Exponentials and Enrichment for Orbispaces

Dorette Pronk¹ and Laura Scull²

¹Dalhousie University, Halifax, NS

²Fort Lewis College, Durango, CO

Tangent Categories and their Applications

BIRS, June 17, 2021

Other Collaborators

- Vesta Coufal
- Carmen Rovi
- Courtney Thatcher

Orbispaces - Informally

- Spaces that are locally the quotient of an open subspace of Euclidean space (or another class of spaces) by the action of a finite group.
- Introduced by Satake as V-manifolds.
- Studied by Thurston and others under the name orbifolds.
- They were introduced in terms of atlases.
- We will use their representation in terms of topological groupoids.

Example: A Triangular Billiard

GXR² 5=11, 1]t=a R²

Example: A Triangular Billiard

Topological Groupoids

Definition

Orbispaces are represented by proper étale groupoids (orbigroupoids):

- $\mathcal{G}_1 \xrightarrow{(s,t)} \mathcal{G}_0 \times \mathcal{G}_0$ is proper (closed with compact fibers);
- the source map $\mathcal{G}_1 \xrightarrow{s} \mathcal{G}_0$ is étale (and hence all structure maps are étale).

Groupoid Homomorphisms

Definition

A morphism $\varphi: \mathcal{G} \to \mathcal{H}$ between topological groupoid is a continuous functor; i.e., a pair of continuous maps

$$\varphi_0 \colon \mathcal{G}_0 \to \mathcal{H}_0 \text{ and } \varphi_1 \colon \mathcal{G}_1 \to \mathcal{H}_1$$

that makes the usual diagrams commute:

However, this isn't all as far as orbispaces are concerned.

Two Presentations of a Manifold

• A manifold M can be represented by the groupoid $\mathcal{G}(M)$,

$$M \times_M M \cong M \longrightarrow M \xrightarrow{s = \mathrm{id}_M}_{t = \mathrm{id}_M} M$$

• If \mathcal{U} is an atlas for M, it can also be represented by $\mathcal{G}(\mathcal{U})$,

$$\coprod U_1 \cap U_2 \cap U_3 \longrightarrow \coprod U_1 \cap U_2 \xrightarrow[t]{s} \coprod U$$

- The morphism $\mathcal{G}(\mathcal{U}) \to \mathcal{G}(M)$ is an *essential covering map*.
- There is generally no inverse for this morphism.

Essential Covering Maps

Definition

An **essential covering map** is a groupoid homomorphism of the form $\varphi_{\mathcal{U}} : \mathcal{G}^*(\mathcal{U}) \to \mathcal{G}$, where

- U is a locally finite collection of opens in G₀ that meets every orbit of G;
- (a) $(\varphi_{\mathcal{U}})_0$ is the inclusion embedding on each component U;
- $\mathcal{G}^*(\mathcal{U})_1$ is the pullback

$$\begin{array}{c|c}
\mathcal{G}^{*}(\mathcal{U})_{1} & \xrightarrow{(\varphi u)_{1}} & \mathcal{G}_{1} \\
\stackrel{(s,t)}{\downarrow} & & \downarrow^{(s,t)} \\
\mathcal{G}^{*}(\mathcal{U})_{0} \times \mathcal{G}^{*}(\mathcal{U})_{0} & \xrightarrow{(\varphi u)_{0}} & \mathcal{G}_{0} \times \mathcal{G}_{0}
\end{array}$$

Orbispaces as a Bicategory of Fractions

The class \mathfrak{C} of essential covering maps admits a bicalculus of right fractions and the bicategory of fractions **ProperEtaleGrpds**(\mathfrak{C}^{-1}) can be described by:

- Arrows: G < ^{ε_U} G^{*}(U) → H, where ε_U is an essential covering map.
- 2-Cells are diagrams of the form

where $\mathcal{P}_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}}$ is a chosen pseudo pullback square.

D. Pronk, L. Scull

Orbispace Mapping Objects

Hom-Categories

Remark

- The hom-categories in **ProperEtaleGpds**(\mathfrak{C}^{-1}) are small.
- Groupoids that are equivalent in the bicategory of fractions are called *Morita equivalent*.

What do we require from mapping objects?

When we add a topology to **Orbispaces**(\mathcal{K}, \mathcal{H}) to make it a topological groupoid [\mathcal{K}, \mathcal{H}] we may aim for either of the following:

Make *K* Exponentiable:

 $\textbf{OrbiGrpds}(\mathcal{G}\times\mathcal{K},\mathcal{H})\simeq\textbf{OrbiGrpds}(\mathcal{G},[\mathcal{K},\mathcal{H}]).$

Note: this determines $[\mathcal{K}, \mathcal{H}]$ up to Morita equivalence if it exists.

Bicategorical Enrichment: composition defines a morphism

 $[\mathcal{G},\mathcal{K}]\times [\mathcal{K},\mathcal{H}] \to [\mathcal{G},\mathcal{H}]$

that satisfies the usual conditions up to coherent natural isomorphisms.

Note: this has more than one solution.

What has been done in the literature?

- Weimin Chen, On a notion of maps between orbifolds, I. Function Spaces, *Communications in Contemporary Mathematics* 8 no.5 (2006), 569-620
- David Carchedi, Compactly generated stacks: a Cartesian closed theory of topological stacks, *Advances* **229** (2009)
- Behrang Noohi, Mapping stacks of topological stacks, Journal für die reine und angewandte Mathematik 646 (2010)

Topological Groupoids

For the 2-category of **TopGrpds** of groupoids in locally compact spaces there are topological mapping groupoids $GMap(\mathcal{G}, \mathcal{H})$ such that

There is an isomorphism

 $\textbf{TopGrpds}(\mathcal{G} \times \mathcal{K}, \mathcal{H}) \simeq \textbf{TopGrpds}(\mathcal{G}, \textbf{GMap}(\mathcal{K}, \mathcal{H}))$

Composition defines a continuous functor

 $\operatorname{GMap}(\mathcal{G},\mathcal{K}) \times \operatorname{GMap}(\mathcal{K},\mathcal{H}) \to \operatorname{GMap}(\mathcal{G},\mathcal{H}).$

Topology for the Exponential: the Space of Objects

- [Bustillo-P-Szyld] Homs in a bicategory of fractions are 2-filtered pseudo colimits of homs in the original bicategory.
- So we take OMap(K, G) to be the pseudo colimit of the topological groupoids GMap(K*(U), G).
- Assume that \mathcal{K} is *orbit-compact*: $\mathcal{K}_0/\mathcal{K}_1$ is compact.
- Topology on the space of objects:

$$\mathsf{OMap}(\mathcal{K},\mathcal{G})_0 = igsqcup_{arepsilon_\mathcal{U}} \mathsf{GMap}(\mathcal{K}^*(\mathcal{U}),\mathcal{G})_0$$

where the coproduct is taken over all essential covering maps $\varepsilon_{\mathcal{U}} \colon \mathcal{K}^*(\mathcal{U}) \to \mathcal{K}$ with \mathcal{U} finite essential coverings of \mathcal{K}_0 .

• Note: $\mathbf{GMap}(\mathcal{K}^*(\mathcal{U}), \mathcal{G})_0 \subseteq \mathbf{Map}(\mathcal{K}^*(\mathcal{U})_1, \mathcal{G}_1).$

Topology for the Exponential: the Space of Arrows

Points in this space are diagrams

Then

$$\mathsf{OMap}(\mathcal{K},\mathcal{G})_1 = \bigsqcup_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}} Q_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}}.$$

• Where

$$\begin{split} \mathcal{Q}_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}} &= & \mathsf{GMap}(\mathcal{K}^*(\mathcal{U}),\mathcal{G})_0 \\ & \times_{(\pi^*_{\mathcal{U}},\mathsf{GMap}(\mathcal{P}_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}},\mathcal{G})_0,s)} & \mathsf{GMap}(\mathcal{P}_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}},\mathcal{G})_1 \\ & \times_{(t,\mathsf{GMap}(\mathcal{P}_{\varepsilon_{\mathcal{U}},\varepsilon_{\mathcal{V}}},\mathcal{G})_0,\pi^*_{\mathcal{V}})} & \mathsf{GMap}(\mathcal{K}^*(\mathcal{V}),\mathcal{G})_0 \end{split}$$

Orbispace Mapping Objects

$OMap(\mathcal{G}, \mathcal{H})$ is the Exponential

OMap(K,G) is proper and fits in an equivalence of categories
 Orbigpds(ℭ⁻¹)(H × K,G) ≃ Orbigpds(ℭ⁻¹)(H, OMap(K,G))

when \mathcal{K} , \mathcal{H} and \mathcal{G} are proper étale groupoids.

- **OMap**(\mathcal{K}, \mathcal{G}) is generally not étale.
- We will find a smaller Morita equivalent groupoid AMap(K,G) that has all the desired properties.

Admissible Generalized Morphisms

A span

$$\mathcal{K} \overset{\varepsilon}{\longleftrightarrow} \mathcal{K}^*(\mathcal{U}) \overset{\varphi}{\longrightarrow} \mathcal{G}$$

is called admissible if

- for each U ∈ U, ε(U) ⊆ G₀ is relatively compact: its closure is compact;
- φ can be extended to these closures.

$AMap(\mathcal{K},\mathcal{G})_0$

- Write AMap(K, G) for the full subcategory of OMap(K, G) on admissible spans with finite essential coverings, but we don't use the subspace topology!
- Topology on the space of objects:

$$\mathsf{AMap}(\mathcal{K},\mathcal{G})_0 = \coprod_{arepsilon_\mathcal{U}} \mathsf{GMap}(\mathcal{K}^*(\overline{\mathcal{U}}),\mathcal{G})_0$$

where the coproduct is taken over all $\varepsilon_{\mathcal{U}} \colon \mathcal{K}^*(\mathcal{U}) \to \mathcal{K}$ with \mathcal{U} a finite essential covering of \mathcal{K}_0 by relatively compact opens.

• Here, $\mathcal{K}^*(\overline{\mathcal{U}})_0 = \coprod_{U \in \mathcal{U}} \overline{U}$, with the closures taken in \mathcal{K}_0 , and $\mathcal{K}^*(\overline{\mathcal{U}})_1$ is defined by pullback.

$AMap(\mathcal{K},\mathcal{G})_1$

• Points in $AMap(\mathcal{K}, \mathcal{G})_1$ are diagrams of admissible spans

and can be topologized using the closures and unique extensions:

Properties of the Exponential

Remark

Shrinkage gives rise to an essential equivalence $\mathsf{OMap}(\mathcal{K},\mathcal{G}) \to \mathsf{AMap}(\mathcal{K},\mathcal{G}).$

Theorem

Let \mathcal{G} , \mathcal{L} and \mathcal{G} be paracompact, locally compact, proper, étale groupoids.

• When K is orbit compact,

 $Orbispaces(\mathcal{L} \times \mathcal{K}, \mathcal{G}) \simeq Orbispaces(\mathcal{L}, AMap(\mathcal{K}, \mathcal{G})).$

- The groupoid $AMap(\mathcal{K}, \mathcal{G})$ is proper and étale.
- If K and K' are Morita equivalent and G and G' are Morita equivalent, then AMap(K,G) and AMap(K',G') are Morita equivalent.

Enrichment?

• The composition functor

```
AMap(\mathcal{G},\mathcal{H}) \times AMap(\mathcal{H},\mathcal{K}) \rightarrow AMap(\mathcal{G},\mathcal{K})
```

is not continuous in general.

- Solution: construct a *generalized map* in its place: introduce a covering so that on each part we can use a fixed *W*.
- Then we enrich over orbispaces rather than topological groupoids.
- Note: this works only for orbit-compact orbifolds.

D. Pronk, L. Scull

Orbispace Mapping Objects

Composition

Let $\gamma: \mathcal{G}^*(\mathcal{W}) \to \mathcal{G}^*(\mathcal{U})$ and $\sigma: \mathcal{W} \to \mathcal{V}$. For $(\varphi, \psi) \in O[\gamma_{\mathcal{W}, \mathcal{U}}; \sigma] = \{(\varphi, \psi); \varphi(\overline{\gamma_{\mathcal{W}, \mathcal{U}}(\mathcal{W})}) \subseteq \varepsilon_{\mathcal{V}}\sigma(\mathcal{W}) \text{ for all } \mathcal{W} \in \mathcal{W}\},$ composition is defined as follows:

where $\overline{\varphi}_{\sigma}$ is the unique arrow that makes the square commute.

Conclusions

Assume that all orbigroupoids here are étale, proper, paracompact and locally compact.

- For orbit-compact K, AMap(K, G) is the exponential in the bicategory of orbispaces.
- For orbit-compact \mathcal{K} , **AMap**(\mathcal{K} , \mathcal{G}) is étale and proper.
- The subbicategory on orbit-compact, paracompact, locally compact orbispaces is enriched over the bicategory of proper étale groupoids with generalized maps with the **AMap**(*K*,*G*) as the mapping objects.

Example 1

- If G and H are orbigroupoids with only trivial isotropy groups and X = G₀/G₁ and Y = H₀/H₁ are the underlying spaces, then AMap(G, H) is orbispace equivalent to Map(X, Y), the ordinary mapping space for topological spaces.
- If G and H are finite discrete groups,

$$\mathsf{AMap}(\star_{\mathcal{G}}, \star_{\mathcal{H}}) = \mathsf{GMap}(\star_{\mathcal{G}}, \star_{\mathcal{H}})$$

with space of objects $GrpHom(\mathcal{G}, \mathcal{H})$ with the discrete topology and space of arrows the discrete space with

$$(\boldsymbol{s},t)^{-1}(\varphi,\psi) = \{h \in \mathcal{H}; \psi = h\varphi h^{-1}\}.$$

Example 2: the Triangular Billiard

Let \mathcal{T} be the triangular billiard orbispace and $\mathcal{P}_2 = \star_{\mathbb{Z}/2}$ a point with (trivial) $\mathbb{Z}/2$ action. Then

$$\mathsf{AMap}(\mathcal{P}_2,\mathcal{T})\simeq\mathcal{T}\bigsqcup \mathcal{S}_2$$

where S_2 is a circle S^1 with trivial $\mathbb{Z}/2$ action.

S^1 with a $\mathbb{Z}/2$ -Action

This orbifold is also called the interval with silvered endpoints.

Orbispace Mapping Objects

Example 3: Paths with Silvered Endpoints

Let $I_{2,1,2}$ be the interval with two silvered endpoints and \mathcal{T} the triangular billiard orbispace. The mapping space **AMap**($I_{2,1,2}, \mathcal{T}$) of "silvered paths" has only two connected components: the component of ordinary paths and the component of this path

Thank you for your attention!

