder question dealing with finite groups:

Question 2: LetG be a finite group. Classify triples (G, π1, π2)
of irreducible representations π1 and π2 of G with π1 � π2, such
that G acts faithfully on π1 + π2, and

dim(π2)− dim(π1) = 2.

The answer to these questions will have a direct bearing on
the question on automorphic forms which is where the questions
arose.
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9. QUESTION 1

In this section we answer Question 1 completely as long as the
group is not ‘vitually abelian’, i.e., does not contain a finite index
subgroup which is abelian.

In the following proposition, we call a connected reductive group
Q of type A1 if its derived subgroup is PGL2(C) or SL2(C).

Proposition 4. Let G be a connected reductive algebraic group
over C. Let π1 and π2 be two finite dimensional representations
of G with π1 � π2 such that

dim(π2)− dim(π1) = 2.

Then there are the following two options:
(1) π2 = π1 + λ + µ, where λ, µ are one dimensional repre-

sentations of G, or
(2) G has a reductive quotient Q of type A1 and π′1, π

′
2 irre-

ducible representations of Q of dimensions d and d + 2
respectively (d = 0 allowed) such that,

π1 = π + π′1,

π2 = π + π′2,

for a finite dimensional representation π of G. ’
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The following corollary follows by an application of Clifford
theory (applied to the normal subgroup G0 of G) combined with
Proposition 4 applied to G0, we omit its proof.

Corollary 1. Let G be an algebraic group over C, with G0, the
connected component of identity, a non-abelian reductive group.
Assume G has irreducible finite dimensional representations π1
and π2, with π1 � π2 (when restricted to G0) such that

dim(π2)− dim(π1) = 2,

and the action of G on π1 + π2 is faithful. Then, both π1, π2
remain irreducible when restricted to G0, and their restriction to
G0 arises as in the previous proposition.
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10. FINITE GROUP CASE

In the case of finite groups, we do not know if there are irre-
ducible representations π1 � π2 with dim(π2) − dim(π1) = 2
besides the examples provided by GL2(Fq) in Proposition 1. Per-
haps it is not so common to have simple groups with irreducible
representations π1, π2 with dim(π2) − dim(π1) = 2 (even with-
out the condition π1 � π2!), so I do not expect many examples
beyond GL2(Fq).

One of the difficulties in trying to use the condition π1 � π2
is that it is not clear it can be represented in terms of “character
theory”.

However, if π1 � π2, dim(π2)− dim(π1) = 2, we have:

π2 ⊗ π1 ⊕ ω2/ω1 = Λ2(π2)⊕ Sym2(π1),

both sides being representations of G of dimension

n(n+ 2) + 1 = (n+ 1)2 = (n+ 1)(n+ 2)/2 + n(n+ 1)/2.

Thus, if π1 � π2, dim(π2)− dim(π1) = 2, we have in
π2 ⊗ π1 ⊕ ω2/ω1 = Λ2(π2) ⊕ Sym2(π1), a necessary condition,
which can be checked via character theory, although I am not sure
it is necessary and sufficient for π1 � π2, dim(π2)−dim(π1) = 2
to hold.
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At the other extreme of the relationship π1 � π2 is when π1 =
1. In this case, the question amounts to classifying irreducible
representations (π, V ) of a finite group G, which have the prop-
erty that every element g ∈ G fixes a nonzero vector in V . A nice
example of 1 � π is provided by π, the reflection representation
of the alternating group An, n even.

The best situation to happen of course is that π1 � π2 implies
π1 ⊂ π2 not only among irreducible representations but for all
representations of a given finite group G. But perhaps this never
happens beyond cyclic (or abelian?) groups because Λk(Cn) �
Symk(Cn) as representations of GLn(C), and therefore Λk(V ) �
Symk(V ) for any representation V of any group G.
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11. REMARK ON dim(π2)− dim(π1) > 2

Remark 4. By proposition 4, there are no relations π1 � π2
among irreducible representations of a connected simple alge-
braic group with dim(π2)− dim(π1) = 2, other than the obvious
ones for G = SL2(C), and PGL2(C):

(1) π1 = Symd−1(C2).
(2) π2 = Symd+1(C2).

Without the constraint on dim(π2) − dim(π1) = 2, there are
naturally many other representations, such as the pair of repre-
sentations Λk(Cn), Symk(Cn) of GLn(C). It seems interesting to
classify all possible pairs π1 � π2 for connected simple algebraic
groups.



20

12. ANOTHER WELL-STUDIED QUESTION

If G is any finite group, it is a consequence of character theory
that if we have two homomorphisms φ1 : G → GLn(C) and
φ2 : G → GLn(C) for which φ1(g), φ2(g) are conjugate for all
g ∈ G, then in fact φ1 and φ2 are conjugate on all of G by a
fixed element of GLn(C). This concept may be called, “locally
conjugate implies globally conjugate”. This is, however, specific
to GLn(C), and if we have some other group, say PGLn(C), it is
not true that ‘locally conjugate implies globally conjugate”, and
is an interesting and well-studied question.

Our question could be said to be a variant of this question, but
now even for GLn(C), there seems to be counter-examples.
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13. PROOF OF PROPOSITION 2

Let T be a maximal torus in G, and W its Weyl group. Clearly,
π1 � π2 if and only if the weights of π1 for the torus T are con-
tained in the weights of π2 (with multiplicity). Since weights are
W -invariant, if π1 � π2 with dim(π2)−dim(π1) = 2, we see that
there is a set of two (not necessarily distinct) weights of T (that
of π2−π1) which is W -invariant. By Lemma 2 below, this means
that either these are weights of T invariant under W , hence arise
from characters λ, µ : G → C×, or the group G has a quotient Q
(obtained by dividing G by all normal simple groups except one
which is PGL2(C) or SL2(C)), with a quotient S of T as a max-
imal torus in Q. Proof of the Proposition is easily completed in
either case.

Lemma 2. Let G be a simple algebraic group with T a maximal
torus and W its Weyl group. Then if χ is a non-trivial character
of T whose W -orbit has ≤ 2 elements, then G is SL2, or PGL2.

Proof. The proof follows from the observation that the stabilizer
of χ in W is the Weyl group of a Levi subgroup M of G and
|WG/WM | > 2 if the rank of G is ≥ 2, and G 6= M . �
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14. A FINAL COMMENT

Given that one has a rather simple proof of the group theoretic
analogue of the question on Automorphic representations as long
as the group involved is not finite, one wonders what methods in
Automorphic forms might be there to make similar conclusions.

Thus in the automorphic context, when one of the represen-
tations π1, or π2 is Steinberg at a finite place, or has a regular
infinitesimal character at one of the archimedean places of F , our
question (asserting π1 and π2 being symmetric powers of GL2)
should have an affirmative answer, but for the moment, I do not
know how to deal with these. A related question is: how does one
decide that a cuspform on GLn(AF ) is a symmetric power?
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Thank you!
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