

Mathematics Colloquium

Friday, Nov 4 1973

Speaker: Bill Casselman, University of British Columbia

Title: Deligne's Theory of Differential Equations

Location: Barus & Holly 157

Time: 4:30 pm

Coffee and cookies at 4pm in Howell House

We are in a forest whose trees will not fall with a few timid hatchet blows. We have to take up the double-bitted axe and the cross-cut saw, and hope that our muscles are equal to them.

Ordinary points mod p of hyperbolic 3-manifolds

Mark Goresky

and Yung Sheng Tai

Pacific J. Math **303** no. 1 (2019), 165-215 Pacific J. Math **303** no. 1 (2019), 217-241 $G = \mathrm{GSp}_{2n}$

$$X = G(\mathbb{Q})\backslash G(\mathbb{A})/K_fK_{\infty}$$

Complex points of a Shimura variety that parametrizes principally polarized abelian varieties with level structure.

d<0 square free, $E=\mathbb{Q}[\sqrt{d}]$ quadratic imaginary, $H=\mathrm{Res}_{E/\mathbb{O}}\mathrm{GL}_2$

$$Y = H(\mathbb{Q})\backslash H(\mathbb{A})/K_f^H K_{\infty}^H \sim \coprod_i \Gamma_i \backslash \mathcal{H}_3$$

 $\Gamma_j \sim \mathrm{SL}_2(\mathcal{O}_\mathrm{d})$, 3 dimensional hyperbolic manifold,

Given d < 0 there exists an involution τ_d on $G = \mathrm{GSp}_{2n}$:

$ au_d$ acts on	fixed points
$\mathrm{Sp}_4(\mathbb{R})$	$\mathrm{SL}_2(\mathbb{C})$
$\operatorname{Sp}_4(\mathbb{Q})$	$SL_2(E)$
$\operatorname{Sp}_4(\mathbb{Z})$	$\mathrm{SL}_2(\mathcal{O}_\mathrm{d})$
\mathbf{H}_2	\mathcal{H}_3
$G(\mathbb{Q})\backslash G(\mathbb{A})/K$	$\coprod_i H(\mathbb{Q}) \backslash H(\mathbb{A}^E) / K^H$

Which abelian varieties lie over X^{τ_d} ?

Proposition

The space $X^{\tau_d} = \coprod_i Y_i$ is a coarse moduli space for principally polarized abelian surfaces (A, ω) with level structure and anti-holomorphic multiplication by \mathcal{O}_d .

This means:

$$\sqrt{d}$$
 acts anti-holomorphically on A and $\omega(\sqrt{d}x,\sqrt{d}y)=d\omega(x,y)$

A similar story for real structures

There exists an involution τ_0 on $G = GSp_{2n}$:

$ au_0$ acts on	fixed points
$\mathrm{Sp}_{2\mathrm{n}}(\mathbb{R})$	$\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$
$\mathrm{Sp}_{2\mathrm{n}}(\mathbb{Q})$	$\mathrm{GL}_{\mathrm{n}}(\mathbb{Q})$
$\mathrm{Sp}_{2\mathrm{n}}(\mathbb{Z})$	$\mathrm{GL}_{\mathrm{n}}(\mathbb{Z})$
\mathbf{H}_n	\mathcal{P}_n
$G(\mathbb{Q})\backslash G(\mathbb{A})/K$	$\coprod_i \operatorname{GL}_n(\mathbb{Q}) \backslash \operatorname{GL}_n(\mathbb{A}) / \operatorname{K}_f \operatorname{K}_{\infty}$

Which abelian varieties lie over X^{τ_0} ?

Proposition

The space $X^{\tau_0} = \coprod_i Z_i$ is a coarse moduli space for principally polarized abelian varieties (A, ω) with anti-holomorphic involution (that is, real abelian varieties).

$$A = \mathbb{C}^n/L \xrightarrow{\tau} \mathbb{C}^n/L$$
 complex anti-linear

Reduction mod p

$$X = G(\mathbb{Q})\backslash G(\mathbb{A})/K_fK_{\infty}$$

has good reduction \overline{X} at various primes, which parametrizes principally polarized abelian varieties over \mathbb{F}_q .

Kottwitz: sum with $\alpha(\gamma_0; \gamma, \delta) = 1$,

$$\sum_{\gamma_0 \in G(\mathbb{Q})} \sum_{\gamma \in G(\mathbb{A}_f^p)} \sum_{\delta \in G(W_p)} \operatorname{vol}(**) \operatorname{c}(\gamma_0; \gamma, \delta) \operatorname{O}_{\gamma}(f^{\operatorname{p}}) \operatorname{TO}_{\delta}(\phi_{\operatorname{p}})$$

What happens to the subset $Y = X^{\tau_d}$ when we reduce mod p?

Does \overline{Y} parametrize abelian varieties over \mathbb{F}_q with anti-holomorphic multiplication?

What is anti-holomorphic?

Suppose A is simple, has complex multiplication, say, by $\mathcal{O} \subset L$ and good reduction \overline{A} over \mathbb{F}_q .

The Frobenius Fr_q has a lift to an element $\pi \in L \subset \operatorname{\it End}_{\mathbb Q}(A)$

The lift $\pi \in L$ is a Weil q-number:

 $\pi \bar{\pi} = q$ for every embedding of $\mathbb{Q}[\pi] \to \mathbb{C}$.

But $\bar{\pi} = q\pi^{-1}$ is a lift of the Vershiebung on \bar{A} . Therefore, complex conjugation on \bar{A} , if it is to

Therefore, complex conjugation on \overline{A} , if it is to make sense, should switch the Frobenius and the Vershiebung.

This appears to be nonsense because every morphism will preserve the Frobenius. So we ask:

Q1: Does there exist a "natural" enlargement of the category of abelian varieties over \mathbb{F}_q in which there are new morphisms, including morphisms that exchange the Frobenius with the Vershiebung?

Q2: If so, does there exist a "moduli scheme" of Abelian varieties over \mathbb{F}_q with complex conjugation? with anti-holomorphic multiplication?

For ordinary abelian varieties there is a good answer to Q1.

Recall: A/\mathbb{F}_q is *ordinary*, dim = n, iff $A[p] \cong (\mathbb{Z}/(p))^n$ \iff characteristic polynomial is an *ordinary* Weil q-polynomial, (middle coefficient is not divisible by p.)

Theorem of Deligne: There is an equivalence of categories:

$$\{ \text{ordinary abelian varieites}/\mathbb{F}_q, \text{rank } n) \} \to \{ \text{Deligne modules}(T,F) \}$$

$$A \mapsto (T_A, F_A)$$

 T_A = free abelian group of dimension 2n $F_A: T_A \to T_A$ char. poly. is an *ordinary Weil q-polynomial*, there exists $V_A: T_A \to T_A$ with $F_AV_A = V_AF_A = qI$.

[E. Howe]: A polarization $A \to A^{\vee}$ of corresponds to a rationally nondegenerate symplectic form $\omega: T_A \times T_A \to \mathbb{Z}$ with $\omega(T_A x, y) = \omega(x, V_A y)$ and $R(x, y) = \omega(x, \iota y)$ is symmetric and positive definite.

 $(\iota = \text{totally positive imaginary element of } \mathbb{Q}[F_A].)$

A morphism $(T, F) \to (T'F')$ of Deligne modules take F to F' but we may consider more general morphisms $T \to T'$.

Definition

Let us say that a *real structure* on a polarized Deligne module (T, F, ω) is an involution $\tau : T \to T$ so that

$$\tau F \tau^{-1} = V, \qquad \omega(\tau x, \tau y) = -\omega(x, y)$$

and anti-holomorphic multiplication is $\mathcal{O}_d \to End(T)$ such that

$$\sqrt{d} \circ F = V \circ \sqrt{d}, \qquad \omega(\sqrt{d}x, \sqrt{d}y) = d\omega(x, y).$$

Proposition

A real structure τ on (T, F, ω) induces involutions τ_{ℓ} on the Tate modules and an involution τ_p on the Dieudonné module (that switch F and V).

Theorem

There are finitely many isomorphism classes of: rank 2n principally polarized Deligne modules (T,F,ω,τ) with real structure, and principal level N structure $(N \geq 3)$. The number is given by a Kottwitz-like formula. replacing Sp_{2n} with GL_n .

There are finitely many isomomrphism classes of principally polarized Deligne modules of rank 4, with level N structure and anti-holomorphic multiplication by \mathcal{O}_d . The number is given by a Kottwitz-like formula replacing GSp_{2n} with $\mathrm{Res}_{E/\mathbb{Q}}\mathrm{GL}_2$.

Isogeny classes (Honda-Tate)

 $\mathbb Q$ isogeny classes of abelian varities $/\mathbb F_q$

 $\leftrightarrow \overline{\mathbb{Q}}$ isogeny classes of polarized abelian varieties $/\mathbb{F}_q$

 $\leftrightarrow \overline{\mathbb{Q}}$ -conjugacy classes $\gamma_0 \in \mathrm{GSp}_{2n}(\mathbb{Q})$,

semisimple, real elliptic, whose characteristic polynomial is a Weil g-polynomial. (First sum in K. formula)

 $\overline{\mathbb{Q}}$ isogeny classes of "real" polarized Deligne modules $\leftrightarrow \mathbb{Q}$ -conjugacy classes $A \in \mathrm{GL}_n(\mathbb{Q})$ real elliptic semisimple elements whose characteristic polynomial is ordinary and totally real:

$$b(x) = x^n + \dots + b_1 x + b_0 = \prod (x - \beta_i) \in \mathbb{Z}[x]$$

- ightharpoonup ordinary $(\Leftrightarrow p \nmid b_0)$
- \blacktriangleright totally real ($\Leftrightarrow \beta_i$ is totally real)
- $|\beta_i| < \sqrt{q}.$

(In GL_n , $\mathbb Q$ -conjugacy = $\overline{\mathbb Q}$ -conjugacy)

The rest of the formula is also interesting In the case of anti-holomorphic multiplication, there is a restriction on the characteristic polynomial of Frobenius. Is this total nonsense?

Or do these constructions extend to all abelian varieties over \mathbb{F}_q ? Presumably a real structure on A/\mathbb{F}_q is a collection

$$\{ au_\ell, au_{m p}\}$$

of involutions of the Tate and Dieudonné modules which exchange Frobenius and Vershiebung with some compatibility condition, perhaps a Kottwitz-like invariant vanishes?

The End?