Harmonic analysis and gamma functions

Zhilin Luo

University of Chicago

Basic Functions, Orbital Integrals, and Beyond Endoscopy in honor of Prof. Casselman's 80th birthday

November 15, 2021

Riemann zeta function

▶ (Euler) For Re(s) > 1,

$$\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s}, \quad \begin{cases} \mathsf{ab.\ cov.} \\ = \prod_{p} \zeta_p(s) \end{cases}$$

Riemann zeta function

• (Euler) For Re(s) > 1,

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}, \quad \begin{cases} \text{ab. cov.} \\ = \prod_p \zeta_p(s) \end{cases}$$

► (Riemann)

$$\xi(s) = \pi^{-s/2} \cdot \Gamma(s/2) \cdot \zeta(s) = \int_0^\infty \left(\frac{\theta(it) - 1}{2}\right) \cdot t^{s/2} \cdot \frac{\mathrm{d}t}{t}$$

with
$$\theta(au) = \sum_{n \in \mathbb{Z}} \mathrm{e}^{\pi i n^2 au}$$
 (Jacobi's theta)

Poisson summation $\theta(\tau)$

 $\Rightarrow \zeta(s)$ mero. con. to $s \in \mathbb{C}$, fun. eq.

Riemann zeta function

• (Euler) For Re(s) > 1,

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}, \quad \begin{cases} \text{ab. cov.} \\ = \prod_p \zeta_p(s) \end{cases}$$

► (Riemann)

$$\xi(s) = \pi^{-s/2} \cdot \Gamma(s/2) \cdot \zeta(s) = \int_0^\infty \left(\frac{\theta(it) - 1}{2}\right) \cdot t^{s/2} \cdot \frac{\mathrm{d}t}{t}$$

with
$$\theta(au) = \sum_{n \in \mathbb{Z}} \mathrm{e}^{\pi i n^2 au}$$
 (Jacobi's theta)

Poisson summation heta(au) $\Rightarrow \zeta(s)$ mero. con. to $s\in\mathbb{C}$, fun. eq.

Dirichlet & Hecke L-functions.

► (Tate) Systematic development;

- ► (Tate) Systematic development;

harmonic analysis on $\mathbb{G}_m \curvearrowright \mathbb{A}^1$ \Rightarrow mero. con. & fun. eq. $L(s,\chi)$;

- ► (Tate) Systematic development;

harmonic analysis on $\mathbb{G}_m \curvearrowright \mathbb{A}^1$ \Rightarrow mero. con. & fun. eq. $L(s,\chi)$;

Ingredients:

Zeta integral:

$$\mathcal{Z}(s,f,\chi) = \int_{\mathbb{A}^{\times}} f(x)\chi(x)|x|^{s} d^{*}x, \quad f \in \mathcal{S}(\mathbb{A})$$

ab. cov. for Re(s) large;

- (Tate) Systematic development;

harmonic analysis on $\mathbb{G}_m \curvearrowright \mathbb{A}^1$ \Rightarrow mero. con. & fun. eq. $L(s,\chi)$;

- Ingredients:
 - (Schwartz space) $\mathcal{S}(\mathbb{A}) = \bigotimes_{\mathfrak{p} \in |k|}' \mathcal{S}(k_{\mathfrak{p}});$

Zeta integral:

$$\mathcal{Z}(s, f, \chi) = \int_{\mathbb{A}^{\times}} f(x)\chi(x)|x|^{s} d^{*}x, \quad f \in \mathcal{S}(\mathbb{A})$$

ab. cov. for Re(s) large;

- (Tate) Systematic development;

harmonic analysis on
$$\mathbb{G}_m \curvearrowright \mathbb{A}^1$$

 \Rightarrow mero. con. & fun. eq. $L(s,\chi)$;

- Ingredients:
 - (Schwartz space) $\mathcal{S}(\mathbb{A}) = \bigotimes_{\mathfrak{p} \in |k|}' \mathcal{S}(k_{\mathfrak{p}});$
 - (Fourier transform) $\mathcal{F}_{\psi} = \bigotimes_{\mathfrak{p}} \mathcal{F}_{\psi,\mathfrak{p}} : \mathcal{S}(\mathbb{A}) \simeq \mathcal{S}(\mathbb{A});$

Zeta integral:

$$\mathcal{Z}(s, f, \chi) = \int_{\mathbb{A}^{\times}} f(x)\chi(x)|x|^{s} d^{*}x, \quad f \in \mathcal{S}(\mathbb{A})$$

ab. cov. for Re(s) large;

$$ightharpoonup \mathcal{Z}(s,\cdot,\chi) = \prod_{\mathfrak{p}} \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$$

- $\triangleright \ \mathcal{Z}(s,\cdot,\chi) = \prod_{\mathfrak{p}} \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$
- \triangleright $\mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$

- $\blacktriangleright \ \mathcal{Z}(s,\cdot,\chi) = \prod_{\mathfrak{p}} \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$
- $\triangleright \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$
 - ▶ ab. cov. for Re(s) large;

- $\triangleright \ \mathcal{Z}(s,\cdot,\chi) = \prod_{\mathfrak{p}} \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$
- $\triangleright \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$
 - ightharpoonup ab. cov. for Re(s) large;
 - ▶ mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}(k_{\mathfrak{p}})$;

- $\triangleright \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$
 - ▶ ab. cov. for Re(s) large;
 - ▶ mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}(k_{\mathfrak{p}})$;
 - ▶ poles $\sim L(s, \chi_{\mathfrak{p}})$;

- $\triangleright \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$
 - ▶ ab. cov. for Re(s) large;
 - ▶ mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}(k_{\mathfrak{p}})$;
 - ▶ poles $\sim L(s, \chi_{\mathfrak{p}})$;

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(\cdot),\chi_{\mathfrak{p}}^{-1})=\gamma(s,\chi_{\mathfrak{p}},\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$$

$$\triangleright \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$$

- ▶ ab. cov. for Re(s) large;
- ▶ mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}(k_{\mathfrak{p}})$;
- ▶ poles $\sim L(s, \chi_{\mathfrak{p}})$;

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(\cdot),\chi_{\mathfrak{p}}^{-1})=\gamma(s,\chi_{\mathfrak{p}},\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$$

Set

$$\mathbb{L}_{\mathfrak{p}} = \begin{cases} \mathbb{1}_{\mathfrak{o}_{\mathfrak{p}}} & \mathfrak{p} \text{ non-Archi.} \\ \mathsf{Gaussian} & \mathfrak{p} \text{ Archi.} \end{cases}$$

Then $\mathcal{F}_{\psi_{\mathfrak{p}}}(\mathbb{L}_{\mathfrak{p}}) = \mathbb{L}_{\mathfrak{p}} \& \mathcal{Z}(s, \mathbb{L}_{\rho}, \chi_{\mathfrak{p}}) = \mathcal{L}(s, \chi_{\mathfrak{p}})$ for $\chi_{\mathfrak{p}}$ unramified;

- $\triangleright \ \mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}})$
 - ightharpoonup ab. cov. for $\operatorname{Re}(s)$ large;
 - ▶ mero. cont. to $s \in \mathbb{C}$ as distr. on $\mathcal{S}(k_{\mathfrak{p}})$;
 - ▶ poles $\sim L(s, \chi_{\mathfrak{p}})$;

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(\cdot),\chi_{\mathfrak{p}}^{-1})=\gamma(s,\chi_{\mathfrak{p}},\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,\cdot,\chi_{\mathfrak{p}});$$

Set

$$\mathbb{L}_{\mathfrak{p}} = \begin{cases} \mathbb{1}_{\mathfrak{o}_{\mathfrak{p}}} & \mathfrak{p} \text{ non-Archi.} \\ \mathsf{Gaussian} & \mathfrak{p} \text{ Archi.} \end{cases}$$

Then $\mathcal{F}_{\psi_{\mathfrak{p}}}(\mathbb{L}_{\mathfrak{p}}) = \mathbb{L}_{\mathfrak{p}} \& \mathcal{Z}(s, \mathbb{L}_{\rho}, \chi_{\mathfrak{p}}) = \mathcal{L}(s, \chi_{\mathfrak{p}})$ for $\chi_{\mathfrak{p}}$ unramified;

▶ Global Poisson summation for \mathcal{F}_{ψ} ⇒ mero. cont. & fun. eq. $\mathcal{Z}(s,\cdot,\chi)$ ⇒ $L(s,\chi)$;

Gelfand-Graev-Piatetski-Shapiro

▶ Observation: As distr. on $k_{\mathfrak{p}}$,

$$\gamma(s,\chi_{\mathfrak{p}},\psi_{\mathfrak{p}})\cdot\mathcal{F}_{\psi_{\mathfrak{p}}}(\chi_{\mathfrak{p}}|\cdot|^{s-1})=\chi_{\mathfrak{p}}^{-1}|\cdot|^{-s};$$

Gelfand-Graev-Piatetski-Shapiro

▶ Observation: As distr. on k_p ,

$$\gamma(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}) \cdot \mathcal{F}_{\psi_{\mathfrak{p}}}(\chi_{\mathfrak{p}}|\cdot|^{s-1}) = \chi_{\mathfrak{p}}^{-1}|\cdot|^{-s};$$

 $\blacktriangleright \iff \psi_{\mathfrak{p}}: k_{\mathfrak{p}} \to \mathbb{C},$

$$\int_{k_{\mathfrak{p}}^{\times}}^{\mathrm{reg}} \psi_{\mathfrak{p}}(x) \cdot \chi_{\mathfrak{p}}(x)^{-1} \frac{\mathrm{d}^{+} x}{|x|_{\mathfrak{p}}^{s}}$$

cov. for $\mathrm{Re}(s)$ small, mero. cont. to $s \in \mathbb{C}$,

$$= \gamma(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}).$$

Gelfand-Graev-Piatetski-Shapiro

▶ Observation: As distr. on k_p ,

$$\gamma(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}}) \cdot \mathcal{F}_{\psi_{\mathfrak{p}}}(\chi_{\mathfrak{p}}|\cdot|^{s-1}) = \chi_{\mathfrak{p}}^{-1}|\cdot|^{-s};$$

 $\blacktriangleright \iff \psi_{\mathfrak{p}}: k_{\mathfrak{p}} \to \mathbb{C},$

$$\int_{k_{\mathfrak{p}}^{\times}}^{\mathrm{reg}} \psi_{\mathfrak{p}}(x) \cdot \chi_{\mathfrak{p}}(x)^{-1} \frac{\mathrm{d}^{+} x}{|x|_{\mathfrak{p}}^{s}}$$

cov. for $\operatorname{Re}(s)$ small, mero. cont. to $s \in \mathbb{C}$,

$$= \gamma(s,\chi_{\mathfrak{p}},\psi_{\mathfrak{p}}).$$

$$\psi \longleftrightarrow \gamma(s, \chi_{\mathfrak{p}}, \psi_{\mathfrak{p}})$$

ightharpoonup G/k reductive;

- ightharpoonup G/k reductive;
- $ightharpoonup
 ho: {}^LG
 ightarrow \mathrm{GL}(V_{
 ho});$

- ightharpoonup G/k reductive;
- $ightharpoonup
 ho: {}^LG o \mathrm{GL}(V_{
 ho});$
- $\blacktriangleright \ \pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\mathrm{cusp}}(G);$

- \triangleright G/k reductive;
- $ightharpoonup
 ho: {}^L G o \mathrm{GL}(V_{\rho});$
- $\blacktriangleright \pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\operatorname{cusp}}(G);$
- ► (Langlands) to define (? ramified)

$$L(s,\pi,
ho)=\prod_{\mathfrak{p}}L(s,\pi,
ho);$$

- ► *G*/*k* reductive;
- $ightharpoonup
 ho: {}^L G o \mathrm{GL}(V_{\rho});$
- $\blacktriangleright \ \pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\operatorname{cusp}}(G);$
- ► (Langlands) to define (? ramified)

$$L(s,\pi,\rho) = \prod_{\mathfrak{p}} L(s,\pi,\rho);$$

▶ (Langlands) $L^{S}(s, \pi, \rho)$ ab. cov. for Re(s) large;

Functoriality conjecture

Conjecture (Langlands)

 $L(s,\pi,\rho)$ has a mero. cont. to $s\in\mathbb{C}$ & fun. eq.

$$L(1-s,\pi^{\vee},\rho)=\varepsilon(s,\pi,\rho)\cdot L(s,\pi,\rho)$$

 $w/ \varepsilon(s, \pi, \rho)$ nonzero entire in $s \in \mathbb{C}$.

▶ Known for a special list of (G, ρ) ;

Functoriality conjecture

Conjecture (Langlands)

 $\mathit{L}(s,\pi,
ho)$ has a mero. cont. to $s\in\mathbb{C}$ & fun. eq.

$$L(1-s,\pi^{\vee},\rho)=\varepsilon(s,\pi,\rho)\cdot L(s,\pi,\rho)$$

 $\mathsf{w}/\ arepsilon(s,\pi,
ho)$ nonzero entire in $s\in\mathbb{C}$.

- ▶ Known for a special list of (G, ρ) ;
- Methods: Tate, Godement-Jacquet; Rankin-Selberg; Langlands-Shahidi; Trace formula;

A question

Question

Understand the analytical properties of $L(s, \pi, \rho)$ and its local factors $L(s, \pi_p, \rho)$ through

harmonic analysis $\left\{ egin{array}{ll} Schwartz \ space \\ Fourier \ transform \\ Poisson \ summation \end{array} \right.$

on G (& related spherical varieties);

Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n$, $\rho = std$);

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n, \rho = std$);
- Set up

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n$, $\rho = std$);
- Set up
 - ightharpoonup G/k split,

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n$, $\rho = std$);
- Set up
 - ightharpoonup G/k split,
 - $ightharpoonup \sigma: G o \mathbb{G}_m$,

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n$, $\rho = std$);
- Set up
 - ► *G/k* split,
 - $ightharpoonup \sigma: G
 ightharpoonup \mathbb{G}_m$,
 - $\rho: G^{\vee}(\mathbb{C}) \to \mathrm{GL}(V_{\rho})$ irreducible injective with highest weight λ_{ρ} ;

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n$, $\rho = std$);
- Set up
 - ► *G/k* split,
 - $ightharpoonup \sigma: G \to \mathbb{G}_m$
 - $\rho: G^{\vee}(\mathbb{C}) \to \mathrm{GL}(V_{\rho})$ irreducible injective with highest weight λ_{ρ} ;
- (Ngô) Assumptions can be relaxed;

- Conjectural framework to establish analytical properties of $L(s, \pi, \rho)$;
- ▶ Prototype: Godement-Jacquet theory ($G = GL_n$, $\rho = std$);
- Set up
 - ► *G/k* split,
 - $ightharpoonup \sigma: G
 ightharpoonup \mathbb{G}_m$,
 - $\rho: G^{\vee}(\mathbb{C}) \to \mathrm{GL}(V_{\rho})$ irreducible injective with highest weight λ_{ρ} ;
- (Ngô) Assumptions can be relaxed;
- (Sakellaridis) Generalize to affine spherical varieties (?);

Conjectural ingredients

▶ Schwartz space $C_c^{\infty}(G(k_{\mathfrak{p}})) \subset S_{\rho}(G(k_{\mathfrak{p}})) \subset C^{\infty}(G(k_{\mathfrak{p}}));$

Godement-Jacquet

Conjectural ingredients

- ▶ Schwartz space $C_c^{\infty}(G(k_{\mathfrak{p}})) \subset S_{\rho}(G(k_{\mathfrak{p}})) \subset C^{\infty}(G(k_{\mathfrak{p}}))$;
- ▶ Fourier transform $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}(G(k_{\mathfrak{p}})) \to \mathcal{S}_{\rho}(G(k_{\mathfrak{p}}));$

Godement-Jacquet

Conjectural ingredients

- ▶ Schwartz space $C_c^{\infty}(G(k_{\mathfrak{p}})) \subset S_{\rho}(G(k_{\mathfrak{p}})) \subset C^{\infty}(G(k_{\mathfrak{p}}))$;
- ▶ Fourier transform $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}(G(k_{\mathfrak{p}})) \to \mathcal{S}_{\rho}(G(k_{\mathfrak{p}}));$
- Global Poisson summation;

Godement-Jacquet

Conjectural ingredients

- ▶ Schwartz space $\mathcal{C}_c^\infty(G(k_\mathfrak{p})) \subset \mathcal{S}_\rho(G(k_\mathfrak{p})) \subset \mathcal{C}^\infty(G(k_\mathfrak{p}));$
- ▶ Fourier transform $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}(G(k_{\mathfrak{p}})) \to \mathcal{S}_{\rho}(G(k_{\mathfrak{p}}));$
- ► Global Poisson summation;

Godement-Jacquet

Schwartz space

$$\mathcal{S}(G(k_{\mathfrak{p}})) = \mathcal{S}(\mathrm{M}_n(k_{\mathfrak{p}}))|_{G(k_{\mathfrak{p}})}$$

(= restr. of Schwartz-Bruhat functions on $M_n(k_p)$);

Conjectural ingredients

- ▶ Schwartz space $C_c^{\infty}(G(k_{\mathfrak{p}})) \subset S_{\rho}(G(k_{\mathfrak{p}})) \subset C^{\infty}(G(k_{\mathfrak{p}}))$;
- ▶ Fourier transform $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}(G(k_{\mathfrak{p}})) \to \mathcal{S}_{\rho}(G(k_{\mathfrak{p}}));$
- Global Poisson summation;

Godement-Jacquet

Schwartz space

$$\mathcal{S}(G(k_{\mathfrak{p}})) = \mathcal{S}(\mathrm{M}_n(k_{\mathfrak{p}}))|_{G(k_{\mathfrak{p}})}$$

(= restr. of Schwartz-Bruhat functions on $M_n(k_p)$);

Fourier transform

$$\mathcal{F}_{\psi_{\mathfrak{p}}}: \mathcal{S}(\mathrm{M}_n(k_{\mathfrak{p}})) \to \mathcal{S}(\mathrm{M}_n(k_{\mathfrak{p}}));$$

Braverman-Kazhdan proposal: Set up

▶ For $f \in S_{\rho}(G(k_{\mathfrak{p}}))$, and $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$, set

$$\mathcal{Z}(s,f,\varphi_{\pi_{\mathfrak{p}}}) = \int_{G(k_{\mathfrak{p}})} f(g) \varphi_{\pi_{\mathfrak{p}}}(g) |\sigma(g)|_{\mathfrak{p}}^{s+n_{\rho}} dg;$$

Braverman-Kazhdan proposal: Set up

▶ For $f \in S_{\rho}(G(k_{\mathfrak{p}}))$, and $\varphi_{\pi_{\mathfrak{p}}} \in C(\pi_{\mathfrak{p}})$, set

$$\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}}) = \int_{G(k_{\mathfrak{p}})} f(g) \varphi_{\pi_{\mathfrak{p}}}(g) |\sigma(g)|_{\mathfrak{p}}^{s+n_{\rho}} dg;$$

► (Bouthier-Ngô-Sakellaridis) For geometric reason, set

$$n_{
ho}=\langle
ho_{
m B}, \lambda_{
ho}
angle$$
;

Braverman-Kazhdan proposal: Set up

▶ For $f \in \mathcal{S}_{\rho}(G(k_{\mathfrak{p}}))$, and $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$, set

$$\mathcal{Z}(s,f,arphi_{\pi_{\mathfrak{p}}}) = \int_{G(k_{\mathfrak{p}})} f(g) arphi_{\pi_{\mathfrak{p}}}(g) |\sigma(g)|_{\mathfrak{p}}^{s+n_{
ho}} \,\mathrm{d}g;$$

(Bouthier-Ngô-Sakellaridis) For geometric reason, set

$$n_{\rho} = \langle \rho_{B}, \lambda_{\rho} \rangle;$$

▶ In general different n_{ρ} differ by unramified shift;

▶ $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L(s, \pi_{\mathfrak{p}}, \rho)$;

- \triangleright $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is ab. cov. for $\mathrm{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L(s, \pi_{\mathfrak{p}}, \rho)$;
- ▶ For \mathfrak{p} non-Archimedean, $\{\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}}) \mid f \in \mathcal{S}(G(k_{\mathfrak{p}})), \varphi_{\mathfrak{p}} \in \mathcal{C}(\pi_{\mathfrak{p}})\} = L(s, \pi, \rho) \cdot \mathbb{C}[q^{s}, q^{-s}];$

- $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is ab. cov. for $\operatorname{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L(s, \pi_{\mathfrak{p}}, \rho)$;
- ▶ For \mathfrak{p} non-Archimedean, $\{\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}}) \mid f \in \mathcal{S}(G(k_{\mathfrak{p}})), \varphi_{\mathfrak{p}} \in \mathcal{C}(\pi_{\mathfrak{p}})\} = L(s, \pi, \rho) \cdot \mathbb{C}[q^{s}, q^{-s}];$
- For \mathfrak{p} Archimedean, $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is exp. decay in any bounded vertical strip with possible poles removed;

- $ightharpoonup \mathcal{Z}(s,f,arphi_{\pi_{\mathfrak{p}}})$ is ab. cov. for $\mathrm{Re}(s)$ large, with a mero. cont. to $s\in\mathbb{C}$ and is a hol. multiple of $L(s,\pi_{\mathfrak{p}},\rho)$;
- ▶ For $\mathfrak p$ non-Archimedean, $\{\mathcal Z(s,f,\varphi_{\pi_{\mathfrak p}})\mid f\in\mathcal S(G(k_{\mathfrak p})), \varphi_{\mathfrak p}\in\mathcal C(\pi_{\mathfrak p})\}=L(s,\pi,\rho)\cdot\mathbb C[q^s,q^{-s}];$
- For \mathfrak{p} Archimedean, $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is exp. decay in any bounded vertical strip with possible poles removed;
- ▶ There exists $\mathbb{L}_{\rho,\mathfrak{p}} \in \mathcal{S}(G(k_{\mathfrak{p}}))^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$, such that $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(\mathbb{L}_{\rho,\mathfrak{p}}) = \mathbb{L}_{\rho,\mathfrak{p}}$ and $\mathcal{Z}(s,\mathbb{L}_{\rho,\mathfrak{p}},\varphi_{\mathfrak{p}}) = L(s,\pi_{\mathfrak{p}},\rho)$ for $\pi_{\mathfrak{p}}$ unramified and $\varphi_{\mathfrak{p}}$ zonal sperhical (Casselman-Shalika formula);

- \triangleright $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is ab. cov. for $\mathrm{Re}(s)$ large, with a mero. cont. to $s \in \mathbb{C}$ and is a hol. multiple of $L(s, \pi_{\mathfrak{p}}, \rho)$;
- ▶ For \mathfrak{p} non-Archimedean, $\{\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}}) \mid f \in \mathcal{S}(G(k_{\mathfrak{p}})), \varphi_{\mathfrak{p}} \in \mathcal{C}(\pi_{\mathfrak{p}})\} = L(s, \pi, \rho) \cdot \mathbb{C}[q^{s}, q^{-s}];$
- For \mathfrak{p} Archimedean, $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is exp. decay in any bounded vertical strip with possible poles removed;
- There exists $\mathbb{L}_{\rho,\mathfrak{p}} \in \mathcal{S}(G(k_{\mathfrak{p}}))^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$, such that $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(\mathbb{L}_{\rho,\mathfrak{p}}) = \mathbb{L}_{\rho,\mathfrak{p}}$ and $\mathcal{Z}(s,\mathbb{L}_{\rho,\mathfrak{p}},\varphi_{\mathfrak{p}}) = L(s,\pi_{\mathfrak{p}},\rho)$ for $\pi_{\mathfrak{p}}$ unramified and $\varphi_{\mathfrak{p}}$ zonal sperhical (Casselman-Shalika formula);
- ▶ For $\rho = \text{std}$ of GL_n , known from the work of Godement-Jacquet and Jacquet;

- $ightharpoonup \mathcal{Z}(s,f,arphi_{\pi_{\mathfrak{p}}})$ is ab. cov. for $\mathrm{Re}(s)$ large, with a mero. cont. to $s\in\mathbb{C}$ and is a hol. multiple of $L(s,\pi_{\mathfrak{p}},\rho)$;
- ▶ For \mathfrak{p} non-Archimedean, $\{\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}}) \mid f \in \mathcal{S}(G(k_{\mathfrak{p}})), \varphi_{\mathfrak{p}} \in \mathcal{C}(\pi_{\mathfrak{p}})\} = L(s, \pi, \rho) \cdot \mathbb{C}[q^{s}, q^{-s}];$
- For \mathfrak{p} Archimedean, $\mathcal{Z}(s, f, \varphi_{\pi_{\mathfrak{p}}})$ is exp. decay in any bounded vertical strip with possible poles removed;
- There exists $\mathbb{L}_{\rho,\mathfrak{p}} \in \mathcal{S}(G(k_{\mathfrak{p}}))^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$, such that $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(\mathbb{L}_{\rho,\mathfrak{p}}) = \mathbb{L}_{\rho,\mathfrak{p}}$ and $\mathcal{Z}(s,\mathbb{L}_{\rho,\mathfrak{p}},\varphi_{\mathfrak{p}}) = L(s,\pi_{\mathfrak{p}},\rho)$ for $\pi_{\mathfrak{p}}$ unramified and $\varphi_{\mathfrak{p}}$ zonal sperhical (Casselman-Shalika formula);
- For ρ = std of GL_n, known from the work of Godement-Jacquet and Jacquet;
- $\blacktriangleright \mathbb{L}_{\rho,\mathfrak{p}} = \operatorname{char}(\mathrm{M}_n(\mathfrak{o}_{\mathfrak{p}}));$

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\rho,\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,f,\varphi_{\mathfrak{p}});$$

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\rho,\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,f,\varphi_{\mathfrak{p}});$$

▶ For $f \in \mathcal{C}_c^{\infty}(G(k_{\mathfrak{p}}))$,

$$\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}}*f^{\vee})(g);$$

with $\Phi_{\rho,\psi_{\mathfrak{p}}}$ invariant distribution on $G(k_{\mathfrak{p}})$ such that

$$\Phi_{\rho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,\rho,\psi_{\mathfrak{p}}) \cdot \mathrm{Id}_{\pi};$$

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\rho,\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,f,\varphi_{\mathfrak{p}});$$

▶ For $f \in \mathcal{C}_c^{\infty}(G(k_{\mathfrak{p}}))$,

$$\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}} * f^{\vee})(g);$$

with $\Phi_{\rho,\psi_{\mathfrak{p}}}$ invariant distribution on $G(k_{\mathfrak{p}})$ such that

$$\Phi_{\rho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,\rho,\psi_{\mathfrak{p}}) \cdot \mathrm{Id}_{\pi};$$

 $ightharpoonup \mathcal{F}_{
ho,\psi_{\mathfrak{p}}}$ extends to a unitary operator on

$$L^2(G(k_{\mathfrak{p}}), |\sigma(\cdot)|^{2n_{\rho}+1} dg);$$

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\rho,\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,f,\varphi_{\mathfrak{p}});$$

▶ For $f \in \mathcal{C}_c^{\infty}(G(k_{\mathfrak{p}}))$,

$$\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}} * f^{\vee})(g);$$

with $\Phi_{\rho,\psi_{\mathfrak{p}}}$ invariant distribution on $G(k_{\mathfrak{p}})$ such that

$$\Phi_{\rho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,\rho,\psi_{\mathfrak{p}}) \cdot \mathrm{Id}_{\pi};$$

 $lackbox{}{\mathcal F}_{
ho,\psi_{\mathfrak p}}$ extends to a unitary operator on

$$L^2(G(k_{\mathfrak{p}}), |\sigma(\cdot)|^{2n_{\rho}+1} dg);$$

 $\blacktriangleright \ \mathcal{F}_{\rho,\psi_{\mathfrak{p}}} \circ \mathcal{F}_{\rho,\psi_{\mathfrak{p}}^{-1}} = \mathrm{Id};$

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\rho,\psi_{\mathfrak{p}})\cdot\mathcal{Z}(s,f,\varphi_{\mathfrak{p}});$$

▶ For $f \in \mathcal{C}_c^{\infty}(G(k_{\mathfrak{p}}))$,

$$\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}} * f^{\vee})(g);$$

with $\Phi_{\rho,\psi_{\mathfrak{p}}}$ invariant distribution on $G(k_{\mathfrak{p}})$ such that

$$\Phi_{\rho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,\rho,\psi_{\mathfrak{p}}) \cdot \mathrm{Id}_{\pi};$$

 $ightharpoonup \mathcal{F}_{
ho,\psi_{\mathfrak{p}}}$ extends to a unitary operator on

$$L^2(G(k_{\mathfrak{p}}), |\sigma(\cdot)|^{2n_{\rho}+1} dg);$$

- $\triangleright \mathcal{F}_{\rho,\psi_{\mathfrak{p}}} \circ \mathcal{F}_{\rho,\psi_{\mathfrak{p}}^{-1}} = \mathrm{Id};$
- ▶ For $\rho = \text{std}$ of GL_n , $\Phi_{\rho,\psi_{\mathfrak{p}}}(\cdot) = \psi(\text{tr}(\cdot)) \cdot |\det(\cdot)|^n$;

Preliminary analysis for local unramified

Proposition (L.)

► For p non-Archimedean, we have the equalities

$$\begin{split} \mathcal{S}_{\rho}(\textit{G}(\textit{k}_{\mathfrak{p}}))^{\textit{K}_{\mathfrak{p}} \times \textit{K}_{\mathfrak{p}}} &= \mathbb{L}_{\rho,\mathfrak{p}} * \mathcal{C}_{c}^{\infty}(\textit{G}(\textit{k}_{\mathfrak{p}}))^{\textit{K}_{\mathfrak{p}} \times \textit{K}_{\mathfrak{p}}} \\ \Phi_{\rho,\psi_{\mathfrak{p}}}^{\textit{K}_{\mathfrak{p}}} &= \text{ Inverse Satake transform of } \gamma(-s - \textit{n}_{\rho},\pi_{\mathfrak{p}},\rho^{\vee},\psi_{\mathfrak{p}}) \end{split}$$

where we view $\gamma(\cdot, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}})$ as a rational function in Satake parameters of $\pi_{\mathfrak{p}}$;

Preliminary analysis for local unramified

Proposition (L.)

► For p non-Archimedean, we have the equalities

$$\begin{split} \mathcal{S}_{\rho}(\textit{G}(\textit{k}_{\mathfrak{p}}))^{\textit{K}_{\mathfrak{p}} \times \textit{K}_{\mathfrak{p}}} &= \mathbb{L}_{\rho,\mathfrak{p}} * \mathcal{C}_{c}^{\infty}(\textit{G}(\textit{k}_{\mathfrak{p}}))^{\textit{K}_{\mathfrak{p}} \times \textit{K}_{\mathfrak{p}}} \\ \Phi_{\rho,\psi_{\mathfrak{p}}}^{\textit{K}_{\mathfrak{p}}} &= \text{ Inverse Satake transform of } \gamma(-\textit{s} - \textit{n}_{\rho},\pi_{\mathfrak{p}},\rho^{\vee},\psi_{\mathfrak{p}}) \end{split}$$

where we view $\gamma(\cdot, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}})$ as a rational function in Satake parameters of $\pi_{\mathfrak{p}}$;

For $\mathfrak p$ Archimedean, take $\mathbb L_{\rho,\mathfrak p}$ as the inverse Harish-Chandra transform of $L(s,\pi_{\mathfrak p},\rho)$. Then for $\mathrm{Re}(s)$ large,

$$\mathbb{L}_{
ho,\mathfrak{p}}\cdot |\sigma(\cdot)|^{s}$$
 and $\Phi_{
ho,\psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}}\cdot |\sigma(\cdot)|^{s}$

can be plugged into the Arthur-Selberg trace formula.

▶ For (G, ρ) , there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.

- For (G, ρ) , there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- ▶ It is expected that $S_{\rho}(G(k_{\mathfrak{p}}))$ is connected with the geometry of \mathcal{M}_{ρ} ;

- For (G, ρ) , there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- ▶ It is expected that $S_{\rho}(G(k_{\mathfrak{p}}))$ is connected with the geometry of \mathcal{M}_{ρ} ;
- lacksquare (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{
 ho},\mathfrak{p}}=\mathbb{L}_{
 ho,\mathfrak{p}}$ over $\mathbb{F}_q((t))$;

- For (G, ρ) , there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- ▶ It is expected that $S_{\rho}(G(k_{\mathfrak{p}}))$ is connected with the geometry of \mathcal{M}_{ρ} ;
- lacksquare (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{
 ho},\mathfrak{p}}=\mathbb{L}_{
 ho,\mathfrak{p}}$ over $\mathbb{F}_q((t))$;
- (Braverman, Finkelberg, Gaitsgory, I. Mirković)

$$X = \overline{G/U_P}^{\text{aff}} \text{ or } \overline{G/[P,P]}^{\text{aff}}, \quad \text{IC}_{X,\mathfrak{p}};$$

- ▶ For (G, ρ) , there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- ▶ It is expected that $S_{\rho}(G(k_{\mathfrak{p}}))$ is connected with the geometry of \mathcal{M}_{ρ} ;
- lacksquare (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{
 ho},\mathfrak{p}}=\mathbb{L}_{
 ho,\mathfrak{p}}$ over $\mathbb{F}_q((t))$;
- (Braverman, Finkelberg, Gaitsgory, I. Mirković)

$$X = \overline{G/U_P}^{\text{aff}} \text{ or } \overline{G/[P,P]}^{\text{aff}}, \quad \text{IC}_{X,\mathfrak{p}};$$

► (Sakellaridis) Generalization of harmonic analysis to **affine** spherical varieties *X*?

- ▶ For (G, ρ) , there exists an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$ where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by Putcha, Renner and Vinberg.
- ▶ It is expected that $S_{\rho}(G(k_{\mathfrak{p}}))$ is connected with the geometry of \mathcal{M}_{ρ} ;
- lacksquare (Bouthier-Ngô-Sakellaridis) $\mathrm{IC}_{\mathcal{M}_{
 ho},\mathfrak{p}}=\mathbb{L}_{
 ho,\mathfrak{p}}$ over $\mathbb{F}_q((t))$;
- (Braverman, Finkelberg, Gaitsgory, I. Mirković)

$$X = \overline{G/U_P}^{\text{aff}} \text{ or } \overline{G/[P,P]}^{\text{aff}}, \quad \text{IC}_{X,\mathfrak{p}};$$

- ► (Sakellaridis) Generalization of harmonic analysis to **affine** spherical varieties *X*?
- ightharpoonup (Sakellaridis-Wang) Describe IC_X ;

Invariant distribution $\Phi_{\rho,\psi}$

► (Braverman-Kazhdan) Algebraic integration and the datum on tori;

Invariant distribution $\Phi_{\rho,\psi}$

- (Braverman-Kazhdan) Algebraic integration and the datum on tori;
- ► (Ngô) A construction generalizing the classical Hankel transform;

Invariant distribution $\Phi_{\rho,\psi}$

- (Braverman-Kazhdan) Algebraic integration and the datum on tori;
- ► (Ngô) A construction generalizing the classical Hankel transform;
- ▶ Finite field analogue has been resolved by Cheng-Ngô for $G = \operatorname{GL}_n$, T.-H. Chen for \mathcal{D} -module setting and almost all finite fields, Laumon-Letellier over any finite fields;

• (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho,\psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$, F-non-Archimedean;

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho,\psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$, F-non-Archimedean;
- \triangleright 3(G(F)) has the following equivalent characterizations:

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho,\psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$, F-non-Archimedean;
- $ightharpoonup \mathfrak{Z}(G(F))$ has the following equivalent characterizations:
 - The endomorphism ring of the identity functor on the category of smooth representations of G(F);

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho,\psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$, F-non-Archimedean;
- ightharpoonup 3(G(F)) has the following equivalent characterizations:
 - The endomorphism ring of the identity functor on the category of smooth representations of G(F);
 - The space of invariant, essentially compact distributions on G(F) (i.e. $\Phi * \mathcal{C}_c^{\infty}(G(F)) \subset \mathcal{C}_c^{\infty}(G(F))$);

- (Braverman-Kazhdan) Approximate distributions in $\Phi_{\rho,\psi}$ by distributions in the Bernstein center $\mathfrak{Z}(G(F))$, F-non-Archimedean;
- ightharpoonup 3(G(F)) has the following equivalent characterizations:
 - The endomorphism ring of the identity functor on the category of smooth representations of G(F);
 - The space of invariant, essentially compact distributions on G(F) (i.e. $\Phi * \mathcal{C}_c^{\infty}(G(F)) \subset \mathcal{C}_c^{\infty}(G(F))$);
 - ▶ The space of regular functions on the Bernstein variety

$$\Omega(G(F)) = \bigsqcup_{(M,\sigma)} X_{M,\sigma},$$

with
$$X_{M,\sigma} = \{ [M, \chi \cdot \sigma]_G \mid \chi \in \Psi(M) \};$$

►
$$G_n = \{g \in G(F) \mid |\sigma(g)| = q^{-n}\},$$

- ► $G_n = \{g \in G(F) \mid |\sigma(g)| = q^{-n}\},$
- $\blacktriangleright \Phi_{\rho,\psi,n} = \Phi_{\rho,\psi} \cdot \operatorname{char}_{G_n};$

- ► $G_n = \{g \in G(F) \mid |\sigma(g)| = q^{-n}\},$
- ▶ (Expectation) $\Phi_{\rho,\psi,n} \in \mathfrak{Z}(G(F)) \longleftrightarrow f_{\Phi_{\rho,\psi},n}(\pi)$, set

$$f_{\Phi_{\rho,\psi}}(\pi_s) = \sum_n f_{\Phi_{\rho,\psi},n}(\pi_s).$$

Then the Laurent series is convergent for $\operatorname{Re}(s)$ small, with a mero. cont. to $s \in \mathbb{C}$ and $= \gamma(\cdot, \pi, \rho, \psi)$;

- $G_n = \{g \in G(F) \mid |\sigma(g)| = q^{-n}\},$
- ▶ (Expectation) $\Phi_{\rho,\psi,n} \in \mathfrak{Z}(G(F)) \longleftrightarrow f_{\Phi_{\rho,\psi},n}(\pi)$, set

$$f_{\Phi_{\rho,\psi}}(\pi_s) = \sum_n f_{\Phi_{\rho,\psi},n}(\pi_s).$$

Then the Laurent series is convergent for $\operatorname{Re}(s)$ small, with a mero. cont. to $s \in \mathbb{C}$ and $= \gamma(\cdot, \pi, \rho, \psi)$;

► Typical example: $\Phi_{\mathrm{std}} = \psi(\mathrm{tr}(\cdot))$, indeed $\Phi_{\mathrm{std,n}} \in \mathfrak{Z}(\mathrm{GL}_n(F))$, since $\Phi_{\mathrm{std,n}} * \phi = \mathrm{char}_{G_{-n}} \cdot \Phi_{\mathrm{std}} * \phi \in \mathcal{C}_c^{\infty}(\mathrm{GL}_n(F))$;

- $G_n = \{g \in G(F) \mid |\sigma(g)| = q^{-n}\},$
- $\Phi_{\rho,\psi,n} = \Phi_{\rho,\psi} \cdot \operatorname{char}_{G_n};$
- ▶ (Expectation) $\Phi_{\rho,\psi,n} \in \mathfrak{Z}(G(F)) \longleftrightarrow f_{\Phi_{\rho,\psi},n}(\pi)$, set

$$f_{\Phi_{\rho,\psi}}(\pi_s) = \sum_n f_{\Phi_{\rho,\psi},n}(\pi_s).$$

Then the Laurent series is convergent for $\operatorname{Re}(s)$ small, with a mero. cont. to $s \in \mathbb{C}$ and $= \gamma(\cdot, \pi, \rho, \psi)$;

- ► Typical example: $\Phi_{\mathrm{std}} = \psi(\mathrm{tr}(\cdot))$, indeed $\Phi_{\mathrm{std,n}} \in \mathfrak{Z}(\mathrm{GL}_n(F))$, since $\Phi_{\mathrm{std,n}} * \phi = \mathrm{char}_{G_{-n}} \cdot \Phi_{\mathrm{std}} * \phi \in \mathcal{C}_c^{\infty}(\mathrm{GL}_n(F))$;
- ▶ (Bernstein) $\Phi_{\mathrm{std}}|_{\mathrm{SL}_n} \in \mathfrak{Z}(\mathrm{SL}_n(F))$

$$S(\mathcal{M}_{n}(F)) \otimes \mathcal{C}(\pi) \xrightarrow{\mathcal{F}_{\psi}, (\cdot)^{\vee}} S(\mathcal{M}_{n}(F)) \otimes \mathcal{C}(\pi^{\vee})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi,\psi}} S_{\pi^{\vee}}(F)$$

 Motivated from the observation of Bernstein, (Jiang-L.) construct π-Hankel transform over any local field F of characteristic zero

▶ Proposition (Jiang-L.)

- Proposition (Jiang-L.)
 - $ightharpoonup \mathcal{F}_{\pi,\psi}$ is well-defined;

- Proposition (Jiang-L.)
 - \triangleright $\mathcal{F}_{\pi,\psi}$ is well-defined;
 - $ightharpoonup \exists$ a smooth function $k_{\pi,\psi}$ on F^{\times} such that

$$\mathcal{F}_{\pi,\psi}(f)(x) = (k_{\pi,\psi} * f^{\vee})(x), \quad f \in \mathcal{C}_c^{\infty}(F);$$

$$S(\mathbf{M}_{n}(F)) \otimes C(\pi) \xrightarrow{\mathcal{F}_{\psi}, (\cdot)^{\vee}} S(\mathbf{M}_{n}(F)) \otimes C(\pi^{\vee})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S_{\pi}(F) \xrightarrow{\mathcal{F}_{\pi,\psi}} S_{\pi^{\vee}}(F)$$

- Proposition (Jiang-L.)
 - \triangleright $\mathcal{F}_{\pi,\psi}$ is well-defined;
 - ▶ \exists a smooth function $k_{\pi,\psi}$ on F^{\times} such that

$$\mathcal{F}_{\pi,\psi}(f)(x) = (k_{\pi,\psi} * f^{\vee})(x), \quad f \in \mathcal{C}_c^{\infty}(F);$$

$$\int_{F^{\times}}^{\mathrm{reg}} k_{\pi,\psi}(x) \chi_s^{-1}(x) \,\mathrm{d}^{\times} x = \gamma(s,\pi \times \chi,\psi).$$

► Construction and regularization

$$k_{\pi,\psi}(x) = \lim_{\ell o \infty} \int_{\det g = x} \left(\Phi_{\mathrm{std}} * \mathfrak{c}_\ell^{\vee}(g) \right) \cdot \varphi_{\widetilde{\pi}}(g) \, \mathrm{d}_x g$$

for $\{\mathfrak{c}_\ell\}$ any delta sequence to Id_n ;

► Construction and regularization

$$k_{\pi,\psi}(x) = \lim_{\ell o \infty} \int_{\det g = x} \left(\Phi_{\mathrm{std}} * \mathfrak{c}_{\ell}^{\vee}(g) \right) \cdot \varphi_{\widetilde{\pi}}(g) \, \mathrm{d}_{x} g$$

for $\{\mathfrak{c}_\ell\}$ any delta sequence to Id_n ;

▶ Independent of $\{\mathfrak{c}_\ell\}$ and $\varphi_{\widetilde{\pi}}(I_n) = 1$;

► Construction and regularization

$$k_{\pi,\psi}(x) = \lim_{\ell o \infty} \int_{\det g = x} \left(\Phi_{\mathrm{std}} * \mathfrak{c}_\ell^{\vee}(g) \right) \cdot \varphi_{\widetilde{\pi}}(g) \, \mathrm{d}_x g$$

for $\{\mathfrak{c}_\ell\}$ any delta sequence to Id_n ;

- ▶ Independent of $\{\mathfrak{c}_\ell\}$ and $\varphi_{\widetilde{\pi}}(I_n) = 1$;
- More general: Kirillov model: generic representations of π can be realized on the same variety P_n/U_n with P_n mirabolic, but different Schwartz and Fourier captured by π ;

F p-adic;

- F p-adic;
- $ightharpoonup G = \mathbb{G}_m \times \operatorname{Sp}_{2n};$

- ► *F* p-adic;
- \triangleright $G = \mathbb{G}_m \times \operatorname{Sp}_{2n}$;

- F p-adic;
- $ightharpoonup G = \mathbb{G}_m \times \operatorname{Sp}_{2n};$
- (Jiang-L.-Zhang) Full description of $S_{\rho}(G(F))$ via geometry of \mathcal{M}_{ρ} , and explicit formula for $\Phi_{\rho,\psi}$; First case after Godement-Jacquet;

- F p-adic;
- $ightharpoonup G = \mathbb{G}_m \times \operatorname{Sp}_{2n};$
- (Jiang-L.-Zhang) Full description of $S_{\rho}(G(F))$ via geometry of \mathcal{M}_{ρ} , and explicit formula for $\Phi_{\rho,\psi}$; First case after Godement-Jacquet;
- ▶ Based on the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and more recent works;

 $\blacktriangleright (F^{2n}, \langle \cdot, \cdot \rangle);$

- $ightharpoonup (F^{2n}, \langle \cdot, \cdot \rangle);$
- ▶ $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n}$ via $(F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus -\langle \cdot, \cdot \rangle)$;

- $ightharpoonup (F^{2n}, \langle \cdot, \cdot \rangle);$
- ▶ $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n}$ via $(F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus -\langle \cdot, \cdot \rangle)$;
- ▶ $P = MN = \operatorname{Stab}(L_{\Delta})$ a Siegel parabolic in Sp_{4n} , where $L_{\Delta} = \{(v, v) \mid v \in F^{2n}\}$ is a Lagrangian;

- $ightharpoonup (F^{2n}, \langle \cdot, \cdot \rangle);$
- ▶ $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n}$ via $(F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus -\langle \cdot, \cdot \rangle)$;
- ▶ $P = MN = \operatorname{Stab}(L_{\Delta})$ a Siegel parabolic in Sp_{4n} , where $L_{\Delta} = \{(v, v) \mid v \in F^{2n}\}$ is a Lagrangian;
- ▶ $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n} \to P \backslash \operatorname{Sp}_{4n}$ has Zariski open dense image, with stabilizer

$$P \cap (\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n}) = \operatorname{Sp}_{2n}^{\Delta} \hookrightarrow \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n};$$

- $ightharpoonup (F^{2n}, \langle \cdot, \cdot \rangle);$
- ▶ $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n}$ via $(F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus -\langle \cdot, \cdot \rangle)$;
- ▶ $P = MN = \operatorname{Stab}(L_{\Delta})$ a Siegel parabolic in Sp_{4n} , where $L_{\Delta} = \{(v, v) \mid v \in F^{2n}\}$ is a Lagrangian;
- ▶ $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n} \to P \backslash \operatorname{Sp}_{4n}$ has Zariski open dense image, with stabilizer

$$P \cap (\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n}) = \operatorname{Sp}_{2n}^{\Delta} \hookrightarrow \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n};$$

▶ (Piatetski-Shapiro, Rallis) $\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \curvearrowright \operatorname{Ind}_P^{\operatorname{Sp}_{4n}}(\chi_s)$ with analytical properties of zeta integrals captured by intertwining operators;

The following diagram illustrates the transition between the work of Piatetski-Shapiro and Rallis to Jiang-L.-Zhang,

where
$$X_P = [P, P] \backslash \operatorname{Sp}_{4n}$$
, $= (\operatorname{Id}_{2n}, -\operatorname{Id}_{2n}) \in \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n}$, $M^{\operatorname{ab}} = [M, M] \backslash M \simeq \mathbb{G}_m$.

▶ Both $M^{ab}wN$ and $\mathbb{G}_m \times \operatorname{Sp}_{2n}$ are Zariski open dense in X_P .

The following diagram illustrates the transition between the work of Piatetski-Shapiro and Rallis to Jiang-L.-Zhang,

where $X_P = [P, P] \backslash \operatorname{Sp}_{4n}$, $= (\operatorname{Id}_{2n}, -\operatorname{Id}_{2n}) \in \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n}$, $M^{\operatorname{ab}} = [M, M] \backslash M \simeq \mathbb{G}_m$.

- ▶ Both $M^{ab}wN$ and $\mathbb{G}_m \times \operatorname{Sp}_{2n}$ are Zariski open dense in X_P .
- ▶ The transition is given by Cayley transform C;

▶ (Braverman-Kazhdan) Intertwining operatos on degenerate principal series can be upgraduated to a universal family, with normalization given by geometry of X_P ;

- ▶ (Braverman-Kazhdan) Intertwining operatos on degenerate principal series can be upgraduated to a universal family, with normalization given by geometry of X_P ;
- Example:

- ▶ (Braverman-Kazhdan) Intertwining operatos on degenerate principal series can be upgraduated to a universal family, with normalization given by geometry of X_P ;
- Example:

► This formulation has been further studied by Getz-Hsu-Leslie for *G* split, simple and simply connected.

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

▶ For $f \in \mathcal{C}_c^{\infty}(X_P(F))$, set

$$\mathcal{F}_{X,\psi}(f)(g) = \int_{F^{ imes}}^{\operatorname{reg}} \eta_{\mathrm{pvs},\psi}(x) |x|^{-rac{2n+1}{2}} \int_{N(F)} f(\mathit{wns}(x)g) \, \mathrm{d}n \, \mathrm{d}x$$

where $\mathfrak{s}:\mathbb{G}_m\to M$ is a section of $M\to [M,M]\backslash M\simeq \mathbb{G}_m$;

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

▶ For $f \in C_c^{\infty}(X_P(F))$, set

$$\mathcal{F}_{X,\psi}(f)(g) = \int_{F^{\times}}^{\mathrm{reg}} \eta_{\mathrm{pvs},\psi}(x) |x|^{-\frac{2n+1}{2}} \int_{N(F)} f(\mathsf{wns}(x)g) \, \mathrm{d} n \, \mathrm{d} x$$

where $\mathfrak{s}:\mathbb{G}_m \to M$ is a section of $M \to [M,M] \backslash M \simeq \mathbb{G}_m$;

$$\int_{F^{\times}}^{\text{reg}} \eta_{\text{pvs},\psi}(x) \chi_s^{-1}(x) \, d^{\times} x$$
$$= \gamma \left(s - \frac{2n-1}{2}, \chi, \psi\right) \cdot \prod_{i=0}^{n-1} \gamma \left(2s - 2n + 2i, \chi^2, \psi\right).$$

Proposition (JLZ)

► Set

$$\mathcal{S}(X_P(F)) := \mathcal{C}_c^{\infty}(X_P(F)) + \mathcal{F}_{X,\psi}(\mathcal{C}_c^{\infty}(X_P(F));$$

Then $\mathcal{F}_{X,\psi}$ stabilizes $\mathcal{S}(X_P(F))$;

Proposition (JLZ)

Set

$$\mathcal{S}(X_P(F)) := \mathcal{C}_c^{\infty}(X_P(F)) + \mathcal{F}_{X,\psi}(\mathcal{C}_c^{\infty}(X_P(F));$$

Then $\mathcal{F}_{X,\psi}$ stabilizes $\mathcal{S}(X_P(F))$;

▶ $|2|^{n(2n+1)} \cdot \mathcal{F}_{X,\psi}$ extends to a unitary operator on $L^2(X_P(F))$ and $\mathcal{F}_{X,\psi} \circ \mathcal{F}_{X,\psi^{-1}} = |2|^{-2n(2n+1)} \cdot \mathrm{Id}$;

Proposition (JLZ)

Set

$$\mathcal{S}(X_P(F)) := \mathcal{C}_c^{\infty}(X_P(F)) + \mathcal{F}_{X,\psi}(\mathcal{C}_c^{\infty}(X_P(F));$$

Then $\mathcal{F}_{X,\psi}$ stabilizes $\mathcal{S}(X_P(F))$;

- ▶ $|2|^{n(2n+1)} \cdot \mathcal{F}_{X,\psi}$ extends to a unitary operator on $L^2(X_P(F))$ and $\mathcal{F}_{X,\psi} \circ \mathcal{F}_{X,\psi^{-1}} = |2|^{-2n(2n+1)} \cdot \mathrm{Id}$;
- ▶ A function $f \in \mathcal{C}^{\infty}(X_P(F))$ belongs to $\mathcal{S}(X_P(F))$ if and only if f is right $K_{\operatorname{Sp}_{4n}}$ -finite, and as a function in $a \in F^{\times}$,

$$|a|^{2n+1} \cdot f(\mathfrak{s}_a^{-1}k)$$

belongs to $\mathcal{S}^-_{\mathrm{pvs}}(\mathit{F}^{ imes})$ for any fixed $k \in \mathit{K}_{\mathrm{Sp}_{4n}}$;

- ► Therefore functions in $S(X_P(F))$ can be described by their asymptotic behavior near the singular locus, i.e. $\overline{X}_P^{\mathrm{aff}} \setminus X_P = \{0\};$

- $ightharpoonup \mathcal{S}^-_{\mathrm{pvs}}(F^{\times}) \longleftrightarrow L(s+n,\chi) \cdot \prod_{i=0}^{n-1} L(2s+2i,\chi^2);$
- ► Therefore functions in $S(X_P(F))$ can be described by their asymptotic behavior near the singular locus, i.e. $\overline{X}_P^{\text{aff}} \setminus X_P = \{0\};$
- ▶ In particular, the reductive monoid \mathcal{M}_{ρ} attached to (G, ρ) in this situation is exactly given by $\overline{X}_{P}^{\mathrm{aff}}$;

Jiang-L.-Zhang: Fourier operator

Proposition (JLZ)

 $ightharpoonup \mathcal{C}$ is given by the Cayley transform;

Proposition (JLZ)

ightharpoonup C is given by the Cayley transform;

$$j_{C^{-1}}(h) = \frac{1}{\zeta_F(2i)} \cdot |\det(h - I_{2n})|^{-(2n+1)};$$

▶ For $f \in S(X_P(F))$, set

$$\phi_f(a,h) := f(\mathfrak{s}(a)^{-1} \cdot (h, \mathbf{I}_{2n}))|a|^{\frac{2n+1}{2}}$$

and define

$$\mathcal{S}_{\rho}(G(F)) := \{ \phi_f \mid f \in \mathcal{S}(X_P(F)) \}.$$

▶ For $f \in S(X_P(F))$, set

$$\phi_f(a,h) := f(\mathfrak{s}(a)^{-1} \cdot (h, I_{2n}))|a|^{\frac{2n+1}{2}}$$

and define

$$\mathcal{S}_{\rho}(G(F)) := \{ \phi_f \mid f \in \mathcal{S}(X_P(F)) \}.$$

Define

$$\Phi_{\rho,\psi}(a,h) := c_0 \cdot \eta_{\mathrm{pvs},\psi}(a \cdot \det(h + \mathrm{I}_{2n})) \cdot |\det(h + \mathrm{I}_{2n})|^{-\frac{2n+1}{2}},$$

▶ For $f \in S(X_P(F))$, set

$$\phi_f(a,h) := f(\mathfrak{s}(a)^{-1} \cdot (h, I_{2n}))|a|^{\frac{2n+1}{2}}$$

and define

$$\mathcal{S}_{\rho}(G(F)) := \{ \phi_f \mid f \in \mathcal{S}(X_P(F)) \}.$$

Define

$$\Phi_{\rho,\psi}(a,h) := c_0 \cdot \eta_{\mathrm{pvs},\psi}(a \cdot \det(h + \mathrm{I}_{2n})) \cdot |\det(h + \mathrm{I}_{2n})|^{-\frac{2n+1}{2}},$$

▶ For $f \in \mathcal{C}_c^{\infty}(X_P(F))$, the ρ -Fourier transform is defined as

$$\mathcal{F}_{\rho,\psi}(\phi_f)(a,h) := \int_{F^\times}^{\mathrm{reg}} \int_{\mathrm{Sp}_{2n}(F)} \Phi_{\rho,\psi}(ax,gh) \cdot \phi_f(x,g) \,\mathrm{d}g \,\mathrm{d}x.$$

Proposition (JLZ)

 $ightharpoonup \mathcal{F}_{
ho,\psi}$ stabilizes $\mathcal{S}_{
ho}(G(F))$;

- $ightharpoonup \mathcal{F}_{\rho,\psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- $ightharpoonup \mathcal{F}_{
 ho,\psi}$ extends to a unitary operator on $L^2(G(F),\,\mathrm{d}g)$;

- $ightharpoonup \mathcal{F}_{\rho,\psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- \blacktriangleright $\mathcal{F}_{\rho,\psi}$ extends to a unitary operator on $L^2(G(F), dg)$;
- $ightharpoonup \mathcal{F}_{
 ho,\psi^{-1}} \circ \mathcal{F}_{
 ho,\psi} = \mathrm{Id};$

- \blacktriangleright $\mathcal{F}_{\rho,\psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- \blacktriangleright $\mathcal{F}_{\rho,\psi}$ extends to a unitary operator on $L^2(G(F), \mathrm{d}g)$;
- $\triangleright \mathcal{F}_{\rho,\psi^{-1}} \circ \mathcal{F}_{\rho,\psi} = \mathrm{Id};$
- ▶ Set $G_{\ell} = \{(a, h) \in G(F) = F^{\times} \times \operatorname{Sp}_{2n} | |a| = q^{-\ell}\}$. Let ch_{ℓ} be the characteristic function of G_{ℓ} ;

- \blacktriangleright $\mathcal{F}_{\rho,\psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$;
- \blacktriangleright $\mathcal{F}_{\rho,\psi}$ extends to a unitary operator on $L^2(G(F), \mathrm{d}g)$;
- $\triangleright \mathcal{F}_{\rho,\psi^{-1}} \circ \mathcal{F}_{\rho,\psi} = \mathrm{Id};$
- ▶ Set $G_{\ell} = \{(a, h) \in G(F) = F^{\times} \times \operatorname{Sp}_{2n} | |a| = q^{-\ell}\}$. Let ch_{ℓ} be the characteristic function of G_{ℓ} ;
- ightharpoonup Set $\Phi_{\rho,\psi,\ell} = \Phi_{\rho,\psi} \cdot \operatorname{ch}_{\ell}$;

The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$(\chi \otimes \pi)(\Phi_{\rho,\psi,\ell}) = f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}.$$

The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$(\chi \otimes \pi)(\Phi_{\rho,\psi,\ell}) = f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}.$$

► The summation

$$\sum_{\ell} f_{\ell}(\chi_{s} \otimes \pi)$$

is convergent whenever $\mathrm{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

► The distribution $Φ_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For χ ⊗ π ∈ Irr(G(F)), set

$$(\chi \otimes \pi)(\Phi_{\rho,\psi,\ell}) = f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}.$$

▶ The summation

$$\sum_{\ell} f_{\ell}(\chi_{s} \otimes \pi)$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

▶ The following identity holds after meromorphic continuation

$$\sum_{\ell} f_{\ell}(\chi_{\mathfrak{s}} \otimes \pi) = \gamma(\frac{1}{2}, \chi_{\mathfrak{s}}^{-1} \otimes \pi^{\vee}, \rho, \psi).$$

► The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$(\chi \otimes \pi)(\Phi_{\rho,\psi,\ell}) = f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}.$$

▶ The summation

$$\sum_\ell f_\ell(\chi_s \otimes \pi)$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

▶ The following identity holds after meromorphic continuation

$$\sum_{\ell} f_{\ell}(\chi_{\mathfrak{s}} \otimes \pi) = \gamma(\frac{1}{2}, \chi_{\mathfrak{s}}^{-1} \otimes \pi^{\vee}, \rho, \psi).$$

▶ Based on the work of Yamana, $S_{\rho}(G(F)) \sim L(s, \pi \otimes \chi)$;

The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$(\chi \otimes \pi)(\Phi_{\rho,\psi,\ell}) = f_{\ell}(\chi \otimes \pi) \cdot \mathrm{Id}_{\chi \otimes \pi}.$$

▶ The summation

$$\sum_{\ell} f_{\ell}(\chi_{s} \otimes \pi)$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$;

▶ The following identity holds after meromorphic continuation

$$\sum_{\ell} f_{\ell}(\chi_{\mathfrak{s}} \otimes \pi) = \gamma(\frac{1}{2}, \chi_{\mathfrak{s}}^{-1} \otimes \pi^{\vee}, \rho, \psi).$$

- ▶ Based on the work of Yamana, $S_{\rho}(G(F)) \sim L(s, \pi \otimes \chi)$;
- ▶ Based on the work of Lapid-Rallis, Ikeda and Kakuhama, $\mathcal{F}_{\rho,\psi} \sim \gamma(s, \pi \otimes \chi, \rho, \psi)$;

For
$$G = \operatorname{GL}_2$$
, $\rho : \operatorname{GL}_2(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$, $\rho_T^\vee : \mathbb{A}^n \to \mathbb{A}^2$, $\Phi_{\rho,T} := (\rho_T^\vee)_!(\psi(\operatorname{tr}(\cdot)));$

▶ For $G = GL_2$, $\rho : GL_2(\mathbb{C}) \to GL_n(\mathbb{C})$,

$$\rho_T^{\vee}: \mathbb{A}^n \to \mathbb{A}^2,$$

 $\Phi_{\rho,T} := (\rho_T^{\vee})_!(\psi(\operatorname{tr}(\cdot)));$

• (Laurent Lafforgue) Candidate for $\Phi_{\rho,G}$: modulo convergence, set $(a_i = \operatorname{tr} \wedge^i)_{i=1}^2$

$$\Phi_{\rho,G}(a_1,a_2) = \int \widehat{\Phi_{\rho,T}}(\alpha_1,\alpha_2) \cdot |\alpha_1| \cdot \psi(\sum \alpha_i \cdot a_i) \, d\alpha_1 \, d\alpha_2$$

▶ For $G = GL_2$, $\rho : GL_2(\mathbb{C}) \to GL_n(\mathbb{C})$,

$$\rho_T^{\vee}: \mathbb{A}^n \to \mathbb{A}^2,$$

 $\Phi_{\rho,T} := (\rho_T^{\vee})_!(\psi(\operatorname{tr}(\cdot)));$

• (Laurent Lafforgue) Candidate for $\Phi_{\rho,G}$: modulo convergence, set $(a_i = \operatorname{tr} \wedge^i)_{i=1}^2$

$$\Phi_{\rho,G}(a_1,a_2) = \int \widehat{\Phi_{\rho,T}}(\alpha_1,\alpha_2) \cdot |\alpha_1| \cdot \psi(\sum \alpha_i \cdot a_i) \, d\alpha_1 \, d\alpha_2$$

▶ (L.) Modulo convergence, true for $\rho = \operatorname{Sym}^2$ (= JLZ); Also for $\rho = \operatorname{std}$ of $G = \mathbb{G}_m \times \operatorname{SO}_4$;

$$G = \operatorname{GL}_n, \ \rho : \operatorname{GL}_n(\mathbb{C}) \to \operatorname{GL}(V_\rho),$$
$$\rho_T^{\vee} : \mathbb{A}^{\dim \rho} \to \mathbb{A}^n$$
$$\Phi_{\rho,T} := (\rho_T^{\vee})_!(\psi(\operatorname{tr}\cdot));$$

 $ightharpoonup G = \mathrm{GL}_n, \ \rho : \mathrm{GL}_n(\mathbb{C}) \to \mathrm{GL}(V_{\rho}),$

$$\rho_T^{\vee}: \mathbb{A}^{\dim \rho} \to \mathbb{A}^n$$

$$\Phi_{\rho,T} := (\rho_T^{\vee})!(\psi(\operatorname{tr}\cdot));$$

▶ (L-Ngô, in progress) Candidate for $\Phi_{\rho,G}$: modulo convergence, set $(a_i = \operatorname{tr} \wedge^i)_{i=1}^n$,

$$\Phi_{\rho,G}((a_i)_{1\leq i\leq n}) = \int |\mathrm{D}(\alpha_i,a_i)| \cdot \widehat{\Phi_{\rho,T}}((\alpha_i)_{1\leq i\leq n}) \cdot \psi(\sum_i a_i \alpha_i) \cdot \mathrm{d}\alpha_i$$

where

$$D(\alpha_i, a_i)$$

is the symmetric polynomial attached to variables $(t_i)_{1 \leq i \leq n}$ with

$$D(\alpha_i, \operatorname{tr} \wedge^i t) = \sum \left(\sum_{i=1}^{n-1} \alpha_i \cdot \operatorname{tr} \wedge^{i-2} t_i \right).$$

Here
$$\mathcal{I}_{n-2} = \{(i_1, ..., i_{n-2}) \mid 1 \le i_1 < ... < i_{n-2} \le n\}$$
.

Thank You and happy birthday Prof. Casselman!