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The goal of this talk is to explain the connection between categorical
differentiation and functor calculus. To do so, we need to invent a new
kind of “homotopical” tangent category. A rough outline of the talk is as
follows.

Q Functor Calculus

Q Weil-algebras

© Tangent infinity categories and examples

© The Goodwillie tangent structure

O Differential objects and differentiation

Q n-jets

Kristine Bauer (UCalgary) Tangent Infinity Categories June 16, 2021 2 /18



Functor Calculus (Goodwillie)

Let F : C — D be a homotopy functor of model categories.
@ F:C — D where C and D are abelian; (classical homological algebra)
@ F: Top — Top of pointed topological spaces (homotopy theory).

Definition (Excisive)

A functor F is excisive if it takes homotopy pushouts to homotopy
pullbacks, e.g.

FIXVY)=F(X)x F(Y).

There is a Taylor series-like tower of approximations

e tnkes pushak

n-culeet 1o

/ l udlback a-cvkes

PoF <— P F < P2F/--- Py F

where P,F is the best(n-excisive approximation to F, and D,F = hofib g,
is homogeneous n-excisive. The functor D; F is excisive and reduced.
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Functor calculus & Cartesian differential categories
(Johnson, Lemay)

Theorem (B.-Johnson-Osborne-Riehl-Tebbe)

The (homotopy) category of abelian categories is a Cartesian differential
category.

The derivative of a functor F : A — B of abelian categories is

VFE(V,A)=D:F(Ad —)(V)

Theorem (Blute-Cockett-Seely '09 & Cockett-Lemay '20)

A category has differentiation iff it has linearization.

The linearization of a map in a cartesian left additive category is additive.
Since Top doesn't have biproducts, excisive # additive. In particular:

DlF(X V Y) = DlF(X) X DlF(Y).
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Weil modules (Garner, 1)

Tangent categories are hard to define ‘up to homotopy’ (a nightmare of
coherence conditions!), but there is another perspective due to Leung.

There is a symmetric monoidal category Weil with

@ Objects are augmented commutative N-algebras of the form
A=Nlxt, ... x5}/ (i i =~ J)

@ Morphisms are maps of augmented commutative N-algebras,

@ ® is the monoidal product.

Let W" denote the n-fold product of W with itself. Every object in Weil
is of the form WM & -.-® W,
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The tangent pullbacks (Garner, |)

There are pullbacks:

w2 2 we w A WMth o A WM
el ll@e l \L
N—"T -~ w AR Wn A

Here, pu(x) = ab, u(y) = b, n is the unit and € is the augmentation.

The first of these corresponds to the ‘universality of the vertical lift’ in
Cockett-Cruttwell. The second corresponds to the requirement that the
tangent bundle functor must preserve products.
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Weil and tangent categories (Garner, |)

Theorem (Leung)

A category X is a tangent category iff there is a strong monoidal functor

T : (Weil, ®) — (End(X), o)

which preserves the tangent pullbacks.

We apply this theorem as definition for infinity categories rather than
ordinary categories.
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Simplicial sets

A simplicial set is a functor A°P — Set, pictured geometrically as a
topological space:

(o)
(o]
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Infinity Categories

Every category is an infinity category. In particular, Weil is an infinity

category. | Coen O—1—2 w G
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An oo-functor is just a map of simplicial sets.
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Fun with infinity categories

Many of the things you can do with ordinary categories can be done with
quasi-categories:

@ There is a function complex Fun(X,Y) which is again a
quasi-category.

@ A monoidal co-category is a simplicial monoid M® for which the
underlying simplicial set is a quasi-category.

@ A strict monoidal oo-functor is a map of simplicial sets which

preserves the monoidal structure.

@ A strong monoidal oco-functor is a map of simplicial sets which
preserves the monoidal structure up to coherent isomorphism
(homotopy).
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Tangent Infinity Categories
c.s.(M\‘\o\M “§ LN

colims.
The category Weil is a monoidal infinity cgg% ry, and it is c\ofibrant as a
monoidal infinity category.

Definition

A tangent infinity category is an infinity category X together with a strict
monoidal functor
T : Weil® — End(X)°

for which the underlying map of quasi-categories preserves the tangent
pullbacks.

Examples:
@ Any tangent category is a tangent oo-category.

@ An arbitrary infinity category X has a trivial tangent structure given
by T(A) = ldx.
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The Goodwillie tangent structure

An infinity category C is Lurie-differentiable if it admits finite limits and
sequential colimits, and those commute. Let Cat,, be the co-category of
oo-categories, and Catgéff C Cat, the subcategory whose objects are
Lurie-differentiable oo-categories and whose morphisms are functors that
preserve sequential colimits.

Finite simplicial sets

We say that a s. set is finite if it is homotopy equivalent to the singular s.
set of a finite CW complex. Let Sy, . denote the simplicial nerve of the
simplicial category in which an object is a pointed finite Kan complex,
with enrichment given by the pointed mapping spaces. Since the mapping
spaces are Kan-complexes, S, « IS a quasi-category.

.

Lurie defines the tangent bundle on a Lurie-differentiable oo-category C to
be the oo-category

T(C) = EXC(Sﬁn’*, C)

of excisive functors.
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The Goodwillie tangent structure

Theorem (B-Burke-Ching)

The tangent bundle can be extended to a functor
T : Weil® — End((Catg'c’)ﬂr )° giving a tangent infinity structure on (Catgéff :

Some hints about the proof:
o p: TW(C) — C given by L — L(x)

o IfA=W"®---® W", then
TA(C) = Excb1(S2  x -+ x 8fr . C), i.e. functors which are
excisive in each of r variables separately.

o If F:C — D, then TA(F) := Pa(F,), i.e. the excisive approximation
to post-composition with F. (Note: Pi(FL) = P1(F(P1L)).)

o If¢p: A— A then T?(C): TAC) — T#(C) mirrors the map ¢ by
treating factors of S¢ . like the factorization of A into W's.
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Stable infinity categories

An infinity category C is stable if it is pointed, admits finite limits and
colimits, and a commuting square diagram is a pushout iff it is a pullback.

Theorem (B-Burke-Ching)

A Lurie-differentiable co-category C is differential (in the sense of
Cockett-Cruttwell) iff C is a stable co-category.

The proof follows from two results due to Lurie. If C is any oo-category
and X € C, then
TXC ~ EXC*(Sf,'n,*,C/X)

of reduced excisive functors, which Lurie proved is stable.
On the other hand, if C is stable, then

T.C = EXC*(Sﬁn,*,C)

which is equivalent to C by a result of Lurie. That is, C is equivalent to a
tangent space.
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Connection to BJORT

By work of Cockett-Cruttwell, the differential objects of a tangent
category are a Cartesian differential category. The homotopy category of
stable, Lurie-differentiable infinity categories is a Cartesian differential
category. The derivative of a functor F of stable infinity categories is

V(F)(V,X) = Di(F(X & =))(V)
exactly as in the BJORT case.

This is not surprising, because we tend to think of homological algebra as
an instance of a stable infinity category (e.g. the derived category of an
abelian category is a stable infinity category). But the category used in
BJORT itself is not exactly of this type.

Kristine Bauer (UCalgary) Tangent Infinity Categories June 16, 2021 15 / 18



Connection to n-excisive functors

In the category of smooth manifolds, two smooth functions f,g: M — N
have Taylor series at x (multivariate, local coordinates) that agree to
degree n iff T7(f) = TJ(g). The equivalence class of f under this relation
is the n-jet of f. The n-jets determine the degree n Taylor polynomial
(and vice-versa).

A functor F : C — D in Cat?™ can be thought of locally by restricting to
the slice category, F/X : C/X — D. Let PXF denote
P.(F/X):C/X — D.

Likewise, the n-fold tangent space TyC of C at X is the fiber of T"C — C
over X. Let vx : TgC — T"C be the inclusion of the fiber.

F e . .
3 Y s ‘EAU-CQA) ‘ol Co\a =Pat (\'gme ARTAN
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Connection to n-excisive functors

® ¥,G ceduced
04'\.& x:*...
Theorem

Analogue of n-jets Let F, G : C — D in Cat?™ and oo : F = G, and let
F/X :C/X — D denote the restriction of F to the slice category. Then

PY(a): PX(F)= PX(G)  RaF =¥nC
St
Is an equivalence if and only if
Q . S =N
~,.F V.G
Txaux : TxFix = TGy ‘a *
ve. QNeers ose =

Is an equivalence.
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THE END

THANK YOU!!

Bauer, Burke, Ching, Tangent Infinity Categories,
https://arxiv.org/pdf/2101.07819.pdf
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