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Identifying vertices
• We consider graphs where some edges are colored red.


• When we identify two vertices  and  to  in a graph ,  
- all edges between  and  become red,  
- for ,  
  > if at least one of  and  was red, then  becomes red,  
  > otherwise, it becomes black.

v w z G
z N(v) △ N(w)

x ∈ N(v) ∩ N(w)
vx wx zx



Identifying vertices
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• When we identify two vertices  and  to  in a graph ,  
- all edges between  and  become red,  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• General question: Can we recursively identify a given graph into 
one vertex without creating a vertex of large red degree?



Twin-width (Bonnet, Kim, Thomassé, Watrigant 2020) 

• A trigraph is a graph whose edges are colored black or red.


• For a graph , a sequence  of trigraphs is a reduction 
sequence if  is a singleton graph.


• Twin-width of a graph  is the minimum  such that there is a reduction sequence 
 of  for which the maximum red degree of  is at most .


• Cographs have twin-width 0 (Cographs on  vertices always have twins).

G G = Gn, Gn−1, …, G1
G1

G k
G = Gn, Gn−1, …, G1 G Gi k

≥ 2



Reduced-f of a graph

• We consider any natural graph parameter   
(maximum degree, tree-width, band-width, component size, …)


• Reduced-  of a graph  is the minimum  such that there is a reduction sequence 
 of  for which .


• (Bonnet et al. 2020 TWW I) Reduced-maximum degree = twin-width  
(Bonnet et al. 2021 TWW VI) Reduced-component size ~ rank-width  
                                             Reduced-number of edges ~ linear rank-width

f

f G k
G = Gn, Gn−1, …, G1 G max

1≤i≤k
f(Gi) ≤ k



Reduced-f of a graph
• If  is bounded on all stars, then reduced-  is bounded for all graphs.


• We may consider  as a function, where  denotes max degree. 


• Question: Are there differences between following classes?  
    - graphs of bounded reduced-  
    - graphs of bounded reduced-max{treewidth, } 
    - graphs of bounded reduced-max{pathwidth, } 
    - graphs of bounded reduced-bandwidth  
    - graphs of bounded reduced-component size


• Question: Do some known classes of bounded twin-width have actually bounded 
reduced-bandwidth?

f f

max{f, Δ} Δ(G)

Δ
Δ
Δ

perfect matching



Reduced-bandwidth of a graph

• Band-width of a graph : minimum  such that there is a permutation 
 where  for every edge . 


• If band-width is at most , then maximum degree is at most .

G k
L : V(G) → [n] |L(u) − L(v) | ≤ k uv

k 2k



• Theorem (Bonnet, K, Wood 2021) 
Proper minor-closed classes have bounded reduced-bandwidth. 
Their r-powers also have bounded reduced-bandwidth.

• This strengthens the results in TWW I that proper minor-closed classes have 
bounded twin-width.

Main results (product theorem + neigbhorhood complexity)



• Theorem (Bonnet, K, Wood 2021) 
Proper minor-closed classes have bounded reduced-bandwidth. 
Their r-powers also have bounded reduced-bandwidth.

• Theorem (Bonnet, K, Wood 2021) 
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583. 
By the result of (Morin 2021), we can produce in polynomial time. 
 
Graphs of Euler genus  have reduced-bandwidth at most 164g+468. 
Planar map graphs have reduced-bandwidth at most 10000. 

g

• This strengthens the results in TWW I that proper minor-closed classes have 
bounded twin-width.

• Previous bounds for planar graphs in TWW I/ TWW VI papers were .≥ 21000

Main results (product theorem + neigbhorhood complexity)



• Theorem 
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583. 

• (Product theorem (Ueckerdt, Wood, Yi 2021)) Every planar graph is a subgraph of 
 for some graph  of treewidth at most 6 and a path .


• (Neighborhood complexity) For every vertex set  in a planar graph ,  
  .


H ⊠ P H P

S G
|{N(v) ∩ S : v ∈ V(G)∖S} | ≤ 6 |S | − 9



• Theorem 
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583. 

• (Product theorem (Ueckerdt, Wood, Yi 2021)) Every planar graph is a subgraph of  
for some graph  of treewidth at most 6 and a path .


• (Neighborhood complexity) For every vertex set  in a planar graph ,  
  .


• Difficulty: when you identify two vertices, planarity may be destroyed, and it is hard to find 
a natural sequence preserving planarity.


• Idea: we will not use planarity when constructing a reduction sequence.


• We can slightly improve bounds by looking at neighborhood complexity in the product 
structure carefully.   But we do not know whether we can improve to .

H ⊠ P
H P = w1w2⋯wt

S G
|{N(v) ∩ S : v ∈ V(G)∖S} | ≤ 6 |S | − 9

≤ 100



• Theorem 
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583. 

• Look at a vertex  in 
.


• Neighbors are contained in

v
(V(Q1)∖V(B)) × {w2}

(V(Q1) ∪ V(B)) × {w1, w2, w3}



• Theorem 
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583. 

• Idea: pick two vertices in the 
same silce that are twins to 
V(B) × V(P)

• Look at a vertex  in 
.


• Neighbors are contained in

• We want to identify 

so that no red edges incident 
with  are created.

v
(V(Q1)∖V(B)) × {w2}

(V(Q1) ∪ V(B)) × {w1, w2, w3}

((V(Q1) ∪ V(Q2))∖V(B)) × V(P)

V(B) × V(P)



•   (each circle is a clique)


•  and  
bandw

Sx,q

Δ(Sx,q) ≤ 5q − 2
(Sx,q) ≤ 4q − 2



• -rooted decomposition  
= internal bags have size ,  
   leaf bags have size  


• rooted separation is a separation   
 as in the picture

(k, q)
≤ k + 1

≤ q

(C, D)
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• -rooted decomposition  
= internal bags have size ,  
   leaf bags have size  


• rooted separation is a separation   
 as in the picture

(k, q)
≤ k + 1

≤ q

(C, D)

•   (each circle is a clique)


•  and  
bandw

Sx,q

Δ(Sx,q) ≤ 5q − 2
(Sx,q) ≤ 4q − 2

• A parameter  is good if it is closed under subgraph / disjoint unionf



• Let  be a good parameter and  be a function where 
 for all . Let  be a -rooted tree-

decomposition of  and let  be a trigraph with 
 such that 

   
1) (red edge condition) for every red edge ,  there is a leaf bag 

 with parent  so that , 
 
2) (separation condition)  
for every rooted separation  of  and ,                                         

  
 
3) (neighborhood condition)  
 for every vertex  for some , 
     . 
 
Then reduced-  of  is at most .                              

f g : ℕ → ℝ
f(Sx,q) ≤ g(q) q (𝒯, ℬ) (k, q)

H F
V(F) ⊆ V(H ⊠ P)

vw
B B′￼ v, w ∈ (B∖B′￼) × V(P)

(C, D) H z ∈ V(P)
|{NF(v) ∩ (D × V(P)) : v ∈ ((C∖D) × {z}) ∩ V(F)} | ≤ q

v ∈ (V(H) × {z}) ∩ V(F) z ∈ V(P)
NF[v] ⊆ V(H) × NP[z]

f F g(q)



• For planar graphs, we can take k=6 
and q=6*(7*3)-9=117.


•  and 
.


• So, reduced-bandw  and 
twin-width .

bandw(Sx,q) ≤ 4q − 2
Δ(Sx,q) ≤ 5q − 2

≤ 466
≤ 583
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• One can see that each red component is always a subgraph of .


• Since  is closed under subgraph / disjoint union, red graph has -value . 
So, reduced-  of  is at most .                         

S|V(P)|,q

f f ≤ g(q)
f F g(q)
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not yetidentified current

Q1

Q2



• For r-th powers :  
  1) we consider the -th power of  instead of  
  2) (neighbourhood condition)  is replaced with  
  3) (separation condition) We can use linear bounds on distance-r profiles  
                                             by Eickmeyer et al. (2017) (or simply ) 
  4) For a map graph  and vertex set , we prove that  
         (where we apply )

r Sx,q Sx,q

NP[z] Nr
P[z]

(r + 1)|S|

G S
|{N(v) ∩ S : v ∈ V(G)∖S} | ≤ max{210,37 |S | − 81} |S | = 35

r-powers



• (Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood 2020) 
For every graph , there exists  such that every -minor-free graph   
has a tree-decomposition in which every torso is a subgraph of 
for some graph  of treewidth at most  and some path . 

X k, a ∈ ℕ X G
(H ⊠ P) + Ka

H k P

• We consider the neighborhood complexity to bags in  together with .


• We obtain a reduction sequence from bottom to top in the tree-decomposition, 
so that during the sequence, we do not create red edge to above bags.


• We need to extend the lemma to deal with information from below subtrees.

H ⊠ P Ka

X-minor free graphs



Conclusion
• Proper minor-closed classes and their r-powers have bounded reduced-bandwidth.

Question : 
• Is it true that planar graphs have reduced-bandwidth / twin-width at most 10?


• We write  if there is a function  such that for every graph , 
. 

Is there a parameter  such that  
  - planar graphs have bounded reduced-   and bandwidth but bandwidth  ? 


• Is there a natural parameter tied to reduced-bandwidth?


• Is there an interesting application of reduced-bandwidth?

f1 ≺ f2 ϕ G
f1(G) ≤ ϕ( f2(G))

f
f f ≺ ≺ f


