Harmonic analysis and gamma functions

Zhilin Luo
University of Chicago

Basic Functions, Orbital Integrals, and Beyond Endoscopy in honor of Prof. Casselman's 80th birthday November 15, 2021

Riemann zeta function

- (Euler) For $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}, \quad\left\{\begin{array}{c}
\text { ab. cov. } \\
=\prod_{p} \zeta_{p}(s)
\end{array}\right.
$$

Riemann zeta function

- (Euler) For $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}, \quad\left\{\begin{array}{c}
\text { ab. cov. } \\
=\prod_{p} \zeta_{p}(s)
\end{array}\right.
$$

- (Riemann)

$$
\xi(s)=\pi^{-s / 2} \cdot \Gamma(s / 2) \cdot \zeta(s)=\int_{0}^{\infty}\left(\frac{\theta(i t)-1}{2}\right) \cdot t^{s / 2} \cdot \frac{\mathrm{~d} t}{t}
$$

with $\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} \tau}$ (Jacobi's theta)
Poisson summation $\theta(\tau)$
$\Rightarrow \zeta(s)$ mero. con. to $s \in \mathbb{C}$, fun. eq.

Riemann zeta function

- (Euler) For $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}, \quad\left\{\begin{array}{c}
\text { ab. cov. } \\
=\prod_{p} \zeta_{p}(s)
\end{array}\right.
$$

- (Riemann)

$$
\xi(s)=\pi^{-s / 2} \cdot \Gamma(s / 2) \cdot \zeta(s)=\int_{0}^{\infty}\left(\frac{\theta(i t)-1}{2}\right) \cdot t^{s / 2} \cdot \frac{\mathrm{~d} t}{t}
$$

with $\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} \tau}$ (Jacobi's theta)
Poisson summation $\theta(\tau)$
$\Rightarrow \zeta(s)$ mero. con. to $s \in \mathbb{C}$, fun. eq.

- Dirichlet \& Hecke L-functions.

Tate thesis

- (Tate) Systematic development;

Tate thesis

- (Tate) Systematic development;
harmonic analysis on $\mathbb{G}_{m} \curvearrowright \mathbb{A}^{1}$
\Rightarrow mero. con. \& fun. eq. $L(s, \chi)$;

Tate thesis

- (Tate) Systematic development;

$$
\begin{aligned}
& \text { harmonic analysis on } \mathbb{G}_{m} \curvearrowright \mathbb{A}^{1} \\
\Rightarrow & \text { mero. con. \& fun. eq. } L(s, \chi) ;
\end{aligned}
$$

- Ingredients:

Zeta integral:

$$
\mathcal{Z}(s, f, \chi)=\int_{\mathbb{A}^{x}} f(x) \chi(x)|x|^{s} \mathrm{~d}^{*} x, \quad f \in \mathcal{S}(\mathbb{A})
$$

ab. cov. for $\operatorname{Re}(s)$ large;

Tate thesis

- (Tate) Systematic development;
harmonic analysis on $\mathbb{G}_{m} \curvearrowright \mathbb{A}^{1}$ \Rightarrow mero. con. \& fun. eq. $L(s, \chi)$;
- Ingredients:
- (Schwartz space) $\mathcal{S}(\mathbb{A})=\bigotimes_{\mathfrak{p} \in|k|}^{\prime} \mathcal{S}\left(k_{\mathfrak{p}}\right) ;$

Zeta integral:

$$
\mathcal{Z}(s, f, \chi)=\int_{\mathbb{A}^{x}} f(x) \chi(x)|x|^{s} \mathrm{~d}^{*} x, \quad f \in \mathcal{S}(\mathbb{A})
$$

ab. cov. for $\operatorname{Re}(s)$ large;

Tate thesis

- (Tate) Systematic development;
harmonic analysis on $\mathbb{G}_{m} \curvearrowright \mathbb{A}^{1}$
\Rightarrow mero. con. \& fun. eq. $L(s, \chi)$;
- Ingredients:
- (Schwartz space) $\mathcal{S}(\mathbb{A})=\bigotimes_{\mathfrak{p} \in|k|}^{\prime} \mathcal{S}\left(k_{\mathfrak{p}}\right)$;
- (Fourier transform) $\mathcal{F}_{\psi}=\bigotimes_{\mathfrak{p}} \mathcal{F}_{\psi, \mathfrak{p}}: \mathcal{S}(\mathbb{A}) \simeq \mathcal{S}(\mathbb{A})$;

Zeta integral:

$$
\mathcal{Z}(s, f, \chi)=\int_{\mathbb{A}^{x}} f(x) \chi(x)|x|^{s} \mathrm{~d}^{*} x, \quad f \in \mathcal{S}(\mathbb{A})
$$

ab. cov. for $\operatorname{Re}(s)$ large;

Tate thesis

$$
-\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right) ;
$$

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$;
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right) ;$
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$
- ab. cov. for $\operatorname{Re}(s)$ large;

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$;
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$
- ab. cov. for $\operatorname{Re}(s)$ large;
- mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}\left(k_{\mathfrak{p}}\right)$;

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$;
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$
- ab. cov. for $\operatorname{Re}(s)$ large;
- mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}\left(k_{\mathrm{p}}\right)$;
- poles $\sim L\left(s, \chi_{\mathfrak{p}}\right)$;

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$;
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$
- ab. cov. for $\operatorname{Re}(s)$ large;
- mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}\left(k_{\mathrm{p}}\right)$;
- poles $\sim L\left(s, \chi_{\mathfrak{p}}\right)$;

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(\cdot), \chi_{\mathfrak{p}}^{-1}\right)=\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)
$$

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$;
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$
- ab. cov. for $\operatorname{Re}(s)$ large;
- mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}\left(k_{\mathrm{p}}\right)$;
- poles $\sim L\left(s, \chi_{\mathfrak{p}}\right)$;

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(\cdot), \chi_{\mathfrak{p}}^{-1}\right)=\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)
$$

- Set

$$
\mathbb{L}_{\mathfrak{p}}=\left\{\begin{array}{cc}
\mathbb{1}_{\mathfrak{o}_{\mathfrak{p}}} & \mathfrak{p} \text { non-Archi. } \\
\text { Gaussian } & \mathfrak{p} \text { Archi. }
\end{array}\right.
$$

Then $\mathcal{F}_{\psi_{\mathfrak{p}}}\left(\mathbb{L}_{\mathfrak{p}}\right)=\mathbb{L}_{\mathfrak{p}} \& \mathcal{Z}\left(s, \mathbb{L}_{\rho}, \chi_{\mathfrak{p}}\right)=L\left(s, \chi_{\mathfrak{p}}\right)$ for $\chi_{\mathfrak{p}}$ unramified;

Tate thesis

- $\mathcal{Z}(s, \cdot, \chi)=\prod_{\mathfrak{p}} \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$;
- $\mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)$
- ab. cov. for $\operatorname{Re}(s)$ large;
- mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}\left(k_{\mathrm{p}}\right)$;
- poles $\sim L\left(s, \chi_{\mathfrak{p}}\right)$;

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(\cdot), \chi_{\mathfrak{p}}^{-1}\right)=\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, \cdot, \chi_{\mathfrak{p}}\right)
$$

- Set

$$
\mathbb{L}_{\mathfrak{p}}=\left\{\begin{array}{cc}
\mathbb{1}_{\mathfrak{o}_{\mathfrak{p}}} & \mathfrak{p} \text { non-Archi. } \\
\text { Gaussian } & \mathfrak{p} \text { Archi. }
\end{array}\right.
$$

Then $\mathcal{F}_{\psi_{\mathfrak{p}}}\left(\mathbb{L}_{\mathfrak{p}}\right)=\mathbb{L}_{\mathfrak{p}} \& \mathcal{Z}\left(s, \mathbb{L}_{\rho}, \chi_{\mathfrak{p}}\right)=L\left(s, \chi_{\mathfrak{p}}\right)$ for $\chi_{\mathfrak{p}}$ unramified;

- Global Poisson summation for $\mathcal{F}_{\psi} \Rightarrow$ mero. cont. \& fun. eq. $\mathcal{Z}(s, \cdot, \chi) \Rightarrow L(s, \chi)$;

Gelfand-Graev-Piatetski-Shapiro

- Observation: As distr. on k_{p},

$$
\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \cdot \mathcal{F}_{\psi_{\mathfrak{p}}}\left(\chi_{\mathfrak{p}}|\cdot|^{s-1}\right)=\chi_{\mathfrak{p}}^{-1}|\cdot|^{-s}
$$

Gelfand-Graev-Piatetski-Shapiro

- Observation: As distr. on k_{p},

$$
\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \cdot \mathcal{F}_{\psi_{\mathfrak{p}}}\left(\chi_{\mathfrak{p}}|\cdot|^{s-1}\right)=\chi_{\mathfrak{p}}^{-1}|\cdot|^{-s}
$$

$\Longleftrightarrow \psi_{\mathfrak{p}}: k_{\mathfrak{p}} \rightarrow \mathbb{C}$,

$$
\int_{k_{\mathfrak{p}}^{\times}}^{\mathrm{reg}} \psi_{\mathfrak{p}}(x) \cdot \chi_{\mathfrak{p}}(x)^{-1} \frac{\mathrm{~d}^{+} x}{|x|_{\mathfrak{p}}^{s}}
$$

cov. for $\operatorname{Re}(s)$ small, mero. cont. to $s \in \mathbb{C}$,

$$
=\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right)
$$

Gelfand-Graev-Piatetski-Shapiro

- Observation: As distr. on k_{p},

$$
\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \cdot \mathcal{F}_{\psi_{\mathfrak{p}}}\left(\chi_{\mathfrak{p}}|\cdot|^{s-1}\right)=\chi_{\mathfrak{p}}^{-1}|\cdot|^{-s}
$$

$\Longleftrightarrow \psi_{\mathfrak{p}}: k_{\mathfrak{p}} \rightarrow \mathbb{C}$,

$$
\int_{k_{\mathfrak{p}}^{\times}}^{\mathrm{reg}} \psi_{\mathfrak{p}}(x) \cdot \chi_{\mathfrak{p}}(x)^{-1} \frac{\mathrm{~d}^{+} x}{|x|_{\mathfrak{p}}^{s}}
$$

cov. for $\operatorname{Re}(s)$ small, mero. cont. to $s \in \mathbb{C}$,

$$
=\gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right)
$$

$$
\psi \longleftrightarrow \gamma\left(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right)
$$

Langlands functoriality

- G/k reductive;

Langlands functoriality

- G / k reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;

Langlands functoriality

- G / k reductive;
$-\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;
- $\pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\text {cusp }}(G)$;

Langlands functoriality

- G / k reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;
- $\pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\text {cusp }}(G)$;
- (Langlands) to define (? ramified)

$$
L(s, \pi, \rho)=\prod_{\mathfrak{p}} L(s, \pi, \rho) ;
$$

Langlands functoriality

- G / k reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;
- $\pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\text {cusp }}(G)$;
- (Langlands) to define (? ramified)

$$
L(s, \pi, \rho)=\prod_{\mathfrak{p}} L(s, \pi, \rho) ;
$$

- (Langlands) $L^{S}(s, \pi, \rho)$ ab. cov. for $\operatorname{Re}(s)$ large;

Functoriality conjecture

Conjecture (Langlands)

$L(s, \pi, \rho)$ has a mero. cont. to $s \in \mathbb{C} \&$ fun. eq.

$$
L\left(1-s, \pi^{\vee}, \rho\right)=\varepsilon(s, \pi, \rho) \cdot L(s, \pi, \rho)
$$

$\mathrm{w} / \varepsilon(s, \pi, \rho)$ nonzero entire in $s \in \mathbb{C}$.

- Known for a special list of (G, ρ);

Functoriality conjecture

Conjecture (Langlands)

$L(s, \pi, \rho)$ has a mero. cont. to $s \in \mathbb{C} \&$ fun. eq.

$$
L\left(1-s, \pi^{\vee}, \rho\right)=\varepsilon(s, \pi, \rho) \cdot L(s, \pi, \rho)
$$

$\mathrm{w} / \varepsilon(s, \pi, \rho)$ nonzero entire in $s \in \mathbb{C}$.

- Known for a special list of (G, ρ);
- Methods: Tate, Godement-Jacquet; Rankin-Selberg; Langlands-Shahidi; Trace formula;

A question

Question

Understand the analytical properties of $L(s, \pi, \rho)$ and its local factors $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$ through

$$
\text { harmonic analysis }\left\{\begin{array}{c}
\text { Schwartz space } \\
\text { Fourier transform } \\
\text { Poisson summation }
\end{array}\right.
$$

on G (\& related spherical varieties);

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);
- Set up

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);
- Set up
- G/k split,

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);
- Set up
- G/k split,
- $\sigma: G \rightarrow \mathbb{G}_{m}$,

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);
- Set up
- G/k split,
- $\sigma: G \rightarrow \mathbb{G}_{m}$,
- $\rho: G^{\vee}(\mathbb{C}) \rightarrow \mathrm{GL}\left(V_{\rho}\right)$ irreducible injective with highest weight λ_{ρ};

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);
- Set up
- G/k split,
- $\sigma: G \rightarrow \mathbb{G}_{m}$,
- $\rho: G^{\vee}(\mathbb{C}) \rightarrow \mathrm{GL}\left(V_{\rho}\right)$ irreducible injective with highest weight $\lambda_{\rho} ;$
- (Ngô) Assumptions can be relaxed;

Braverman-Kazhdan proposal

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- Prototype: Godement-Jacquet theory ($G=\mathrm{GL}_{n}, \rho=\mathrm{std}$);
- Set up
- G/k split,
- $\sigma: G \rightarrow \mathbb{G}_{m}$,
- $\rho: G^{\vee}(\mathbb{C}) \rightarrow \mathrm{GL}\left(V_{\rho}\right)$ irreducible injective with highest weight $\lambda_{\rho} ;$
- (Ngô) Assumptions can be relaxed;
- (Sakellaridis) Generalize to affine spherical varieties (?);

Braverman-Kazhdan proposal

Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(k_{\mathfrak{p}}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(k_{\mathfrak{p}}\right)\right)$;

Godement-Jacquet

Braverman-Kazhdan proposal

Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(k_{\mathrm{p}}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(k_{\mathrm{p}}\right)\right)$;
- Fourier transform $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}: \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right) \rightarrow \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right)$;

Godement-Jacquet

Braverman-Kazhdan proposal

Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(k_{\mathfrak{p}}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(k_{\mathfrak{p}}\right)\right)$;
- Fourier transform $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right) \rightarrow \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$;
- Global Poisson summation;

Godement-Jacquet

Braverman-Kazhdan proposal

Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(k_{p}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(k_{p}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(k_{p}\right)\right)$;
- Fourier transform $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}: \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right) \rightarrow \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right)$;
- Global Poisson summation;

Godement-Jacquet

- Schwartz space

$$
\mathcal{S}\left(G\left(k_{\mathrm{p}}\right)\right)=\left.\mathcal{S}\left(\mathrm{M}_{n}\left(k_{\mathrm{p}}\right)\right)\right|_{G\left(k_{\mathrm{p}}\right)}
$$

(= restr. of Schwartz-Bruhat functions on $\mathrm{M}_{n}\left(k_{\mathrm{p}}\right)$);

Braverman-Kazhdan proposal

Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(k_{p}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(k_{p}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(k_{p}\right)\right)$;
- Fourier transform $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}: \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right) \rightarrow \mathcal{S}_{\rho}\left(G\left(k_{\mathrm{p}}\right)\right)$;
- Global Poisson summation;

Godement-Jacquet

- Schwartz space

$$
\mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right)=\left.\mathcal{S}\left(\mathrm{M}_{n}\left(k_{\mathfrak{p}}\right)\right)\right|_{G\left(k_{\mathfrak{p}}\right)}
$$

(= restr. of Schwartz-Bruhat functions on $\mathrm{M}_{n}\left(k_{\mathfrak{p}}\right)$);

- Fourier transform

$$
\mathcal{F}_{\psi_{\mathfrak{p}}}: \mathcal{S}\left(\mathrm{M}_{n}\left(k_{\mathfrak{p}}\right)\right) \rightarrow \mathcal{S}\left(\mathrm{M}_{n}\left(k_{\mathfrak{p}}\right)\right)
$$

Braverman-Kazhdan proposal: Set up

- For $f \in \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$, and $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(k_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\sigma(g)|_{\mathfrak{p}}^{s+n_{\rho}} \mathrm{d} g
$$

Braverman-Kazhdan proposal: Set up

- For $f \in \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$, and $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(k_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\sigma(g)|_{\mathfrak{p}}^{s+n_{\rho}} \mathrm{d} g
$$

- (Bouthier-Ngô-Sakellaridis) For geometric reason, set

$$
n_{\rho}=\left\langle\rho_{B}, \lambda_{\rho}\right\rangle ;
$$

Braverman-Kazhdan proposal: Set up

- For $f \in \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$, and $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(k_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\sigma(g)|_{\mathfrak{p}}^{s+n_{\rho}} \mathrm{d} g
$$

- (Bouthier-Ngô-Sakellaridis) For geometric reason, set

$$
n_{\rho}=\left\langle\rho_{B}, \lambda_{\rho}\right\rangle ;
$$

- In general different n_{ρ} differ by unramified shift;

Expectation: Schwartz space

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;

Expectation: Schwartz space

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;
- For \mathfrak{p} non-Archimedean, $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid f \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right), \varphi_{\mathfrak{p}} \in\right.$ $\left.\mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}=L(s, \pi, \rho) \cdot \mathbb{C}\left[q^{s}, q^{-s}\right] ;$

Expectation: Schwartz space

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;
- For \mathfrak{p} non-Archimedean, $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid f \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right), \varphi_{\mathfrak{p}} \in\right.$ $\left.\mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}=L(s, \pi, \rho) \cdot \mathbb{C}\left[q^{s}, q^{-s}\right] ;$
- For \mathfrak{p} Archimedean, $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is exp. decay in any bounded vertical strip with possible poles removed;

Expectation: Schwartz space

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;
- For \mathfrak{p} non-Archimedean, $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid f \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right), \varphi_{\mathfrak{p}} \in\right.$ $\left.\mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}=L(s, \pi, \rho) \cdot \mathbb{C}\left[q^{s}, q^{-s}\right] ;$
- For \mathfrak{p} Archimedean, $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is exp. decay in any bounded vertical strip with possible poles removed;
- There exists $\mathbb{L}_{\rho, \mathfrak{p}} \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$, such that $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}\left(\mathbb{L}_{\rho, \mathfrak{p}}\right)=\mathbb{L}_{\rho, \mathfrak{p}}$ and $\mathcal{Z}\left(s, \mathbb{L}_{\rho, \mathfrak{p}}, \varphi_{\mathfrak{p}}\right)=L\left(s, \pi_{\mathfrak{p}}, \rho\right)$ for $\pi_{\mathfrak{p}}$ unramified and φ_{p} zonal sperhical (Casselman-Shalika formula);

Expectation: Schwartz space

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;
- For \mathfrak{p} non-Archimedean, $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid f \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right), \varphi_{\mathfrak{p}} \in\right.$ $\left.\mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}=L(s, \pi, \rho) \cdot \mathbb{C}\left[q^{s}, q^{-s}\right] ;$
- For \mathfrak{p} Archimedean, $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is exp. decay in any bounded vertical strip with possible poles removed;
- There exists $\mathbb{L}_{\rho, \mathfrak{p}} \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$, such that $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}\left(\mathbb{L}_{\rho, \mathfrak{p}}\right)=\mathbb{L}_{\rho, \mathfrak{p}}$ and $\mathcal{Z}\left(s, \mathbb{L}_{\rho, \mathfrak{p}}, \varphi_{\mathfrak{p}}\right)=L\left(s, \pi_{\mathfrak{p}}, \rho\right)$ for $\pi_{\mathfrak{p}}$ unramified and $\varphi_{\mathfrak{p}}$ zonal sperhical (Casselman-Shalika formula);
- For $\rho=\operatorname{std}$ of GL_{n}, known from the work of Godement-Jacquet and Jacquet;

Expectation: Schwartz space

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;
- For \mathfrak{p} non-Archimedean, $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid f \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right), \varphi_{\mathfrak{p}} \in\right.$ $\left.\mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}=L(s, \pi, \rho) \cdot \mathbb{C}\left[q^{s}, q^{-s}\right] ;$
- For \mathfrak{p} Archimedean, $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is exp. decay in any bounded vertical strip with possible poles removed;
- There exists $\mathbb{L}_{\rho, \mathfrak{p}} \in \mathcal{S}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$, such that $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}\left(\mathbb{L}_{\rho, \mathfrak{p}}\right)=\mathbb{L}_{\rho, \mathfrak{p}}$ and $\mathcal{Z}\left(s, \mathbb{L}_{\rho, \mathfrak{p}}, \varphi_{\mathfrak{p}}\right)=L\left(s, \pi_{\mathfrak{p}}, \rho\right)$ for $\pi_{\mathfrak{p}}$ unramified and $\varphi_{\mathfrak{p}}$ zonal sperhical (Casselman-Shalika formula);
- For $\rho=\operatorname{std}$ of GL_{n}, known from the work of Godement-Jacquet and Jacquet;
- $\mathbb{L}_{\rho, \mathfrak{p}}=\operatorname{char}\left(\mathrm{M}_{n}\left(\mathfrak{o}_{\mathfrak{p}}\right)\right)$;

Expectation: Fourier transform

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, f, \varphi_{\mathfrak{p}}\right) ;
$$

Expectation: Fourier transform

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, f, \varphi_{\mathfrak{p}}\right) ;
$$

- For $f \in \mathcal{C}_{c}^{\infty}\left(G\left(k_{p}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathbf{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathbf{p}}} * f^{\vee}\right)(g) ;
$$

with $\Phi_{\rho, \psi_{\mathrm{p}}}$ invariant distribution on $G\left(k_{\mathrm{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi} ;
$$

Expectation: Fourier transform

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, f, \varphi_{\mathfrak{p}}\right) ;
$$

- For $f \in \mathcal{C}_{c}^{\infty}\left(G\left(k_{p}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathrm{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathrm{p}}} * f^{\vee}\right)(g) ;
$$

with $\Phi_{\rho, \psi_{\mathrm{p}}}$ invariant distribution on $G\left(k_{\mathrm{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathbf{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi} ;
$$

- $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}$ extends to a unitary operator on

$$
L^{2}\left(G\left(k_{\mathrm{p}}\right),|\sigma(\cdot)|^{2 n_{\rho}+1} \mathrm{~d} g\right) ;
$$

Expectation: Fourier transform

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, f, \varphi_{\mathfrak{p}}\right) ;
$$

- For $f \in \mathcal{C}_{c}^{\infty}\left(G\left(k_{p}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathbf{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathbf{p}}} * f^{\vee}\right)(g) ;
$$

with $\Phi_{\rho, \psi_{\mathrm{p}}}$ invariant distribution on $G\left(k_{\mathrm{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathbf{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi} ;
$$

- $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}$ extends to a unitary operator on

$$
L^{2}\left(G\left(k_{\mathrm{p}}\right),|\sigma(\cdot)|^{2 n_{\rho}+1} \mathrm{~d} g\right) ;
$$

$-\mathcal{F}_{\rho, \psi_{\mathrm{p}}} \circ \mathcal{F}_{\rho, \psi_{\mathrm{p}}^{-1}}=\mathrm{Id} ;$

Expectation: Fourier transform

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathcal{Z}\left(s, f, \varphi_{\mathfrak{p}}\right) ;
$$

- For $f \in \mathcal{C}_{c}^{\infty}\left(G\left(k_{p}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathrm{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathrm{p}}} * f^{\vee}\right)(g) ;
$$

with $\Phi_{\rho, \psi_{\mathrm{p}}}$ invariant distribution on $G\left(k_{\mathrm{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi} ;
$$

- $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}$ extends to a unitary operator on

$$
L^{2}\left(G\left(k_{\mathrm{p}}\right),|\sigma(\cdot)|^{2 n_{\rho}+1} \mathrm{~d} g\right) ;
$$

$-\mathcal{F}_{\rho, \psi_{\mathrm{p}}} \circ \mathcal{F}_{\rho, \psi_{\mathrm{p}}^{-1}}=\mathrm{Id} ;$

- For $\rho=\operatorname{std}$ of $\mathrm{GL}_{n}, \Phi_{\rho, \psi_{\mathrm{p}}}(\cdot)=\psi(\operatorname{tr}(\cdot)) \cdot|\operatorname{det}(\cdot)|^{n}$;

Preliminary analysis for local unramified

Proposition (L.)

- For \mathfrak{p} non-Archimedean, we have the equalities

$$
\begin{aligned}
& \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}=\mathbb{L}_{\rho, \mathfrak{p}} * \mathcal{C}_{c}^{\infty}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}} \\
& \Phi_{\rho, \psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}}=\text { Inverse Satake transform of } \gamma\left(-s-n_{\rho}, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}\right)
\end{aligned}
$$

where we view $\gamma\left(\cdot, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}\right)$ as a rational function in Satake parameters of $\pi_{\mathfrak{p}}$;

Preliminary analysis for local unramified

Proposition (L.)

- For \mathfrak{p} non-Archimedean, we have the equalities

$$
\begin{aligned}
& \mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}=\mathbb{L}_{\rho, \mathfrak{p}} * \mathcal{C}_{c}^{\infty}\left(G\left(k_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}} \\
& \Phi_{\rho, \psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}}=\text { Inverse Satake transform of } \gamma\left(-s-n_{\rho}, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}\right)
\end{aligned}
$$

where we view $\gamma\left(\cdot, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}\right)$ as a rational function in Satake parameters of $\pi_{\mathfrak{p}}$;

- For \mathfrak{p} Archimedean, take $\mathbb{L}_{\rho, \mathfrak{p}}$ as the inverse Harish-Chandra transform of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$. Then for $\operatorname{Re}(s)$ large,

$$
\mathbb{L}_{\rho, \mathfrak{p}} \cdot|\sigma(\cdot)|^{s} \quad \text { and } \Phi_{\rho, \psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}} \cdot|\sigma(\cdot)|^{s}
$$

can be plugged into the Arthur-Selberg trace formula.

Schwartz space: Geometry

- For (G, ρ), there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.

Schwartz space: Geometry

- For (G, ρ), there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- It is expected that $\mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};

Schwartz space: Geometry

- For (G, ρ), there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- It is expected that $\mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};
- (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{\rho}, \mathfrak{p}}=\mathbb{L}_{\rho, \mathfrak{p}}$ over $\mathbb{F}_{q}((t))$;

Schwartz space: Geometry

- For (G, ρ), there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- It is expected that $\mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};
- (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{\rho, \mathfrak{p}}}=\mathbb{L}_{\rho, \mathfrak{p}}$ over $\mathbb{F}_{q}((t))$;
- (Braverman, Finkelberg, Gaitsgory, I. Mirković)

$$
X={\overline{G / U_{P}}}^{\text {aff }} \text { or } \overline{G /[P, P]}^{\text {aff }}, \quad \mathrm{IC}_{X, \mathfrak{p}}
$$

Schwartz space: Geometry

- For (G, ρ), there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- It is expected that $\mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};
- (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{\rho}, \mathfrak{p}}=\mathbb{L}_{\rho, \mathfrak{p}}$ over $\mathbb{F}_{q}((t))$;
- (Braverman, Finkelberg, Gaitsgory, I. Mirković)

$$
X={\overline{G / U_{P}}}^{\text {aff }} \text { or } \overline{G /[P, P]}^{\text {aff }}, \quad \mathrm{IC}_{X, p}
$$

- (Sakellaridis) Generalization of harmonic analysis to affine spherical varieties X ?

Schwartz space: Geometry

- For (G, ρ), there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- It is expected that $\mathcal{S}_{\rho}\left(G\left(k_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};
- (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{\rho, \mathfrak{p}}}=\mathbb{L}_{\rho, \mathfrak{p}}$ over $\mathbb{F}_{q}((t))$;
- (Braverman, Finkelberg, Gaitsgory, I. Mirković)

$$
X={\overline{G / U_{P}}}^{\text {aff }} \text { or } \overline{G /[P, P]}^{\text {aff }}, \quad \mathrm{IC}_{X, p}
$$

- (Sakellaridis) Generalization of harmonic analysis to affine spherical varieties X ?
- (Sakellaridis-Wang) Describe IC_{X};

Invariant distribution $\Phi_{\rho, \psi}$

- (Braverman-Kazhdan) Algebraic integration and the datum on tori;

Invariant distribution $\Phi_{\rho, \psi}$

- (Braverman-Kazhdan) Algebraic integration and the datum on tori;
- (Ngô) A construction generalizing the classical Hankel transform;

Invariant distribution $\Phi_{\rho, \psi}$

- (Braverman-Kazhdan) Algebraic integration and the datum on tori;
- (Ngô) A construction generalizing the classical Hankel transform;
- Finite field analogue has been resolved by Cheng-Ngô for $G=\mathrm{GL}_{n}, \mathrm{~T} .-\mathrm{H}$. Chen for \mathcal{D}-module setting and almost all finite fields, Laumon-Letellier over any finite fields;

$\Phi_{\rho, \psi}:$ Basic properties

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho, \psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$,
F-non-Archimedean;

$\Phi_{\rho, \psi}:$ Basic properties

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho, \psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$,
F-non-Archimedean;
- $\mathfrak{Z}(G(F))$ has the following equivalent characterizations:

$\Phi_{\rho, \psi}:$ Basic properties

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho, \psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$,
F-non-Archimedean;
- $\mathfrak{Z}(G(F))$ has the following equivalent characterizations:
- The endomorphism ring of the identity functor on the category of smooth representations of $G(F)$;

$\Phi_{\rho, \psi}:$ Basic properties

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho, \psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$,
F-non-Archimedean;
- $\mathfrak{Z}(G(F))$ has the following equivalent characterizations:
- The endomorphism ring of the identity functor on the category of smooth representations of $G(F)$;
- The space of invariant, essentially compact distributions on $G(F)$ (i.e. $\Phi * \mathcal{C}_{c}^{\infty}(G(F)) \subset \mathcal{C}_{c}^{\infty}(G(F))$);

$\Phi_{\rho, \psi}:$ Basic properties

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho, \psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$,
F-non-Archimedean;
- $\mathfrak{Z}(G(F))$ has the following equivalent characterizations:
- The endomorphism ring of the identity functor on the category of smooth representations of $G(F)$;
- The space of invariant, essentially compact distributions on $G(F)$ (i.e. $\Phi * \mathcal{C}_{c}^{\infty}(G(F)) \subset \mathcal{C}_{c}^{\infty}(G(F))$);
- The space of regular functions on the Bernstein variety

$$
\Omega(G(F))=\bigsqcup_{(M, \sigma)} X_{M, \sigma},
$$

with $X_{M, \sigma}=\left\{[M, \chi \cdot \sigma]_{G} \mid \chi \in \Psi(M)\right\}$;

$\Phi_{\rho, \psi}:$ Basic properties

- $G_{n}=\left\{g \in G(F)| | \sigma(g) \mid=q^{-n}\right\}$,

$\Phi_{\rho, \psi}:$ Basic properties

- $G_{n}=\left\{g \in G(F)| | \sigma(g) \mid=q^{-n}\right\}$,
- $\Phi_{\rho, \psi, n}=\Phi_{\rho, \psi} \cdot \operatorname{char}_{G_{n}}$;

$\Phi_{\rho, \psi}:$ Basic properties

- $G_{n}=\left\{g \in G(F)| | \sigma(g) \mid=q^{-n}\right\}$,
- $\Phi_{\rho, \psi, n}=\Phi_{\rho, \psi} \cdot \operatorname{char}_{G_{n}}$;
- (Expectation) $\Phi_{\rho, \psi, n} \in \mathcal{Z}(G(F)) \longleftrightarrow f_{\Phi_{\rho, \psi, n}}(\pi)$, set

$$
f_{\Phi_{\rho, \psi}}\left(\pi_{s}\right)=\sum_{n} f_{\Phi_{\rho, \psi}, n}\left(\pi_{s}\right) .
$$

Then the Laurent series is convergent for $\operatorname{Re}(s)$ small, with a mero. cont. to $s \in \mathbb{C}$ and $=\gamma(\cdot, \pi, \rho, \psi)$;

$\Phi_{\rho, \psi}:$ Basic properties

- $G_{n}=\left\{g \in G(F)| | \sigma(g) \mid=q^{-n}\right\}$,
- $\Phi_{\rho, \psi, n}=\Phi_{\rho, \psi} \cdot \operatorname{char}_{G_{n}}$;
- (Expectation) $\Phi_{\rho, \psi, n} \in \mathcal{Z}(G(F)) \longleftrightarrow f_{\Phi_{\rho, \psi, n}}(\pi)$, set

$$
f_{\Phi_{\rho, \psi}}\left(\pi_{s}\right)=\sum_{n} f_{\Phi_{\rho, \psi}, n}\left(\pi_{s}\right) .
$$

Then the Laurent series is convergent for $\operatorname{Re}(s)$ small, with a mero. cont. to $s \in \mathbb{C}$ and $=\gamma(\cdot, \pi, \rho, \psi)$;

- Typical example: $\Phi_{\text {std }}=\psi(\operatorname{tr}(\cdot))$, indeed $\Phi_{\text {std, } \mathrm{n}} \in \mathfrak{Z}\left(\mathrm{GL}_{n}(F)\right)$, since $\Phi_{\mathrm{std}, \mathrm{n}} * \phi=\operatorname{char}_{G_{-n}} \cdot \Phi_{\mathrm{std}} * \phi \in \mathcal{C}_{c}^{\infty}\left(\mathrm{GL}_{n}(F)\right)$;

$\Phi_{\rho, \psi}:$ Basic properties

- $G_{n}=\left\{g \in G(F)| | \sigma(g) \mid=q^{-n}\right\}$,
- $\Phi_{\rho, \psi, n}=\Phi_{\rho, \psi} \cdot \operatorname{char}_{G_{n}}$;
- (Expectation) $\Phi_{\rho, \psi, n} \in \mathfrak{Z}(G(F)) \longleftrightarrow f_{\Phi_{\rho, \psi}, n}(\pi)$, set

$$
f_{\Phi_{\rho, \psi}}\left(\pi_{s}\right)=\sum_{n} f_{\Phi_{\rho, \psi}, n}\left(\pi_{s}\right) .
$$

Then the Laurent series is convergent for $\operatorname{Re}(s)$ small, with a mero. cont. to $s \in \mathbb{C}$ and $=\gamma(\cdot, \pi, \rho, \psi)$;

- Typical example: $\Phi_{\text {std }}=\psi(\operatorname{tr}(\cdot))$, indeed $\Phi_{\text {std, } \mathrm{n}} \in \mathfrak{Z}\left(\mathrm{GL}_{n}(F)\right)$, since $\Phi_{\mathrm{std}, \mathrm{n}} * \phi=\operatorname{char}_{G_{-n}} \cdot \Phi_{\mathrm{std}} * \phi \in \mathcal{C}_{c}^{\infty}\left(\mathrm{GL}_{n}(F)\right)$;
- (Bernstein) $\Phi_{\text {std } \mid \mathrm{SL}_{n} \in \mathfrak{Z}\left(\mathrm{SL}_{n}(F)\right) ~}^{\text {- }}$

π-Hankel transform

- Motivated from the observation of Bernstein, (Jiang-L.) construct π-Hankel transform over any local field F of characteristic zero

$$
\begin{gathered}
\mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}(\pi) \xrightarrow{\mathcal{F}_{\psi},(\cdot)^{\vee}} \mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}\left(\pi^{\vee}\right) \\
\downarrow \\
\mathcal{S}_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi, \psi}} \longrightarrow \underset{\mathcal{S}_{\pi} \vee}{ } \quad \downarrow \text { (F) }
\end{gathered}
$$

π-Hankel transform

- Motivated from the observation of Bernstein, (Jiang-L.) construct π-Hankel transform over any local field F of characteristic zero

$$
\begin{gathered}
\mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}(\pi) \xrightarrow{\mathcal{F}_{\psi},(\cdot)^{\vee}} \mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}\left(\pi^{\vee}\right) \\
\downarrow \\
\mathcal{S}_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi, \psi}} \longrightarrow \underset{\mathcal{S}_{\pi} \vee}{ } \quad \downarrow \text { (F) }
\end{gathered}
$$

- Proposition (Jiang-L.)

π-Hankel transform

- Motivated from the observation of Bernstein, (Jiang-L.) construct π-Hankel transform over any local field F of characteristic zero

$$
\begin{gathered}
\mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}(\pi) \xrightarrow{\mathcal{F}_{\psi},(\cdot)^{\vee}} \mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}\left(\pi^{\vee}\right) \\
\downarrow \\
\mathcal{S}_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi, \psi}} \longrightarrow \underset{\mathcal{S}_{\pi} \vee}{ } \quad \downarrow \text { (F) }
\end{gathered}
$$

- Proposition (Jiang-L.)
- $\mathcal{F}_{\pi, \psi}$ is well-defined;

π-Hankel transform

- Motivated from the observation of Bernstein, (Jiang-L.) construct π-Hankel transform over any local field F of characteristic zero

$$
\begin{aligned}
& \mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}(\pi) \xrightarrow{\mathcal{F}_{\psi},(\cdot)^{\vee}} \mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}\left(\pi^{\vee}\right) \\
& \stackrel{\downarrow}{\downarrow} \underset{\mathcal{S}_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi, \psi}} \longrightarrow \mathcal{S}_{\pi \vee} \vee}{ }
\end{aligned}
$$

- Proposition (Jiang-L.)
- $\mathcal{F}_{\pi, \psi}$ is well-defined;
- \exists a smooth function $k_{\pi, \psi}$ on F^{\times}such that

$$
\mathcal{F}_{\pi, \psi}(f)(x)=\left(k_{\pi, \psi} * f^{\vee}\right)(x), \quad f \in \mathcal{C}_{c}^{\infty}(F) ;
$$

π-Hankel transform

- Motivated from the observation of Bernstein, (Jiang-L.) construct π-Hankel transform over any local field F of characteristic zero

$$
\begin{gathered}
\mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}(\pi) \xrightarrow{\mathcal{F}_{\psi},(\cdot)^{\vee}} \mathcal{S}\left(\mathrm{M}_{n}(F)\right) \otimes \mathcal{C}\left(\pi^{\vee}\right) \\
\downarrow \\
\mathcal{S}_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi, \psi}} \longrightarrow \mathcal{S}_{\pi \vee}(F)
\end{gathered}
$$

- Proposition (Jiang-L.)
- $\mathcal{F}_{\pi, \psi}$ is well-defined;
- \exists a smooth function $k_{\pi, \psi}$ on F^{\times}such that

$$
\begin{aligned}
& \mathcal{F}_{\pi, \psi}(f)(x)=\left(k_{\pi, \psi} * f^{\vee}\right)(x), \quad f \in \mathcal{C}_{c}^{\infty}(F) ; \\
& \int_{F^{\times}}^{\mathrm{reg}} k_{\pi, \psi}(x) \chi_{s}^{-1}(x) \mathrm{d}^{\times} x=\gamma(s, \pi \times \chi, \psi) .
\end{aligned}
$$

π-Hankel transform

- Construction and regularization

$$
k_{\pi, \psi}(x)=\lim _{\ell \rightarrow \infty} \int_{\operatorname{det} g=x}\left(\Phi_{\operatorname{std}} * \mathfrak{c}_{\ell}^{\vee}(g)\right) \cdot \varphi_{\tilde{\pi}}(g) \mathrm{d}_{x} g
$$

for $\left\{\mathfrak{c}_{\ell}\right\}$ any delta sequence to Id_{n};

π-Hankel transform

- Construction and regularization

$$
k_{\pi, \psi}(x)=\lim _{\ell \rightarrow \infty} \int_{\operatorname{det} g=x}\left(\Phi_{\operatorname{std}} * \mathfrak{c}_{\ell}^{\vee}(g)\right) \cdot \varphi_{\tilde{\pi}}(g) \mathrm{d}_{x} g
$$

for $\left\{\mathfrak{c}_{\ell}\right\}$ any delta sequence to Id_{n};

- Independent of $\left\{\mathfrak{c}_{\ell}\right\}$ and $\varphi_{\tilde{\pi}}\left(\mathrm{I}_{n}\right)=1$;

π-Hankel transform

- Construction and regularization

$$
k_{\pi, \psi}(x)=\lim _{\ell \rightarrow \infty} \int_{\operatorname{det} g=x}\left(\Phi_{\mathrm{std}} * \mathfrak{c}_{\ell}^{\vee}(g)\right) \cdot \varphi_{\pi}(g) \mathrm{d}_{x} g
$$

for $\left\{\mathfrak{c}_{\ell}\right\}$ any delta sequence to Id_{n};

- Independent of $\left\{\mathfrak{c}_{\ell}\right\}$ and $\varphi_{\tilde{\pi}}\left(\mathrm{I}_{n}\right)=1$;
- More general: Kirillov model: generic representations of π can be realized on the same variety P_{n} / U_{n} with P_{n} mirabolic, but different Schwartz and Fourier captured by π;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups
-F p-adic;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- F p-adic;
- $G=\mathbb{G}_{m} \times \mathrm{Sp}_{2 n}$;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- F p-adic;
- $G=\mathbb{G}_{m} \times \operatorname{Sp}_{2 n}$;
- $\rho=G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- F p-adic;
- $G=\mathbb{G}_{m} \times \operatorname{Sp}_{2 n}$;
- $\rho=G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;
- (Jiang-L.-Zhang) Full description of $\mathcal{S}_{\rho}(G(F))$ via geometry of \mathcal{M}_{ρ}, and explicit formula for $\Phi_{\rho, \psi}$; First case after Godement-Jacquet;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- F p-adic;
- $G=\mathbb{G}_{m} \times \mathrm{Sp}_{2 n}$;
- $\rho=G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;
- (Jiang-L.-Zhang) Full description of $\mathcal{S}_{\rho}(G(F))$ via geometry of \mathcal{M}_{ρ}, and explicit formula for $\Phi_{\rho, \psi}$; First case after Godement-Jacquet;
- Based on the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and more recent works;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n} \operatorname{via}\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n} \operatorname{via}\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;
- $P=M N=\operatorname{Stab}\left(L_{\Delta}\right)$ a Siegel parabolic in $\mathrm{Sp}_{4 n}$, where $L_{\Delta}=\left\{(v, v) \mid v \in F^{2 n}\right\}$ is a Lagrangian;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n}$ via $\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;
- $P=M N=\operatorname{Stab}\left(L_{\Delta}\right)$ a Siegel parabolic in $\mathrm{Sp}_{4 n}$, where $L_{\Delta}=\left\{(v, v) \mid v \in F^{2 n}\right\}$ is a Lagrangian;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n} \rightarrow P \backslash \mathrm{Sp}_{4 n}$ has Zariski open dense image, with stabilizer

$$
P \cap\left(\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}\right)=\mathrm{Sp}_{2 n}^{\Delta} \hookrightarrow \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}
$$

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n}$ via $\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;
- $P=M N=\operatorname{Stab}\left(L_{\Delta}\right)$ a Siegel parabolic in $\operatorname{Sp}_{4 n}$, where $L_{\Delta}=\left\{(v, v) \mid v \in F^{2 n}\right\}$ is a Lagrangian;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n} \rightarrow P \backslash \mathrm{Sp}_{4 n}$ has Zariski open dense image, with stabilizer

$$
P \cap\left(\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}\right)=\mathrm{Sp}_{2 n}^{\Delta} \hookrightarrow \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}
$$

- (Piatetski-Shapiro, Rallis) $\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \curvearrowright \operatorname{Ind}_{P}^{\mathrm{Sp}_{4 n}}\left(\chi_{s}\right)$ with analytical properties of zeta integrals captured by intertwining operators;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

The following diagram illustrates the transition between the work of Piatetski-Shapiro and Rallis to Jiang-L.-Zhang,

where $X_{P}=[P, P] \backslash \mathrm{Sp}_{4 n},=\left(\mathrm{Id}_{2 n},-\mathrm{Id}_{2 n}\right) \in \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}$, $M^{\mathrm{ab}}=[M, M] \backslash M \simeq \mathbb{G}_{m}$.

- Both $M^{\text {ab }} w N$ and $\mathbb{G}_{m} \times \mathrm{Sp}_{2 n}$ are Zariski open dense in X_{P}.

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

The following diagram illustrates the transition between the work of Piatetski-Shapiro and Rallis to Jiang-L.-Zhang,

where $X_{P}=[P, P] \backslash \mathrm{Sp}_{4 n},=\left(\mathrm{Id}_{2 n},-\mathrm{Id}_{2 n}\right) \in \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}$, $M^{\mathrm{ab}}=[M, M] \backslash M \simeq \mathbb{G}_{m}$.

- Both $M^{\text {ab }} w N$ and $\mathbb{G}_{m} \times \mathrm{Sp}_{2 n}$ are Zariski open dense in X_{P}.
- The transition is given by Cayley transform \mathcal{C};

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- (Braverman-Kazhdan) Intertwining operatos on degenerate principal series can be upgraduated to a universal family, with normalization given by geometry of X_{P};

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- (Braverman-Kazhdan) Intertwining operatos on degenerate principal series can be upgraduated to a universal family, with normalization given by geometry of X_{P};
- Example:

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

- (Braverman-Kazhdan) Intertwining operatos on degenerate principal series can be upgraduated to a universal family, with normalization given by geometry of X_{P};
- Example:

- This formulation has been further studied by Getz-Hsu-Leslie for G split, simple and simply connected.

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, set

$$
\begin{aligned}
& \mathcal{F}_{X, \psi}(f)(g)=\int_{F^{\times}}^{\mathrm{reg}} \eta_{\mathrm{pvs}, \psi}(x)|x|^{-\frac{2 n+1}{2}} \int_{N(F)} f(w n \mathfrak{s}(x) g) \mathrm{d} n \mathrm{~d} x \\
& \text { where } \mathfrak{s}: \mathbb{G}_{m} \rightarrow M \text { is a section of } M \rightarrow[M, M] \backslash M \simeq \mathbb{G}_{m} \text {; }
\end{aligned}
$$

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, set

$$
\mathcal{F}_{X, \psi}(f)(g)=\int_{F^{\times}}^{\mathrm{reg}} \eta_{\mathrm{pvs}, \psi}(x)|x|^{-\frac{2 n+1}{2}} \int_{N(F)} f(w n \mathfrak{s}(x) g) \mathrm{d} n \mathrm{~d} x
$$

where $\mathfrak{s}: \mathbb{G}_{m} \rightarrow M$ is a section of $M \rightarrow[M, M] \backslash M \simeq \mathbb{G}_{m}$;

$$
\begin{aligned}
& \int_{F^{\times}}^{\mathrm{reg}} \eta_{\mathrm{pvs}, \psi}(x) \chi_{s}^{-1}(x) \mathrm{d}^{\times} x \\
= & \gamma\left(s-\frac{2 n-1}{2}, \chi, \psi\right) \cdot \prod_{i=0}^{n-1} \gamma\left(2 s-2 n+2 i, \chi^{2}, \psi\right) .
\end{aligned}
$$

Jiang-L.-Zhang: Schwartz space

Proposition (JLZ)

- Set

$$
\mathcal{S}\left(X_{P}(F)\right):=\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)+\mathcal{F}_{X, \psi}\left(\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right) ;\right.
$$

Then $\mathcal{F}_{X, \psi}$ stabilizes $\mathcal{S}\left(X_{P}(F)\right)$;

Jiang-L.-Zhang: Schwartz space

Proposition (JLZ)

- Set

$$
\mathcal{S}\left(X_{P}(F)\right):=\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)+\mathcal{F}_{X, \psi}\left(\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right) ;\right.
$$

Then $\mathcal{F}_{X, \psi}$ stabilizes $\mathcal{S}\left(X_{P}(F)\right)$;

- $|2|^{n(2 n+1)} \cdot \mathcal{F}_{X, \psi}$ extends to a unitary operator on $L^{2}\left(X_{P}(F)\right)$ and $\mathcal{F}_{X, \psi} \circ \mathcal{F}_{X, \psi^{-1}}=|2|^{-2 n(2 n+1)} \cdot$ Id;

Jiang-L.-Zhang: Schwartz space

Proposition (JLZ)

- Set

$$
\mathcal{S}\left(X_{P}(F)\right):=\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)+\mathcal{F}_{X, \psi}\left(\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)\right.
$$

Then $\mathcal{F}_{X, \psi}$ stabilizes $\mathcal{S}\left(X_{P}(F)\right)$;

- $|2|^{n(2 n+1)} \cdot \mathcal{F}_{X, \psi}$ extends to a unitary operator on $L^{2}\left(X_{P}(F)\right)$ and $\mathcal{F}_{X, \psi} \circ \mathcal{F}_{X, \psi^{-1}}=|2|^{-2 n(2 n+1)} \cdot \mathrm{Id}$;
- A function $f \in \mathcal{C}^{\infty}\left(X_{P}(F)\right)$ belongs to $\mathcal{S}\left(X_{P}(F)\right)$ if and only if f is right $K_{\mathrm{Sp}_{4 n}}$-finite, and as a function in $a \in F^{\times}$,

$$
|a|^{2 n+1} \cdot f\left(\mathfrak{s}_{a}^{-1} k\right)
$$

belongs to $\mathcal{S}_{\text {pvs }}^{-}\left(F^{\times}\right)$for any fixed $k \in K_{\mathrm{Sp}_{4 n}}$;

Jiang-L.-Zhang: Schwartz space

- $\mathcal{S}_{\text {pvs }}^{-}\left(F^{\times}\right) \longleftrightarrow L(s+n, \chi) \cdot \prod_{i=0}^{n-1} L\left(2 s+2 i, \chi^{2}\right) ;$

Jiang-L.-Zhang: Schwartz space

$-\mathcal{S}_{\mathrm{pvs}}^{-}\left(F^{\times}\right) \longleftrightarrow L(s+n, \chi) \cdot \prod_{i=0}^{n-1} L\left(2 s+2 i, \chi^{2}\right)$;

- Therefore functions in $\mathcal{S}\left(X_{P}(F)\right)$ can be described by their asymptotic behavior near the singular locus, i.e. $\bar{X}_{P}^{\text {aff }} \backslash X_{P}=\{0\} ;$

Jiang-L.-Zhang: Schwartz space

$-\mathcal{S}_{\mathrm{pvs}}^{-}\left(F^{\times}\right) \longleftrightarrow L(s+n, \chi) \cdot \prod_{i=0}^{n-1} L\left(2 s+2 i, \chi^{2}\right)$;

- Therefore functions in $\mathcal{S}\left(X_{P}(F)\right)$ can be described by their asymptotic behavior near the singular locus, i.e. $\bar{X}_{P}^{\text {aff }} \backslash X_{P}=\{0\} ;$
- In particular, the reductive monoid \mathcal{M}_{ρ} attached to (G, ρ) in this situation is exactly given by $\bar{X}_{P}^{\text {aff }}$;

Jiang-L.-Zhang: Fourier operator

Proposition (JLZ)

- \mathcal{C} is given by the Cayley transform;

Jiang-L.-Zhang: Fourier operator

Proposition (JLZ)

- \mathcal{C} is given by the Cayley transform;

$$
\mathfrak{j}_{\mathcal{C}^{-1}}(h)=\frac{1}{\zeta_{F}(2 i)} \cdot\left|\operatorname{det}\left(h-\mathrm{I}_{2 n}\right)\right|^{-(2 n+1)} ;
$$

Jiang-L.-Zhang: Fourier operator

- For $f \in \mathcal{S}\left(X_{P}(F)\right)$, set

$$
\phi_{f}(a, h):=f\left(\mathfrak{s}(a)^{-1} \cdot\left(h, \mathrm{I}_{2 n}\right)\right)|a|^{\frac{2 n+1}{2}}
$$

and define

$$
\mathcal{S}_{\rho}(G(F)):=\left\{\phi_{f} \mid f \in \mathcal{S}\left(X_{P}(F)\right)\right\} .
$$

Jiang-L.-Zhang: Fourier operator

- For $f \in \mathcal{S}\left(X_{P}(F)\right)$, set

$$
\phi_{f}(a, h):=f\left(\mathfrak{s}(a)^{-1} \cdot\left(h, \mathrm{I}_{2 n}\right)\right)|a|^{\frac{2 n+1}{2}}
$$

and define

$$
\mathcal{S}_{\rho}(G(F)):=\left\{\phi_{f} \mid f \in \mathcal{S}\left(X_{P}(F)\right)\right\} .
$$

- Define

$$
\Phi_{\rho, \psi}(a, h):=c_{0} \cdot \eta_{\mathrm{pvs}, \psi}\left(a \cdot \operatorname{det}\left(h+\mathrm{I}_{2 n}\right)\right) \cdot\left|\operatorname{det}\left(h+\mathrm{I}_{2 n}\right)\right|^{-\frac{2 n+1}{2}}
$$

Jiang-L.-Zhang: Fourier operator

- For $f \in \mathcal{S}\left(X_{P}(F)\right)$, set

$$
\phi_{f}(a, h):=f\left(\mathfrak{s}(a)^{-1} \cdot\left(h, \mathrm{I}_{2 n}\right)\right)|a|^{\frac{2 n+1}{2}}
$$

and define

$$
\mathcal{S}_{\rho}(G(F)):=\left\{\phi_{f} \mid f \in \mathcal{S}\left(X_{P}(F)\right)\right\}
$$

- Define

$$
\Phi_{\rho, \psi}(a, h):=c_{0} \cdot \eta_{\mathrm{pvs}, \psi}\left(a \cdot \operatorname{det}\left(h+\mathrm{I}_{2 n}\right)\right) \cdot\left|\operatorname{det}\left(h+\mathrm{I}_{2 n}\right)\right|^{-\frac{2 n+1}{2}}
$$

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, the ρ-Fourier transform is defined as

$$
\mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)(a, h):=\int_{F^{\times}}^{\mathrm{reg}} \int_{\mathrm{Sp}_{2 n}(F)} \Phi_{\rho, \psi}(a x, g h) \cdot \phi_{f}(x, g) \mathrm{d} g \mathrm{~d} x .
$$

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- $\mathcal{F}_{\rho, \psi}$ extends to a unitary operator on $L^{2}(G(F), \mathrm{d} g)$;

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- $\mathcal{F}_{\rho, \psi}$ extends to a unitary operator on $L^{2}(G(F), \mathrm{d} g)$;
- $\mathcal{F}_{\rho, \psi^{-1}} \circ \mathcal{F}_{\rho, \psi}=\mathrm{Id} ;$

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- $\mathcal{F}_{\rho, \psi}$ extends to a unitary operator on $L^{2}(G(F), \mathrm{d} g)$;
- $\mathcal{F}_{\rho, \psi^{-1}} \circ \mathcal{F}_{\rho, \psi}=\mathrm{Id}$;
- Set $G_{\ell}=\left\{(a, h) \in G(F)=F^{\times} \times \operatorname{Sp}_{2 n}| | a \mid=q^{-\ell}\right\}$. Let ch_{ℓ} be the characteristic function of G_{ℓ};

Jiang-L.-Zhang: $\rho=$ std of symplectic groups

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- $\mathcal{F}_{\rho, \psi}$ extends to a unitary operator on $L^{2}(G(F), \mathrm{d} g)$;
- $\mathcal{F}_{\rho, \psi^{-1}} \circ \mathcal{F}_{\rho, \psi}=\mathrm{Id}$;
- Set $G_{\ell}=\left\{(a, h) \in G(F)=F^{\times} \times \operatorname{Sp}_{2 n}| | a \mid=q^{-\ell}\right\}$. Let ch_{ℓ} be the characteristic function of G_{ℓ};
- Set $\Phi_{\rho, \psi, \ell}=\Phi_{\rho, \psi} \cdot \operatorname{ch}_{\ell}$;

Basic properties of $\Phi_{\rho, \psi}$

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}
$$

Basic properties of $\Phi_{\rho, \psi}$

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}
$$

- The summation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)
$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

Basic properties of $\Phi_{\rho, \psi}$

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}
$$

- The summation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)
$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

- The following identity holds after meromorphic continuation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)=\gamma\left(\frac{1}{2}, \chi_{s}^{-1} \otimes \pi^{\vee}, \rho, \psi\right)
$$

Basic properties of $\Phi_{\rho, \psi}$

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}
$$

- The summation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)
$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

- The following identity holds after meromorphic continuation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)=\gamma\left(\frac{1}{2}, \chi_{s}^{-1} \otimes \pi^{\vee}, \rho, \psi\right)
$$

- Based on the work of Yamana, $\mathcal{S}_{\rho}(G(F)) \sim L(s, \pi \otimes \chi)$;

Basic properties of $\Phi_{\rho, \psi}$

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}
$$

- The summation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)
$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

- The following identity holds after meromorphic continuation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)=\gamma\left(\frac{1}{2}, \chi_{s}^{-1} \otimes \pi^{\vee}, \rho, \psi\right)
$$

- Based on the work of Yamana, $\mathcal{S}_{\rho}(G(F)) \sim L(s, \pi \otimes \chi)$;
- Based on the work of Lapid-Rallis, Ikeda and Kakuhama, $\mathcal{F}_{\rho, \psi} \sim \gamma(s, \pi \otimes \chi, \rho, \psi) ;$

L.-Ngô (in progress)

- For $G=\mathrm{GL}_{2}, \rho: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$,

$$
\rho_{T}^{\vee}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{2},
$$

$$
\Phi_{\rho, T}:=\left(\rho_{T}^{\vee}\right)_{!}(\psi(\operatorname{tr}(\cdot))) ;
$$

L.-Ngô (in progress)

- For $G=\mathrm{GL}_{2}, \rho: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$,

$$
\rho_{T}^{\vee}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{2}
$$

$\Phi_{\rho, T}:=\left(\rho_{T}^{\vee}\right)!(\psi(\operatorname{tr}(\cdot))) ;$

- (Laurent Lafforgue) Candidate for $\Phi_{\rho, G}$: modulo convergence, set $\left(a_{i}=\operatorname{tr} \wedge^{i}\right)_{i=1}^{2}$

$$
\Phi_{\rho, G}\left(a_{1}, a_{2}\right)=\int \widehat{\Phi_{\rho, T}}\left(\alpha_{1}, \alpha_{2}\right) \cdot\left|\alpha_{1}\right| \cdot \psi\left(\sum \alpha_{i} \cdot a_{i}\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}
$$

L.-Ngô (in progress)

- For $G=\mathrm{GL}_{2}, \rho: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$,

$$
\rho_{T}^{\vee}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{2}
$$

$\Phi_{\rho, T}:=\left(\rho_{T}^{\vee}\right)!(\psi(\operatorname{tr}(\cdot))) ;$

- (Laurent Lafforgue) Candidate for $\Phi_{\rho, G}$: modulo convergence, set $\left(a_{i}=\operatorname{tr} \wedge^{i}\right)_{i=1}^{2}$

$$
\Phi_{\rho, G}\left(a_{1}, a_{2}\right)=\int \widehat{\Phi_{\rho, T}}\left(\alpha_{1}, \alpha_{2}\right) \cdot\left|\alpha_{1}\right| \cdot \psi\left(\sum \alpha_{i} \cdot a_{i}\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}
$$

- (L.) Modulo convergence, true for $\rho=\operatorname{Sym}^{2}$ ($=\mathrm{JLZ}$); Also for $\rho=\operatorname{std}$ of $G=\mathbb{G}_{m} \times \mathrm{SO}_{4}$;
L.-Ngô (in progress)
- $G=\mathrm{GL}_{n}, \rho: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}\left(V_{\rho}\right)$,

$$
\rho_{T}^{V}: \mathbb{A}^{\operatorname{dim} \rho} \rightarrow \mathbb{A}^{n}
$$

$$
\Phi_{\rho, T}:=\left(\rho_{T}^{\vee}\right)!(\psi(\text { tr• } \cdot)) ;
$$

L.-Ngô (in progress)

- $G=\mathrm{GL}_{n}, \rho: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}\left(V_{\rho}\right)$,

$$
\rho_{T}^{\vee}: \mathbb{A}^{\operatorname{dim} \rho} \rightarrow \mathbb{A}^{n}
$$

$\Phi_{\rho, T}:=\left(\rho_{T}^{\vee}\right)!(\psi($ tr$\cdot)) ;$

- (L-Ngô, in progress) Candidate for $\Phi_{\rho, G}$: modulo convergence, set $\left(a_{i}=\operatorname{tr} \wedge^{i}\right)_{i=1}^{n}$,
$\Phi_{\rho, G}\left(\left(a_{i}\right)_{1 \leq i \leq n}\right)=\int\left|\mathrm{D}\left(\alpha_{i}, a_{i}\right)\right| \cdot \widehat{\Phi_{\rho, T}}\left(\left(\alpha_{i}\right)_{1 \leq i \leq n}\right) \cdot \psi\left(\sum_{i} a_{i} \alpha_{i}\right) \cdot \mathrm{d} \alpha_{i}$
where

$$
\mathrm{D}\left(\alpha_{i}, a_{i}\right)
$$

is the symmetric polynomial attached to variables $\left(t_{i}\right)_{1 \leq i \leq n}$ with

$$
\mathrm{D}\left(\alpha_{i}, \operatorname{tr} \wedge^{i} t\right)=\sum_{l \in \mathcal{I}_{n-2}}\left(\sum_{j=1}^{n-1} \alpha_{i} \cdot \operatorname{tr} \wedge^{i-2} t_{l}\right)
$$

Here $\mathcal{I}_{n-2}=\left\{\left(i_{1}, \ldots, i_{n-2}\right) \mid 1 \leq i_{1}<\ldots<i_{n-2} \leq n\right\}$.

Thank You and happy birthday Prof. Casselman!

