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About the Cover
In preparing diagrams for Peter Sarnak's article in this issue on
Ramanujan graphs, we decided that it would be an interesting exercise

to verify that its expansion constant h is 1/4. I
:i '1. recall that if the graph has N nodes, then this

constant is the minimum value of IaXI / lXI,
... where X varies over the subsets of nodes of size

at most N /2. Thus a priori one might expect to
have to look at close to 280 subsets of nodes, and,
indeed, it has been shown by M. Blum et al.
(Inform. Process. Lett. 13 (1981» that this is a very
difficult problem. For the graph at hand,
however, Sarnak was able to verify by hand that
h = 1/4, and it was also possible to verify the
calculation with a computer program that might

work as well for more general 3-regular graphs. The basic idea of the
program is to look at the possible cut sets separating X from its
complement. There are two key observations that the program is based
on. The first is that one need only look at connected subsets X, and in
fact only at cut sets that are Jordan curves. The second observation is
that in certain circumstances one need only look at cut sets that satisfy
a kind of convexity condition at each vertex. The exact conditions ought
to be clear from the accompanying diagrams, where the dashed lines
cannot be the cut sets for a candidate X, since adjusting them in a
simple way increases IXI without decreasing IaXI. (The nodes in X are
dark.)
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It is straightforward and entirely practical to make up an algorithm that
constructs all admissible cut sets. If IXI for all of these is not greater
than half the number of nodes, the convexity argument above shows
that h can be calculated by perusing the list. Because of the symmetries
in the graph at hand, it is necessary to consider only two types of cut
sets, and the cover illustration is, in effect, the program output for one
of these types. It shows all convex cut sets passing through the top two
gray faces (up to mirror symmetry). The minimum value 1/4 is achieved
in the large diagram at lower left, where IXI is also the maximum value
of 40. This graph is a Ramanujan graph. A result of Lipton and Tarjan
(SIAM ]. AppI. Math. 36 (1979» implies that there are at most finitely
many planar Ramanujan graphs. The largest ones known are 84:20, and
84:23 in the Atlas of Fullerenes by P. Fowler and D. Manolopoulos. I'd
like to thank A. Gamburd for calling my attention to the graph used
here, which he found in a paper by P. Frankin on the four-color
problem, and also for telling me about Fullerenes.

-Bill Casselman
Covers/Graphics Editor

(not;ces-covers@ams.org)
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