Tangent Infinity Categories

Kristine Bauer

University of Calgary

connecting: BJORT*1 and recent work with Matthew Burke & Michael Ching

June 16, 2021

¹Brenda Johnson, Christina Osborne, Emily Riehl and Amelia Tebbe, 🚛 🚬 🧠 🤉

The goal of this talk is to explain the connection between categorical differentiation and functor calculus. To do so, we need to invent a new kind of "homotopical" tangent category. A rough outline of the talk is as follows.

- Functor Calculus
- Weil-algebras
- Tangent infinity categories and examples
- The Goodwillie tangent structure
- Differential objects and differentiation
- In-jets

SQA

Functor Calculus (Goodwillie)

Let $F: \mathcal{C} \to \mathcal{D}$ be a homotopy functor of model categories.

- $F : C \to D$ where C and D are abelian; (classical homological algebra)
- $F: Top \rightarrow Top$ of pointed topological spaces (homotopy theory).

Definition (Excisive)

A functor F is excisive if it takes homotopy pushouts to homotopy pullbacks, e.g.

 $F(X \lor Y) = F(X) \times F(Y).$

There is a Taylor series-like tower of approximations

takes pushout n-cubes to pullback n-cubes $P_0 F \stackrel{\checkmark}{\leftarrow} P_1 F \stackrel{\checkmark}{\leftarrow} P_2 F$ $P_{\sim}F$ where $P_n F$ is the best *n*-excisive approximation to *F*, and $D_n F$ = hofib q_n is homogeneous *n*-excisive. The functor D_1F is excisive and reduced. ma a Kristine Bauer (UCalgary)

Tangent Infinity Categories

June 16, 2021

3 / 18

Functor calculus & Cartesian differential categories (Johnson, Lemay)

Theorem (B.-Johnson-Osborne-Riehl-Tebbe)

The (homotopy) category of abelian categories is a Cartesian differential category.

The derivative of a functor $F : \mathcal{A} \to \mathcal{B}$ of abelian categories is

$$\nabla F(V,A) = D_1 F(A \oplus -)(V)$$

Theorem (Blute-Cockett-Seely '09 & Cockett-Lemay '20)

A category has differentiation iff it has linearization.

The linearization of a map in a cartesian left additive category is *additive*. Since *Top* doesn't have biproducts, excisive \neq additive. In particular:

$$D_1F(X \vee Y) = D_1F(X) \times D_1F(Y).$$

SQ (V

Tangent categories are hard to define 'up to homotopy' (a nightmare of coherence conditions!), but there is another perspective due to Leung.

Definition

There is a symmetric monoidal category Weil with

 \bullet Objects are augmented commutative $\mathbb N\text{-algebras}$ of the form

$$A = \mathbb{N}[x_1, \ldots, x_n]/(x_i x_j, i \simeq j)$$

- Morphisms are maps of augmented commutative ℕ-algebras,
- ullet \otimes is the monoidal product.

Let W^n denote the *n*-fold product of W with itself. Every object in W eil is of the form $W^{n_1} \otimes \cdots \otimes W^{n_r}$.

SQ Q

There are pullbacks:

Here, $\mu(x) = ab$, $\mu(y) = b$, η is the unit and ϵ is the augmentation.

The first of these corresponds to the 'universality of the vertical lift' in Cockett-Cruttwell. The second corresponds to the requirement that the tangent bundle functor must preserve products.

SQ P

Theorem (Leung)

A category \mathcal{X} is a tangent category iff there is a strong monoidal functor

```
T: (\mathbb{W}\textit{eil}, \otimes) \to (\mathsf{End}(\mathcal{X}), \circ)
```

which preserves the tangent pullbacks.

We apply this theorem as definition for infinity categories rather than ordinary categories.

SQ Q

Simplicial sets

A simplicial set is a functor $\Delta^{op} \rightarrow Set$, pictured geometrically as a topological space:

Infinity Categories

Every category is an infinity category. In particular, \mathbb{W} *eil* is an infinity category.

Gren 0→1→2 in E Trere is indeed a unique arrow 0→2 in E determined by composing. Tris fills The horn!

- 4 🗗 ▶

< 🗆 🕨

An ∞ -functor is just a map of simplicial sets.

SQ P

Many of the things you can do with ordinary categories can be done with quasi-categories:

- There is a function complex $Fun(\mathbb{X}, \mathbb{Y})$ which is again a quasi-category.
- A monoidal ∞-category is a simplicial monoid M[⊗] for which the underlying simplicial set is a quasi-category.
- A strict monoidal ∞-functor is a map of simplicial sets which preserves the monoidal structure.
- A strong monoidal ∞-functor is a map of simplicial sets which preserves the monoidal structure up to coherent isomorphism (homotopy).

.

3

SQ (V

Tangent Infinity Categories

C.g. In Things that behave properly with The category Weil is a monoidal infinity category, and it is cofibrant as a monoidal infinity category.

Definition

A tangent infinity category is an infinity category $\mathbb X$ together with a *strict* monoidal functor

 $T: \mathbb{W}eil^{\otimes} \to End(\mathbb{X})^{o}$

for which the underlying map of quasi-categories preserves the tangent pullbacks.

Examples:

- Any tangent category is a tangent ∞ -category.
- An arbitrary infinity category X has a trivial tangent structure given by T(A) = Id_X.

SQ Q

The Goodwillie tangent structure

An infinity category C is Lurie-differentiable if it admits finite limits and sequential colimits, and those commute. Let $\mathbb{C}at_{\infty}$ be the ∞ -category of ∞ -categories, and $\mathbb{C}at_{\infty}^{diff} \subset \mathbb{C}at_{\infty}$ the subcategory whose objects are Lurie-differentiable ∞ -categories and whose morphisms are functors that preserve sequential colimits.

Finite simplicial sets

We say that a s. set is finite if it is homotopy equivalent to the singular s. set of a finite CW complex. Let $S_{fin,*}$ denote the simplicial nerve of the simplicial category in which an object is a pointed finite Kan complex, with enrichment given by the pointed mapping spaces. Since the mapping spaces are Kan-complexes, $S_{fin,*}$ is a quasi-category.

Lurie defines the tangent bundle on a Lurie-differentiable $\infty\text{-category}\ \mathcal{C}$ to be the $\infty\text{-category}$

$$T(\mathcal{C}) := \textit{Exc}(\mathcal{S}_{\textit{fin},*},\mathcal{C})$$

of excisive functors.

Kristine Bauer (UCalgary)

SQ (V

<ロト < 団ト < 団ト < 団ト = 国

Theorem (B-Burke-Ching)

The tangent bundle can be extended to a functor $T: \mathbb{W}eil^{\otimes} \to End(\mathbb{C}at_{\infty}^{diff})^{\circ}$ giving a tangent infinity structure on $\mathbb{C}at_{\infty}^{diff}$.

Some hints about the proof:

- $p: T^W(\mathcal{C}) \to \mathcal{C}$ given by $L \mapsto L(*)$
- If $A = W^{n_1} \otimes \cdots \otimes W^{n_r}$, then $T^A(\mathcal{C}) = Exc^{1,...,1}(\mathcal{S}_{fin,*}^{n_1} \times \cdots \times \mathcal{S}_{fin,*}^{n_r}, \mathcal{C})$, i.e. functors which are excisive in each of r variables separately.
- If F : C → D, then T^A(F) := P_A(F_{*}), i.e. the excisive approximation to post-composition with F. (Note: P₁(FL) = P₁(F(P₁L)).)
- If φ : A → A', then T^φ(C) : T^A(C) → T^{A'}(C) mirrors the map φ by treating factors of Sⁿ_{fin,*} like the factorization of A into W's.

 $\sqrt{\alpha}$

◆□▶ ◆□▶ ◆三▶ ◆□▶ =

Stable infinity categories

An infinity category C is stable if it is pointed, admits finite limits and colimits, and a commuting square diagram is a pushout iff it is a pullback.

Theorem (B-Burke-Ching)

A Lurie-differentiable ∞ -category C is differential (in the sense of Cockett-Cruttwell) iff C is a stable ∞ -category.

The proof follows from two results due to Lurie. If C is any ∞ -category and $X \in C$, then

$$T_X \mathcal{C} \simeq Exc_*(\mathcal{S}_{fin,*}, \mathcal{C}/X)$$

of *reduced* excisive functors, which Lurie proved is stable. On the other hand, if C is stable, then

$$T_*\mathcal{C} = Exc_*(\mathcal{S}_{fin,*},\mathcal{C})$$

which is equivalent to C by a result of Lurie. That is, C is equivalent to a tangent space.

By work of Cockett-Cruttwell, the differential objects of a tangent category are a Cartesian differential category. The homotopy category of stable, Lurie-differentiable infinity categories is a Cartesian differential category. The derivative of a functor F of stable infinity categories is

$$\nabla(F)(V,X) := D_1(F(X \oplus -))(V)$$

exactly as in the BJORT case.

This is not surprising, because we tend to think of homological algebra as an instance of a stable infinity category (e.g. the derived category of an abelian category is a stable infinity category). But the category used in BJORT itself is not exactly of this type.

◆□▶ ◆骨▶ ◆ヨ▶ ◆ヨ▶ ─

SQ (A

In the category of smooth manifolds, two smooth functions $f, g : M \to N$ have Taylor series at x (multivariate, local coordinates) that agree to degree n iff $T_x^n(f) = T_x^n(g)$. The equivalence class of f under this relation is the n-jet of f. The n-jets determine the degree n Taylor polynomial (and vice-versa).

A functor $F : \mathcal{C} \to \mathcal{D}$ in $\mathbb{C}at_{\infty}^{diff}$ can be thought of locally by restricting to the slice category, $F/X : \mathcal{C}/X \to \mathcal{D}$. Let $P_n^X F$ denote $P_n(F/X) : \mathcal{C}/X \to \mathcal{D}$.

Likewise, the *n*-fold tangent space $T_X^n \mathcal{C}$ of \mathcal{C} at X is the fiber of $T^n \mathcal{C} \to \mathcal{C}$ over X. Let $\iota_X : T_X^n \mathcal{C} \to T^n \mathcal{C}$ be the inclusion of the fiber.

15 F is reduced, take
$$P_nF = P_nF$$
 (ignore slice)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Connection to *n*-excisive functors

if F, G reduced and X = *...

T & F ix T Gin i.e. filters are ~

Theorem

Analogue of n-jets Let $F, G : C \to D$ in $\mathbb{C}at_{\infty}^{diff}$ and $\alpha : F \Rightarrow G$, and let $F/X : C/X \to D$ denote the restriction of F to the slice category. Then

is an equivalence if and only if

$$T_X^n \alpha \iota_X : T_X^n F \iota_X \Rightarrow T_X^n G \iota_X$$

is an equivalence.

Upshot: The n-jet of F is [PnF], and This says
you may as well use
$$T_*^n F$$
 instead.
Kristine Bayer (11(2)gary) Tangent Infinity Categories [10, 2021] 17/1

THANK YOU!!

Bauer, Burke, Ching, *Tangent Infinity Categories*, https://arxiv.org/pdf/2101.07819.pdf

Kristine Bauer (UCalgary)

Tangent Infinity Categories

June 16, 2021 18 / 18

- 4 同 ト - 4 目 ト - 4 目 ト

< □ ▶

3

SQ (2