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Categorical Foundations of Gradient-Based
Learning



Recap
So farl:

P Para and Lens
P Optimizers, loss functions, models all (parametrised) lenses
P Putting them together, we get this:

A ,AL_A_} 3

Now: make these boxes more transparent...

LCruttwell et al., “Categorical Foundations of Gradient-Based Learning.”



Next up

P Theme: How to Build a Neural Network out of Lenses

P Choosing the model is a creative process

P For an example problem, we'll look at the structure of one
choice of model

Two goals:

P Show how to build a simple neural network out of lenses
P How to replace “classical” picture of neural networks with
string diagrams
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Three Levels of Detail 1: Learning

P The most “zoomed-out” view is the learner
P We look at the model as a kind of black box

B
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Three Levels of Detail 2: Model Architecture

P> The high-level structure of the model as a composition of
“layers”

P Think of layers? as subroutines

P DL literature already starting to look string-diagrammatic3
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2 Ambiguous terminology warning: “Layer” conflates objects and morphisms
3Kaiser et al., “One Model to Learn Them All."



Three Levels of Detail 3: Layer

Finally: what are the pair of maps in our base category that make
up a layer?

b
MatMul
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This Section of the Talk

P> Supervised Learning & Reverse derivatives*

P End-To-End Example of a Neural Network

P Other Layer Examples
P Weight Tying
P Convolutional Layers

P Other settings (Circuits and POLY )

“Cockett et al., “Reverse Derivative Categories.”



Supervised Learning
In supervised learning, we want to learn a map
f:A— B
from a dataset of examples
(a,b) e Ax B

Now, based on our beliefs about the structure of A and B, we
design a parametrised map:

model : P x A — B

and we search for some § € P such that model(#, —) best
represents the data.



Gradient-Based Learning

We want to use a datapoint (a,b) € A x B to improve 6, so we
need a map

77:PxAxB—P
The reverse derivative is almost what we want. For a map
f+A— B,
R[f]: Ax B — A’

(while in an RDC A" = A and B’ = B, it's useful think of the
“primed” objects as representing changes)

So the reverse derivative of our model morphism has the following
type:

R[model] : P x Ax B" — P’ x A’



Updates, “Displacement” and Reverse Derivatives

This is not quite enough: we have two problems:

1. We have a “true” value b € B and a “predicted” value
model(f,a) € B but we need a B’
2. The reverse derivative gives us a P’ and we want a P

This is exactly what the update and loss lenses are for:

update. : P x P' — P
p

ut

loss, . : Bx B— B’ x B’

R[model] : P x Ax B" — P" x A’



Reverse Derivatives, Graphically
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Reverse Derivatives, Graphically
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Reverse Derivatives, Graphically
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Neural Networks 1: Dense Layers

Now let's unpack a dense layer...
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Neural Networks 2: Bias “Layer”
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Neural Networks 3: ‘Linear’ Layer

P Parameters P = R"“ are the coefficients of a matrix
P Input A = R% is an a-dimensional vector
P Forward pass multiplies the matrix by the vector:

get(M,x) — Mx

P> Reverse pass does the “obvious” thing that typechecks: if we
think of the get map as having the type

get : Mat(A, B) x Vec(A) — Vec(B)

Then the codomain of the put map should be
Mat(A, B) x Vec(A):

put(M, z,y) = (y @z, MTy)



Neural Networks 4: Activation Layer
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Neural Networks 5: Dense Layers (again)




Neural Networks 6: Hidden Layer Neural Network

Returning to the “standard” picture of a neural network:
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Update & Loss

Now let's substitute all parts into the full picture




Full Picture (Again)
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Code

P Code implementing these ideas can be found here:
https://github.com /statusfailed /numeric-optics-python/

P Includes this hidden layer neural network model

P Also includes a convolutional model for the MNIST dataset
(more on this shortly...)


https://github.com/statusfailed/numeric-optics-python/

More

P Other Layer Examples
P Weight Tying
P Convolutional Layers

P Other settings (Circuits and POLY, )



“Weight Tying"




Image Processing

P Example problem: image processing, e.g. digit recognition
P Convolution layer: features with spatial locality



Convolutional Layers
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Other Settings: POLY

> POLY, is an RDC

P We can still think of morphisms as functions
P Gradient-based learning still works®

P> Strange possibilities for layers: the LUT

5Wilson and Zanasi, “Reverse Derivative Ascent.”
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