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Categorical Foundations of Gradient-Based
Learning



Recap
So far1:▶ Para and Lens▶ Optimizers, loss functions, models all (parametrised) lenses▶ Putting them together, we get this:

Now: make these boxes more transparent…
1Cruttwell et al., “Categorical Foundations of Gradient-Based Learning.”



Next up

▶ Theme: How to Build a Neural Network out of Lenses▶ Choosing the model is a creative process▶ For an example problem, we’ll look at the structure of one
choice of model

Two goals:▶ Show how to build a simple neural network out of lenses▶ How to replace “classical” picture of neural networks with
string diagrams



To String Diagrams



Three Levels of Detail 1: Learning

▶ The most “zoomed-out” view is the learner▶ We look at the model as a kind of black box



Three Levels of Detail 2: Model Architecture

▶ The high-level structure of the model as a composition of
“layers”▶ Think of layers2 as subroutines▶ DL literature already starting to look string-diagrammatic3

2Ambiguous terminology warning: “Layer” conflates objects and morphisms
3Kaiser et al., “One Model to Learn Them All.”



Three Levels of Detail 3: Layer

Finally: what are the pair of maps in our base category that make
up a layer?



This Section of the Talk

▶ Supervised Learning & Reverse derivatives4▶ End-To-End Example of a Neural Network▶ Other Layer Examples▶ Weight Tying▶ Convolutional Layers▶ Other settings (Circuits and POLYZ2)

4Cockett et al., “Reverse Derivative Categories.”



Supervised Learning
In supervised learning, we want to learn a map𝑓 ∶ 𝐴 → 𝐵
from a dataset of examples(𝑎, 𝑏) ∈ 𝐴 × 𝐵
Now, based on our beliefs about the structure of 𝐴 and 𝐵, we
design a parametrised map:

model ∶ 𝑃 × 𝐴 → 𝐵
and we search for some 𝜃 ∈ 𝑃 such that model(𝜃,−) best
represents the data.



Gradient-Based Learning
We want to use a datapoint (𝑎, 𝑏) ∈ 𝐴 × 𝐵 to improve 𝜃, so we
need a map ??? ∶ 𝑃 × 𝐴 ×𝐵 → 𝑃
The reverse derivative is almost what we want. For a map𝑓 ∶ 𝐴 → 𝐵, 𝑅[𝑓] ∶ 𝐴 × 𝐵′ → 𝐴′
(while in an RDC 𝐴′ = 𝐴 and 𝐵′ = 𝐵, it’s useful think of the
“primed” objects as representing changes)

So the reverse derivative of our model morphism has the following
type: 𝑅[model] ∶ 𝑃 × 𝐴 ×𝐵′ → 𝑃 ′ ×𝐴′



Updates, “Displacement” and Reverse Derivatives

This is not quite enough: we have two problems:

1. We have a “true” value 𝑏 ∈ 𝐵 and a “predicted” value
model(𝜃, 𝑎) ∈ 𝐵 but we need a 𝐵′

2. The reverse derivative gives us a 𝑃 ′ and we want a 𝑃
This is exactly what the update and loss lenses are for:

updateput ∶ 𝑃 × 𝑃 ′ → 𝑃
lossput ∶ 𝐵 × 𝐵 → 𝐵′ ×𝐵′

𝑅[model] ∶ 𝑃 × 𝐴 ×𝐵′ → 𝑃 ′ ×𝐴′



Reverse Derivatives, Graphically



Reverse Derivatives, Graphically



Reverse Derivatives, Graphically



Neural Networks 1: Dense Layers

Now let’s unpack a dense layer…



Neural Networks 2: Bias “Layer”



Neural Networks 3: ‘Linear’ Layer▶ Parameters 𝑃 = ℝ𝑏⋅𝑎 are the coefficients of a matrix▶ Input 𝐴 = ℝ𝑎 is an 𝑎-dimensional vector▶ Forward pass multiplies the matrix by the vector:

get(𝑀, 𝑥) ↦ 𝑀𝑥▶ Reverse pass does the “obvious” thing that typechecks: if we
think of the get map as having the type

get ∶ Mat(𝐴,𝐵) × Vec(𝐴) → Vec(𝐵)
Then the codomain of the put map should be
Mat(𝐴,𝐵) × Vec(𝐴):

put(𝑀, 𝑥, 𝑦) ↦ ⟨𝑦 ⊗ 𝑥,𝑀𝑇𝑦⟩



Neural Networks 4: Activation Layer



Neural Networks 5: Dense Layers (again)



Neural Networks 6: Hidden Layer Neural Network

Returning to the “standard” picture of a neural network:

Expanding out “dense”:



Update & Loss

Now let’s substitute all parts into the full picture



Full Picture (Again)



Code

▶ Code implementing these ideas can be found here:
https://github.com/statusfailed/numeric-optics-python/▶ Includes this hidden layer neural network model▶ Also includes a convolutional model for the MNIST dataset
(more on this shortly…)

https://github.com/statusfailed/numeric-optics-python/


More

▶ Other Layer Examples▶ Weight Tying▶ Convolutional Layers▶ Other settings (Circuits and POLYZ2)



“Weight Tying”



Image Processing

▶ Example problem: image processing, e.g. digit recognition▶ Convolution layer: features with spatial locality



Convolutional Layers



Other Settings: POLYZ2

▶ POLYZ2 is an RDC▶ We can still think of morphisms as functions▶ Gradient-based learning still works5▶ Strange possibilities for layers: the LUT

5Wilson and Zanasi, “Reverse Derivative Ascent.”
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