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» (Euler) For Re(s) > 1,

1 ab. cov.
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» (Riemann)

with 0(7) = 3",z ™7 (Jacobi's theta)

Poisson summation 6(7)

= ((s) mero. con. to s € C, fun. eq.

» Dirichlet & Hecke L-functions.
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Tate thesis

» (Tate) Systematic development;
>

harmonic analysis on G, ~ Al

= mero. con. & fun. eq. L(s,x);

P Ingredients:
» (Schwartz space) S(A) = ®;€|k‘ S(kp);
> (Fourier transform) 7y = @, Fyp : S(A) = S(A);
Zeta integral:

Z(s,f,x) = /AX fO)x(x)x)°d*x, feS(A)

ab. cov. for Re(s) large;
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Tate thesis

> Z(Sa ) X) = Hp 2(57 ) XP);

> Z(S, y XP)
> ab. cov. for Re(s) large;
> mero. cont. to s € C as distr. on S(ky);
| 4

poles ~ L(s, xp);

Z(l - Sapr(')a X;l) = 7(57 Xpﬂpp) ' Z(S, '7Xp);

L. — T, p non-Archi.
P ] Gaussian  p Archi.

Then Fy, (Ly) = Ly & Z(s,1L,, xp) = L(s, xp) for xp
unramified;

» Global Poisson summation for 7y, = mero. cont. & fun. eq.
Z(Sa ) X) = L(57 X)'
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» Observation: As distr. on ky,
(s, Xp ¥p) - Fuy ol - 1F71) = xp - 1755
> = 1 ky = C,
ree _,dtx

Up(x) - xp(x)

K [x[3

cov. for Re(s) small, mero. cont. to s € C,

= 7(57 Xpa ¢P)

w — 7(57 Xpa wp)
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Langlands functoriality

G /k reductive;

p:LG — GL(V,);

T~ ®pTp € Acusp(G);
(Langlands) to define (? ramified)

L(s,m,p) HLSﬂ'p

> (Langlands) L°(s,,p) ab. cov. for Re(s) large;
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Functoriality conjecture

Conjecture (Langlands)
L(s, 7, p) has a mero. cont. to s € C & fun. eq.

L(1—s,7",p) =e(s,m,p) - L(s,7,p)

w/ €(s,m, p) nonzero entire in s € C.

» Known for a special list of (G, p);

> Methods: Tate, Godement-Jacquet; Rankin-Selberg;
Langlands-Shahidi; Trace formula;



A question

Question
Understand the analytical properties of L(s, 7, p) and its local
factors L(s, my, p) through

Schwartz space
harmonic analysis Fourier transform
Poisson summation

on G (& related spherical varieties);
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Braverman-Kazhdan proposal

» Conjectural framework to establish analytical properties of

L(s,m,p);
» Prototype: Godement-Jacquet theory (G = GL,, p = std);
> Set up
> G/k split,

> o:G— G,
> p:GY(C) — GL(V,) irreducible injective with highest weight
Api

» (Ngb) Assumptions can be relaxed;

v

(Sakellaridis) Generalize to affine spherical varieties (?);
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Braverman-Kazhdan proposal

Conjectural ingredients
> Schwartz space C2°(G(kyp)) C Sp(G(ky)) C C®(G(ky));
» Fourier transform 7, : Sp(G(kyp)) — Sp(G(kp)):
» Global Poisson summation;

Godement-Jacquet

» Schwartz space

S(G(kp)) = S(Mn(ko))l 6 (k)

(= restr. of Schwartz-Bruhat functions on M,(k));

» Fourier transform

Fyp - SMa(kp)) = S(Ma(kp));
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Braverman-Kazhdan proposal: Set up

» For f € S,(G(kp)), and or, € C(my), set

2s.fion) = [ A@)en(@)lole)l; s
G(kp)

» (Bouthier-Ngo-Sakellaridis) For geometric reason, set
np = (P8, Ap);

» In general different n, differ by unramified shift;
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Expectation: Schwartz space
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>

>

Z(s, f,¢n,) is ab. cov. for Re(s) large, with a mero. cont. to
s € C and is a hol. multiple of L(s, m,, p);

For p non-Archimedean, {Z(s, f,¢x,) | f € S(G(ky)), pp €
C(Wp)} = L(S, T, p) : (C[qsv q—s];

For p Archimedean, Z(s, f, ¢r,) is exp. decay in any bounded
vertical strip with possible poles removed;

There exists L, , € S(G(ky))K»*®e, such that

Fpa(Lipp) =Lpp and Z(s,Lyp, ¢p) = L(s, mp, p) for m,
unramified and ¢, zonal sperhical (Casselman-Shalika
formula);

For p = std of GL,, known from the work of
Godement-Jacquet and Jacquet;

Lp,p — Char(Mn(Op)),
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Expectation: Fourier transform

>
Z(1 =5, Fy,(F)s ) = (5,70, p,80p) - Z(5, F, 0p);
> For f € C°(G(ky)).
Foun(F)(&) = o ()2 M (D, * £¥)(8);

with &, . invariant distribution on G(k,) such that
Py, (1) = (7, py ) - 1d
» F,., €xtends to a unitary operator on
L2(G(ky), lo(-)]*™ 1 dg);

> fp,wp .de]—l = Id;

> For p = std of GLp, 4, (-) = ¥(tx(-)) - | det(-)|";
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Preliminary analysis for local unramified

Proposition (L.)
» For p non-Archimedean, we have the equalities
Sp(G (k) M =L % CZ(G(Kp)) 7

q):';p., = Inverse Satake transform of v(—s — n,, my, p", 1)

where we view v(-, T, p", 1) as a rational function in Satake
parameters of y;

» For p Archimedean, take L, as the inverse Harish-Chandra
transform of L(s,my, p). Then for Re(s) large,

K,
Ly [o()  and &% - |o()?

can be plugged into the Arthur-Selberg trace formula.
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Schwartz space: Geometry

» For (G, p), there exists an affine spherical embedding
G — M, where M, arises from the theory of reductive
monoids studied by Putcha, Renner and Vinberg.

> It is expected that S,(G(ky)) is connected with the geometry
of M,;

» (Bouthier-Ngé-Sakellaridis) ICpq, , = L, over Fy((t));
» (Braverman, Finkelberg, Gaitsgory, |. Mirkovi¢)
X =G/Up" or GJIP,PI"", 1Cxy;
» (Sakellaridis) Generalization of harmonic analysis to affine
spherical varieties X?
» (Sakellaridis-Wang) Describe ICx;
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Invariant distribution ®,,

» (Braverman-Kazhdan) Algebraic integration and the datum on
tori;

» (Ngb) A construction generalizing the classical Hankel
transform;

» Finite field analogue has been resolved by Cheng-Ngo for
G = GL,, T.-H. Chen for D-module setting and almost all
finite fields, Laumon-Letellier over any finite fields;
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o, Basic properties

> (Braverman-Kazhdan) Approximate distributions in ®, ,, by
distributions in the Bernstein center 3(G(F)),
F-non-Archimedean;

» 3(G(F)) has the following equivalent characterizations:

» The endomorphism ring of the identity functor on the category
of smooth representations of G(F);

» The space of invariant, essentially compact distributions on
G(F) (i.e. D+xCX(G(F)) CCx(G(F)));

» The space of regular functions on the Bernstein variety

QG(F) = || Xuo.
(M,o)

with Xyo = {[M, x - dlc | x € W(M)};
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o, Basic properties

> G ={gcG(F)|lo(g)l=q "},
¢p7w7n = ¢P,¢ : char(;ﬂ;
> (Expectation) @, » € 3(G(F)) «— fo, , (T), set

fq)p,w (WS) = Z f¢p,w7”(7rs)'
n

v

Then the Laurent series is convergent for Re(s) small, with a
mero. cont. to s € C and = (-, m, p,¥);

> Typical example: ®gq = (tr(+)), indeed Pgq ., € I(GLA(F)),
since Pgpqp * ¢ = charg , - Pgpq * ¢ € C°(GLA(F));

» (Bernstein) ®gqlsr, € 3(SLa(F))
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m-Hankel transform

» Motivated from the observation of Bernstein,
(Jiang-L.) construct w-Hankel transform over any local field F
of characteristic zero

S(MH(F?@%) Fhl)” S(MH(F)fC(W)
5,(F) Fry Sy (F)

» Proposition (Jiang-L.)
» Fr is well-defined;
» 3 a smooth function k., on F* such that

Frw(F)(x) = (kn * £7)(x), £ €CE(F);

reg
[ ksl 0 dx = 2 (s v
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m-Hankel transform

» Construction and regularization

{—00

k7r7¢(x) = lim /detg (q)std * Cz/(g)) ~p7(g)dxg

for {c¢/} any delta sequence to Id;
» Independent of {c¢;} and px(I,) = 1;
» More general: Kirillov model: generic representations of 7 can

be realized on the same variety P,/ U, with P, mirabolic, but
different Schwartz and Fourier captured by T;
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Jiang-L.-Zhang: p = std of symplectic groups

F p-adic;

G =Gm X Spays

p=GY(C)=C* x SO2,41(C) = GL2p4+1(C);
(Jiang-L.-Zhang) Full description of S,(G(F)) via geometry

of M,, and explicit formula for ®, ; First case after
Godement-Jacquet;

» Based on the doubling method of Piatetski-Shapiro and Rallis,
the work of Lapid-Rallis, and more recent works;
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Doubling method (Piatetski-Shapiro and Rallis)

v

(F2n7 <'7 >)v

Sp2n X Sp2n — Sp4n via (F2n ©® F2n7 <‘7 > ©® _<'7 >)'

» P = MN = Stab(La) a Siegel parabolic in Sp,,,, where
La = {(v,v) | v € F?"} is a Lagrangian;

v

» Spy, X Spo, <> Spa, — P\Sps, has Zariski open dense
image, with stabilizer

P 1 (SPan X SPap) = SP3, < SPan X SPan;

> (Piatetski-Shapiro, Rallis) Spy, X Spo, ~ Ind 3™ (x) with
analytical properties of zeta integrals captured by intertwining
operators;



Jiang-L.-Zhang: p = std of symplectic groups
The following diagram illustrates the transition between the work
of Piatetski-Shapiro and Rallis to Jiang-L.-Zhang,

Sp4n

|

Ma>wN Xp Gm X Spa),

C

where Xp = [P, P]\Spa,, = (Id2s, —Id2,) € Spy, X Spop,
Mab = [M, M\M =~ G,.
» Both M*wN and G, x Sp,,, are Zariski open dense in Xp.



Jiang-L.-Zhang: p = std of symplectic groups
The following diagram illustrates the transition between the work
of Piatetski-Shapiro and Rallis to Jiang-L.-Zhang,

Sp4n

|

Ma>wN Xp Gm X Spa),

C

where Xp = [P, P]\Spa,, = (Id2s, —Id2,) € Spy, X Spop,

M2b = [M, M\M ~ G,.
» Both M*wN and G, x Sp,,, are Zariski open dense in Xp.
» The transition is given by Cayley transform C;



Jiang-L.-Zhang: p = std of symplectic groups

» (Braverman-Kazhdan) Intertwining operatos on degenerate
principal series can be upgraduated to a universal family, with
normalization given by geometry of Xp;



Jiang-L.-Zhang: p = std of symplectic groups

» (Braverman-Kazhdan) Intertwining operatos on degenerate
principal series can be upgraduated to a universal family, with
normalization given by geometry of Xp;

> Example:
S(A?)




Jiang-L.-Zhang: p = std of symplectic groups

» (Braverman-Kazhdan) Intertwining operatos on degenerate
principal series can be upgraduated to a universal family, with
normalization given by geometry of Xp;

> Example:
Fy

S(A?) S(A?)
md§(x) —— Ind§(x 1)

» This formulation has been further studied by Getz-Hsu-Leslie
for G split, simple and simply connected.
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Harmonic analysis on M**wN — Xp

» For f € C°(Xp(F)), set

2n+1
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ab

Harmonic analysis on M**wN — Xp

» For f € C°(Xp(F)), set

2n+1

.FX,w(f)(g) = /Frjgnpvs,qp(x)‘x‘ 2

/ f(wns(x)g) dndx
N(F)

where 5 : G, — M is a section of M — [M, M\M ~ Gp;
>

reg 1
L sl 0 4%
n—1

7X7w) : H7(25_2”+2’7X271/})

i=0

2n—1

=7(s — 5
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Jiang-L.-Zhang: Schwartz space

Proposition (JLZ)
> Set

S(Xp(F)) := CZ(Xp(F)) + Fx u(CE(Xp(F));

Then Fx  stabilizes S(Xp(F));

> [2|"(n+1) . Fy ., extends to a unitary operator on L?(Xp(F))
and Fxy 0 Fx -1 = [2]72M20+1) . 1d;

» A function f € C>°(Xp(F)) belongs to S(Xp(F)) if and only
if f is right Kg,, -finite, and as a function in a € F*,

‘a‘2n+1 i f(ﬁa_l k)

belongs to S, (F*) for any fixed k € Ksp, ;

pvs
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pvs
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Jiang-L.-Zhang: Schwartz space

> Soo(F*) < L(s+n,x) - [1=g L(2s + 2i,X?);

pvs
» Therefore functions in S(Xp(F)) can be described by their
asymptotic behavior near the singular locus, i.e.

aff
X2\ Xp = {0}

» In particular, the reductive monoid M, attached to (G, p) in
this situation is exactly given by Y%ﬂ;



Jiang-L.-Zhang: Fourier operator

Sp4n

|
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Proposition (JLZ)
» C is given by the Cayley transform;



Jiang-L.-Zhang: Fourier operator

Sp4n

|

M2>wN Xp M?b(Sp,, x {I2n}) ~ G X Spy,

Proposition (JLZ)

» C is given by the Cayley transform;

>
1

- | det(h — Ip,)| "™,

je-1(h) =




Jiang-L.-Zhang: Fourier operator
» For f € S(Xp(F)), set

d(a, h) == f(s(a) L - (h,Ion))|a| 2

and define

Sp(G(F)) == {¢r | f € S(Xp(F))}.
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Jiang-L.-Zhang: Fourier operator

» For f € S(Xp(F)), set

2n+1

or(a, h) := f(s(a) ™" - (h.Ion))|a| 2

and define

Sp(G(F)) :=A{¢r | f € S(Xp(F))}-

» Define

2n+1

&, p(a, h) :=co - Mpvs,p(a-det(h+1o,)) - [det(h+I2,)|” 2,

» For f € C°(Xp(F)), the p-Fourier transform is defined as

reg

Fo(0)(a, h) = / &, (ax, gh) - dr(x, g) dg dx.
Fx  JSp,,(F)
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Jiang-L.-Zhang: p = std of symplectic groups

Proposition (JLZ)
> F,y stabilizes S,(G(F));
> F,. extends to a unitary operator on L?(G(F), dg);
> Fop-10Fpy =1d;
> Set Gy = {(a,h) € G(F) = F* x Spy, | |a| = ¢ *}. Let chy
be the characteristic function of Gy;
> Set (DPﬂbl = ¢p7¢ - chy;
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» The distribution @,/ lies in the Bernstein center of G(F).
For x ® m € Irr(G(F)), set

(X @) (Pppe) = fo(x @) - Idyr-

» The summation

Z fo(xs ® )
l
is convergent whenever Re(s) is sufficiently large, and admits

a meromorphic continuation to s € C;

» The following identity holds after meromorphic continuation
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Basic properties of ¢,
» The distribution @,/ lies in the Bernstein center of G(F).

v

For x ® m € Irr(G(F)), set

(X @) (Pppe) = fo(x @) - Idyr-

The summation

Z ff(Xs & 7T)
l

is convergent whenever Re(s) is sufficiently large, and admits
a meromorphic continuation to s € C;

The following identity holds after meromorphic continuation
1 _
Z fé(XS ® 7T) = 7(57 Xs ! ® WV:P’¢)-
‘

Based on the work of Yamana, S,(G(F)) ~ L(s, 7 ® x);
Based on the work of Lapid-Rallis, lkeda and Kakuhama,
]:p,w ~ 7(55 ™ ® Xapaw);
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L.-Ng6 (in progress)

» For G = GLy, p: GLy(C) — GL,(C),
Py A" — A2

Oy 7 = (pr ) (W (tr()));

» (Laurent Lafforgue) Candidate for ®, g: modulo convergence,
set (a; = trA')2_;

o, c(a1,a) = /gp,\r(al,az) o] '¢(Z aj - aj)dag dao

> (L.) Modulo convergence, true for p = Sym? (= JLZ); Also
for p = std of G = G, x SOgy;
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L.-Ng6 (in progress)
» G =GL,, p: GL,(C) = GL(V,),
py t AYTP 5 A7
O, 7 = (pr )1 ((tr));

» (L-Ngd, in progress) Candidate for ®, c: modulo
convergence, set (a; = trA')7_,,

¢p,G((a,-)1g,-g,,):/!D(oz,-,a;)l-dTp,\T((a;)lgig,,)-w(Z aja;)- day

where
D(a,-, a,-)

is the symmetric polynomial attached to variables (t;)1<i<n

with
D(aj, tr A’ t) Z Za, tr A2 ¢

leIn 2 J 1
Here Z,_» = {(il, ceey I'n,2) | 1<ip<..<ips< n}.



Thank You and happy birthday
Prof. Casselman!



