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Introduction

Introduction to causality

Causality arises as a sense or attributed measure of responsibility of an event (a
cause) in the occurrence of another (an effect), or in between the entities that
drive those events (variables).

It reflects our understanding that the natural world, and certain systems,
operate under specific rules that follow a certain order.

There are various degrees at which we can exploit causal inference,
depending on the strength of our model.

For example, the statement “The event of missing the bus this morning is the
cause of me arriving late at work.” underlines several causal notions:

Causal sufficiency: “missing the bus =⇒ arriving late at work”

Causal necessity?: “arriving late at work =⇒ missing the bus”

But arriving late at work cannot “cause” missing the bus, because arriving
late at work can only happen after the event of missing the bus here.
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Introduction

Models of Evolving Systems and Causality

In general, causal relations appear as an attribute of some underlying
universe of events, ordered in the manner in which they can occur, an
evolving system of sort.

We think of an evolving system as a collection of interconnected events (or
actions) that describe how that system changes along the order of time.

Examples: Event structures, Bayesian networks, quantum systems, Markov
chains, structural causal models, register machines, Petri nets, presheaves of
labelled transition systems, presheaves on a directed space, etc.

Causality manifests as various cause-effect relationships on events along
the order of the system, where an effect is a result of or is influenced in an
instrumental manner by the events that cause it. All of the above examples
of evolving systems embody one or several forms of causal relations.

Question: What are these different types of cause-effect relationships, and
which ones are essential to general causal models? How do we classify the
strength of a causal model?
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Introduction

Causality in Probability and Statistics

The most significant parts of the theory of causal inference were developed
within the context of probability and statistics; emphasizing that causation
does not reduce to correlation.

Different schools of thought exist and debate as to what constitutes a
proper foundation for causality (example: are deterministic
mechanisms required at the base of a causal model or not?).

The most common assumptions for an order on variables to represent
a causal order are the Markov Condition, the Minimality
Condition, and the Faithfulness Condition. (P. Spirtes, C.
Glymour, and R. Scheines, 1993).

But we will focus on more recent trends of causal inference research
that follow Pearl’s ladder of causation, in which interventions and
counterfactuals are used as a basis of causal discourse.
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Introduction

Pearl’s Ladder of Causation

Figure: J. Pearl’s ladder of causation (The Book of Why, 2018), Illustrator: M. Hare
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Structural Causal Models

Definition of Structural Causal Models (SCM)

An acyclic structural causal model is a tuple

M = 〈G = 〈X ,A〉, {DX}X∈X , {fV }V∈V〉 where:

G = 〈X ,A〉 is a finite simple acyclic directed graph with set of vertices X
representing variables of M and set of arrows A ⊆ X × X . An arrow
(X ,Y ) in A represents a potential for direct influence of X on Y .

Given X ∈ X , set of parents of X : PAX := {Y ∈ X | (Y ,X ) ∈ A}.
Background variables: U := {U ∈ X | PAU = ∅}.
Endogeneous variables: V := Xr U .

{DX}X∈X is a family of nonempty finite sets indexed by the variables X ,
where DX represents the domain of the variable X . For Y ⊆ X , write
D(Y) :=

∏
Y∈Y DY .

{fV }V∈V is a family of set functions fV :
∏

X∈PAV
DX → DV indexed by the

endogeneous variables V, where fV represents a local rule that determines
the outcome at V solely in terms of input from the parent variables PAV .
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Structural Causal Models

Properties of SCM

In any SCM, for every input u ∈ D(U) on the background variables, there exists a
unique global outcome x ∈ D(X ) s.t. x |U = u and x |V = fV (x |PAV

) for all V ∈ V.
Writing X̃ (u) to denote this unique outcome, we get a global solution map
X̃ : D(U)→ D(X ). For any subset Y ⊆ X , restriction to D(Y) also gives a Y-solution
map Ỹ : D(U)→ D(X ).

If M is additionally equipped with a probability distribution P(u) on its background
variables U , the pair 〈P,M〉 is called probabilistic (structural) causal model. There is a
unique extension of P to all of X by pushing out along the map X̃ : D(U)→ D(X ), i.e.

P(x) =
∑

u∈X̃−1(x)

P(u)
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Structural Causal Models

Example: exposing local structure through interventions

Suppose we see the following process on four {0, 1}-valued variables X ,Y ,Z ,W :

There are several distinct structural causal models that could represent this situation.

For example, we could construct three processes that each consist of three steps, and
that share the same steps except the last one as follows:

Step 1: The background variable X receives a random input;
Step 2: after, Y and Z receive a copy of X ’s value; fY (x) = fZ (x) = x ;
Step 3: after,

Process 1 Process 2 Process 3

f 1W (y , z) = y f 2W (y , z) = z f 3W (y , z) = y · z
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Structural Causal Models

Example: exposing local structure through interventions

All three processes are globally indistiguishable in their solution set, and any distribution
P(u) will yield indistinguishable global joint distributions as well.

→ Local structure is the key to telling these models apart, which can be exposed by
interventions in the middle of the process.

For example, in Process 1 with f 1W (y , z) = y :
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Structural Causal Models

Causal relevance diagrams

Causal relevance diagrams for all three processes:
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Structural Causal Models

Interventions formally

Let M = 〈G = 〈X ,A〉, {DX}X∈X , {fV }V∈V〉 be an SCM.

Given any set of endogeneous variables Y ⊆ V and any realization y ∈ D(Y).
The y-intervention submodel My of M is the structural causal model

My = 〈G = 〈X ,AY〉, {DX}X∈X , {fV }V∈VrY〉

where AY = Ar {(X ,Y ) ∈ A | Y ∈ Y}.

But we also set each V ∈ Y to the constant ∗ 7→ y |V .
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Structural Causal Models

Counterfactuals and causal relevance

Given a set of variables W ⊆ X , the potential response of W to the
Y = y -intervention is represented by the W-solution map W̃Y=y : D(U)→ D(Z)
in the My model.

Given u ∈ D(U), W̃Y=y (u) represents the counterfactual value that W would
have in situation u, if Y had been y .

The original value V2 = 6 is causally relevant to V3 = 72 in situation U1 = 1, 3, 2;

But in situation U1 = 1, 0, 2, V2 = 0 is causally irrelevant to V3 = 0.
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Categorical Models of SCM

Seeking Categorical Models of SCM

Given a structural causal model M = 〈G = 〈X ,A〉, {DX}X∈X , {fV }V∈V〉, we started by
looking for a representation within the category of presheaves [C(G)op,Set] on the freely
generated category of the graph G . This goes as follows:

Treating the vertices X as a discrete category, we get a functor D : X op → Set
(i.e. D(X ) = DX ), and the right Kan extension of D along the inclusion in C(G)op

gives a functor F = Ran(D) : C(G)op → Set.

There is an obvious topology on C(G), where parents of a node form a cover:

SV = ({(X ,V ) | X ∈ PAV }) = tVr {idV }

The presheaf F has at least one amalgamation for each matching family in this
topology. (In fact, Match(tV ,F ) ∼= Match(SV ,F )× DV .)

Yet, each local behavior functions fV :
∏

X∈PAV
DX → DV of the SCM essentially

provide a gluing operation on matching families over SV and establish a map:

(This map is a section of the restriction map the other way around.)
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Categorical Models of SCM

Categorical SCM

This categorical SCM representation 〈F , {f̄V }V∈V〉 of a SCM comes
with a notion of morphism for SCM models (i.e. natural
transformations on F that preserve the f̄V maps), and a notion of
isomorphism as well.

In fact, each SCM gives rise to a categorical SCM in such a way that
distincts SCMs give non-isomorphic categorical SCMs.

This justifies moving our analysis of SCMs to the categorical setting,
where it will be possible to study interventions, counterfactuals and
other relations involved in causal modeling.

Thank you!
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