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Differential programming, probably

This talk references work that is part of a few different collaborations, including with Robin Cockett, 
Geoff Cruttwell, JS Lemay, Ben MacAdam, and Dorette Pronk.
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A Puzzle from Tversky and Kahneman

“Linda is 31 years old, single, outspoken, and very bright. She did her PhD 
in behavioural neuroscience. As a student, she was deeply concerned with 
issues of discrimination and social justice, and also participated in climate 
change demonstrations.”

● Which of the following is more likely?

1) Linda is the lead researcher of a neuroscience research firm.

2) Linda is the lead researcher of a neuroscience research firm 
who, in her free time, actively contributes to anti-
discrimination programs.
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A Puzzle from Tversky and Kahneman

“Linda is 31 years old, single, outspoken, and very bright. She did her PhD 
in behavioural neuroscience. As a student, she was deeply concerned with 
issues of discrimination and social justice, and also participated in climate 
change demonstrations.”

● Which of the following is more likely?

1) Linda is the lead researcher of a neuroscience research firm.

2) Linda is the lead researcher of a neuroscience research firm 
who, in her free time, actively contributes to anti-
discrimination programs.

Linda can’t 
be just a 

researcher!!!
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Causal bias – a case for probabilistic 
reasoning

● Tversky and Kahneman’s work on rational actors – brains (NNs) 
aren’t inherently rational

● Humans rank Causality as more important than Statistics
– E.g. Causal relationships and input-output type relationships

● Explicit probabilistic reasoning improves reliability of conclusions
– Even instinctively or without calculations!
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Causal bias – a case for probabilistic 
reasoning

● Tversky and Kahneman’s work on rational actors – brains (NNs) 
aren’t inherently rational

● Humans rank Causality as more important than Statistics
– E.g. Causal relationships and input-output type relationships

● Explicit probabilistic reasoning improves reliability of conclusions
– Even instinctively!

Aiming to be probably correct is more reliable than aiming to be correct 
(PAC)
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Simpson’s paradox – a case for causal 
reasoning

● Two treatments for kidney stones: Treatment A and Treatment B.
● Treatment A is 78% effective 
● Treatment B is 83% effective 
● The difference is statistically significant
● Which is the better treatment?

https://www.bmj.com/content/292/6524/879
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Simpson’s paradox – a case for causal 
reasoning

● Treatment A is 78% effective 
● Treatment B is 83% effective 
● BUT

https://www.bmj.com/content/292/6524/879

Treatment A Treatment B

Small stones 93% effective 87% effective

Large stones 73% effective 69% effective
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Simpson’s paradox – a case for causal 
reasoning

● The cure to Simpson’s paradox is causality!
● The problem can be formalized in terms of a Bayesian network

– Simpson’s paradox can be tested for algorithmically
● If identified one can form a ‘story’ of what is most important

● Explicit causal reasoning can improve reliability of conclusions
– And makes avoiding Simpson’s paradox solvable

https://ftp.cs.ucla.edu/pub/stat_ser/r414.pdf
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Probabilities in (A)NNs / ML / differential 
programming

● Differential programming is winning:
– Software 2.0: use the derivative everywhere to learn stuff – Tesla’s AI 

director [1]
● Probabilistic programming is also winning!
● Basic algorithms in diff. prog. use probability 

– e.g. Stochastic gradient descent
– e.g. Prob. neural networks are more accurate

● Basic algorithms in probabilistic prog. use the derivative
– e.g. Variational method [2] – universally approximates prob. distributions

[1] https://karpathy.medium.com/software-2-0-a64152b37c35    [2]:https://pyro.ai/

https://karpathy.medium.com/software-2-0-a64152b37c35
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Main goal
● Categorical models for differential programming with higher-order 

functions and recursion (also polymorphism)
– A DiLL pickle

● Extension to probabilistic setting via effect algebras

● Pure locally presentable view of probabilistic  + differential
– Also gives a new way to obtain models of diff. prog. with 

function spaces and recursion
Another day
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A simple differential programming 
language [1]

[1] https://dl.acm.org/doi/10.1145/3371106
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A partial sidebar
● We use restriction categories to encode partiality

● However, we only need partiality to determine the objects of the convex and 
effect module categories
– The morphisms are necessarily total, and hence the categories will be 

ordinary categories

● The required knowledge of restriction categories is thus minimized
– Much like the situation of relative category theory used in [1] 

[1]  Categorical treatment of pre- and post-conditions

https://core.ac.uk/download/pdf/81930488.pdf
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Restriction categories overview

[1] Restriction categories basics  [2] Cartesian restriction categories and restriction limits

https://www.sciencedirect.com/science/article/pii/S0304397500003820
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/abs/restriction-categories-iii-colimits-partial-limits-and-extensivity/DD7DED9C6268C85A27B26D9CCC468922


  15 / 61

Restriction categories of partial maps
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Gradients: The reverse derivative

The are connected to differential restriction categories by the following
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Semantics for Simple DPL

● We do not require all the axioms of a CRDC to model Simple DPL.  In 
fact, we may drop the 2nd, 6th and 7th axioms.  This is called a basic 
CRDC.  We do however require that the category has joins of families 
compatible maps (this includes joins of directed sets).
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Intermediate DPL
● Add higher-order functions!

Note we dropped the R in the derivative.  
Here we use the forward derivative.  

Models of reverse differentiation with 
function spaces are subtle to obtain, and 
there are no known models with 
additionally recursion.
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Semantics of Intermediate DPL

● The main source of models comes from synthetic differential 
geometry at the moment.

● For function spaces of partial maps: note that hom(X,1) is the object 
of ‘open’ subsets of X – and this is not a vector space type of thing.

● To handle these more general types of spaces we move to the 
setting of tangent categories.  Note, also that we didn’t require 
some of the axioms for a differential restriction category.
– This allows us to work in a slight generalization of a tangent 

category known as a cartesian proto-tangent category.
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Proto-tangent categories

● Recall from the talk on Monday i.e. Garner [1] that tangent 
categories are exactly categories with an action by Weil algebras 
where the action preserves connected limits of Weil algebras.

[1] Embedding theorem for tangent categories

Cartesian proto-tangent categories 
correspond to basic cartesian differential 
categories.

https://www.sciencedirect.com/science/article/abs/pii/S0001870817303122
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Formally etale partiality

Formally etale subobjects were introduced in Manifolds in formal differential geometry to build manifolds internally in SDG.

https://link.springer.com/chapter/10.1007/BFb0061832
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Formally etale partiality

Formal etaleness is necessary for 
the partial map category to inherit 
the proto-tangent structure.
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Formally etale partiality
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A model of intermediate DPL
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Models exist!
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Extension to probabilistic setting via effects
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Idea
● Meng [1] defines convex categories abstractly as algebras of a 

certain theory in Sets and Compact Hausdorff spaces

– Then uses the induced probability monad to model stochastic 
programming as an extension of ordinary programming

[1] X. Meng. PhD thesis.  Copy available from Nlab MengThesis 

https://ncatlab.org/nlab/files/Meng.djvu
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Idea

● Lucyshyn-Wright [2] refined the approach of Meng, and showed 
how to define convexity for any ordered commutative ring in a 
cartesian closed category

● Enables interpreting probabilistic extensions more generally  

https://link.springer.com/article/10.1007/s10485-017-9496-9
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Idea

● However, often in practice one needs the expectation monad too.
● This has been developed in a series of papers by Jacobs (e.g. [1,2] 

for an overview)

[1] Probabilities, distribution monads, and convex categories  [2] The expectation monad in quantum foundations

https://www.sciencedirect.com/science/article/pii/S0304397511002817
https://www.sciencedirect.com/science/article/abs/pii/S0890540116000365
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Idea

● However, often in practice one needs the expectation monad too [3].
● This has been developed in a series of papers by Jacobs as the monad 

from the composite adjunctions (e.g. [1,2] for an overview)

[1] Probabilities, distribution monads, and convex categories  [2] The expectation monad in quantum foundations  [3] The Hakaru language

What are these?

https://www.sciencedirect.com/science/article/pii/S0304397511002817
https://www.sciencedirect.com/science/article/abs/pii/S0890540116000365
http://hakaru-dev.github.io/
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Effect modules

● The categories EMod and BEMod are effect modules and Banach effect modules 
respectively.

● These don’t fit the known algebraic story, as effect modules are underlied by 
partial monoids
– Can’t simply take Aff(C) of Lucyshyn-Wright and determine the appropriate 

effect modules.

● However, they do fit a partialized version of a theorem in Lucyshyn-Wright.

[1] Probabilities, distribution monads, and convex categories  [2] The expectation monad in quantum foundations  [3] The Hakaru language

https://www.sciencedirect.com/science/article/pii/S0304397511002817
https://www.sciencedirect.com/science/article/abs/pii/S0890540116000365
http://hakaru-dev.github.io/
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Goal refined

● Redevelop the notion of convexity purely in terms of effect algebras 
and modules in an arbitrary restriction category.

● Restriction categories are abstract categories of partial maps.

● Then we will tweak this development to work with differentiation.
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Partial commutative monoids
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Pre-Effect algebras I



  35 / 61

Pre-Effect algebras I

Not algebraic!
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Pre-Effect algebras I
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Pre-effect algebras II

Encodes the lemma that 
determines uniqueness
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●

● The lattice of closed subsets of a Hilbert space (“quantum effects”) 
with complement and join

●

●

Pre-Effect Algebras 
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● The free commutative monoid on a set M can be described as

● This can also be written as finite formal sums of A

Quick analogy
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Discrete probability distribution monad

● The discrete probability distributions on a set can be described as 

● There is a continuous version too – one takes Radon measures on 
compact Hausdorff spaces
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● The discrete distribution valued in an eff. alg. E is described as

● This implies that the support is summable, or pairwise defined

The prob. dist. monad of an eff. alg.



  42 / 61

Fuzzy predicates and duals of prob. 
monads

● For the discrete probability monad, we have that its algebras are 
convex sets, and hence by freeness [1,2]

● Similarly, for the continuous probability monad, its algebras are 
convex spaces, and again by freeness [1,2]

where convex spaces are compact, convex subspaces of LCTVS with 
affine maps

● The maps into interval are called fuzzy predicates
● Uses the Riesz-Markov theorem

[1] https://link.springer.com/article/10.1007/s11083-016-9404-1    [2] https://www.sciencedirect.com/science/article/pii/S0304397511002817 

https://link.springer.com/article/10.1007/s11083-016-9404-1
https://www.sciencedirect.com/science/article/pii/S0304397511002817
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Fuzzy predicates and duals of prob. 
monads

● For the discrete probability monad, we have that its algebras are 
convex sets, and hence by freeness [1,2]

● Similarly, for the continuous probability monad, its algebras are 
convex spaces, and again by freeness [1,2]

where convex spaces are compact, convex subspaces of LCTVS with 
affine maps

[1] https://link.springer.com/article/10.1007/s11083-016-9404-1    [2] https://www.sciencedirect.com/science/article/pii/S0304397511002817 

Fuzzy 
predicates

https://link.springer.com/article/10.1007/s11083-016-9404-1
https://www.sciencedirect.com/science/article/pii/S0304397511002817
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Effect reflexivity determines distributions

 When D(X) is effect reflexive, 
the probability distributions on 

it can be recovered as the 
‘dual’ of fuzzy predicates.
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Creating the convex category abstractly

In more general situations, 
D might not be recoverable 

from fuzzy predicates...
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The category of effect modules

● A morphism of effect modules is classically taken to be a total 
function of the underlying sets such that certain diagrams 
commute.

● This has a simple characterization from restriction categories.
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RCat
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The category of effect algebras
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Commutative pre-effect monoids

Note, this means that the multiplication is a total operation.
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Effect modules over a commutative effect 
monoid

[1]  Functional distribution monads in functional-analytic contexts

https://www.sciencedirect.com/science/article/abs/pii/S0001870817302682#!
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Pre-effect convex spaces
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Free pre-effect convex space



  53 / 61

Summary so far

● We have shown how to extend Jacobs’ framework for probabilistic 
programming using effect algebras to obtain models in cartesian 
restriction categories.

● In the remainder of the talk, we will show how this technology can 
be applied to SDG, to extend a model of differential programming 
to the probabilistic setting too.
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Recall the well-adapted model of diff. prog.

● In the well-adapted model of differential programming used earlier, 
we assumed a well-adapted model of synthetic differential 
geometry that satisfies the amazing right adjoint property.

● We will now make an additional assumption, that the model 
satisfies the order axiom.
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Order axiom in SDG



  56 / 61

Microlinear intervals

● Kock [1] in [III.11] the following is shown.

● If follows from [2] that 

[1]  Synthetic differential geometry  [2] Manifolds in formal differential geometry

https://users-math.au.dk/kock/sdg99.pdf
https://link.springer.com/chapter/10.1007%2FBFb0061832


  57 / 61

Microlinear Intervals
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Microlinear pre-effect monoid

● The addition the real line can be pulled back to give
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Model of differential probabilistic 
programming
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Future work

● There are straightforward notions of KL pre-effect modules and 
convex spaces.  

● Can the theory of microlinear enriched algebraic theories be 
extended so that we can see KL pre-effect modules and convex 
spaces as also being categories of models?
– This would allow creating a free KL effect affine space, and 

having a microlinear probability monad!
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Future work
● This story seems close to the story of storage and free differential objects in a 

tangent category.

● Note that the distribution and expectation monads have the relationship

This feels like the case of storage.

● KL effect modules have a notion of differentiation that is similar to KL modules.  
Can categories of KL effect modules be axiomatized directly, and tied to the 
distribution monad in a way similar to storage CDCs?
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