CATEGORICAL FOUNDATIONS
OF GRADIENT-BASED
LEARNNG
(CRUTTTELL,GAVRANOVI, GHANI, WLLSON, ZANASI)

60AL:
PROVIDE A CATEGORICAL FRAMEWORK

FOR DEEP LEARNNG

SUPERVISED LEARNING WITH NEURAL NETWORKS
IN ONE SLIDE:

DATASET : List $\quad x \times y$

 GRADIENT DESCENT . OPTIME"
-NN IS COMPUTATION PARAMETERZZD By WEGGHTS -BACKPROPAGATION OF CHANGES

- PARAMETER UPDATE - .OPTIMIZERS"

THIS SIMPLE STORy PERMEATES DEEP LEARNNG!

PLAN FOR TODAY?
take a biro's eye view of neural networks Q

- trace out the information flow above
- Precisely write down all the high-Evel notions IN ISOLATION:
- DIFFERENTIATION
-REVERSE DERIVATIVE CATS.
- BIDIRECTIONALITY - OPTICSLLENSES
-PARAMETERIZATION - PARA
and study then Interaction.

PARAMETERIZE OPTICS AS A COMMON STRUCTURE BEHIND

- NEURAL NETWORKS
- LOSS functions
- OPTIMIZERS
-PAUL: CONCRETE EXAMPLES OF NEURAL NETWORKS

DIFFERENTIATION

- CARTESIAN (FORWARD) DIFFERENTIAL CATEGORIES (Blate et.al.)
- CARTESIAN REVERSE DIFFERENTIAL CATEGORIES (KROC) (locket et al.)
DEFINITION.
A CRDC e is a Cartesian left-additine category which for every map

$$
\forall: A \longrightarrow B
$$

has a REVERSE DIFFERENTIAL COMBINATOR

$$
R[民]: A \times B \longrightarrow A \quad\left(\begin{array}{l}
\binom{\text { compar }}{D[P]} A \times B \rightarrow B
\end{array}\right)
$$

sulpipt to 7 axioms.
EXAMPLE. Smooth is a CRDC. Polys, IS A ROC

Then $R[P]: R^{2} \times \mathbb{R} \longrightarrow \mathbb{R}^{2}$
$(x, y), w \longmapsto(2 x w, 3 x w)$
PLAN: STUDY CRDC'S THROUGH OPTICS/LENSES

OPTICS/LENSES
DEFINITION. Let $e_{\text {be a SMC. Category Optic }(e) \text { : }}^{\text {: }}$ - Orects - pains of objects $\binom{x}{x}$ in l

$$
\begin{aligned}
\cdot \operatorname{Optic}(e)\left(\begin{array}{ll}
x & y \\
x^{\prime}, y^{\prime}
\end{array}\right)= & = \\
(M, f, b) \quad & \ell\left(x, y_{\theta} M\right) \times e\left(y_{0} \oplus M, x^{\prime}\right) \\
& f: x \rightarrow y \oplus M \\
& b: y^{\prime} \oplus M \longrightarrow x^{\prime}
\end{aligned}
$$

PROP. If l is Cartesian,

$$
\begin{aligned}
& \int^{n \cdot e} e\left(x, M_{x} y\right) x e\left(\mu_{x} y^{\prime}, x^{\prime}\right) \\
& \text { ie } \cong U N I V \text {. PROPERTY OF PROD. }
\end{aligned}
$$

$$
\begin{aligned}
& \cong \text { YONEDA REDUCTION } \\
& \int \ell(x, y) \times \ell\left(x_{x}, y, x^{\prime}\right) \\
& \text { then Optic }(e) \cong \operatorname{Len}(e)
\end{aligned}
$$

OPTICS CAN BE COMPOSED

PROPOSITION. Ohiciele) is ssmmetici momidel.

EXAMPLE.
GRADIENT DESCENT

is a lems, for $l:=S_{\text {smooth }}$

$$
\binom{p}{p} \xrightarrow{\left(d_{n}, u\right)}\binom{p}{p^{\prime}}
$$

EXAMPLE. STATEFUL OPTMMZERS

- MOMENTUM,

$$
\begin{aligned}
& \text { get: }: P_{x} p \longrightarrow p \\
& (v, p) \longmapsto p
\end{aligned}
$$

$$
\binom{S_{x} P}{S_{x} p} \longrightarrow\binom{p}{P}
$$

put: $P_{x} P_{x} p \longrightarrow P_{x} P$
$(v, p, \nabla \rho) \longmapsto\left(v^{\prime}, \rho-v^{\prime}\right)$
where $v^{\prime}=\gamma v+\varepsilon \rho^{\prime}$

- nesterov momentum
get: $P_{x} P \longrightarrow P$
$(v, p) \longmapsto p-T v^{\sigma}$
put -same as above
- ADAGRAD
- ADAM

BACK TO CRDCs:

$$
\begin{aligned}
& A: A \longrightarrow B \\
& R[A]: A \times B \longrightarrow A
\end{aligned} \sim \text {, get MAP OF A LENS }
$$

PROPOSITION.
For each CRDC e there is a symmetric monidal functor

-THIS IS OUR FRAMEWORK FOR BACKPROPAGATION

PARAMETERIZATION

Fix a $S M C \quad(e, \otimes, I)$.
DEF. Bicategory Porca (e)

$$
\begin{aligned}
& \text { Ofjects-ojects of } e \\
& \text { Pana }(C)(A, B)=\int_{r e}^{o b(P Q A, B)} A \xrightarrow{(P, P)}
\end{aligned}
$$

2 -alls are reparamenterisations: a 2 -cell

is a man $Q \xrightarrow{r} P$ such that

EXAMPLE.

$($ Set $, x, 1)$	SETS AND
Para $($ Set $)$	PARAMETERIZED FUNCTIONS

$\left(S_{\text {moot }}, x, 1\right)$	EUCLIDEAN SPACES AND
Para $\left(S_{\text {moot }}\right)$	PARAMETERIZED
	SMOOTH
FUNCTIONS	

$\begin{array}{ll}\left(O_{\text {phi }}(e), \otimes, 1\right) & \text { PAIRS OF OBJECTS AND } \\ \text { Para }\left(O_{\text {the }}(e)\right) & \text { PARAMETERIZED OPTICS }\end{array}$

GRAPHICAL LANGUAGE

TExTUAL	STANDARD	ID
wOTTON	STRING DIAGRAM	STRING DIAGRAM

$$
f: P \otimes A \longrightarrow B
$$

HOW DOES COMPOSITION WORK?

RECAP

Para IS NATURAL WITH RESPECT TO BASE CHANGE.

DEFINITION.
Let $G: e \longrightarrow D$ be a syman monodal functor. We define

where f^{\prime} is the composite

$$
\begin{equation*}
G(P) \otimes G(A) \tag{B}
\end{equation*}
$$

+MORE.
Para IS RICH IN Categorical structure.

- Cokleisli category of a graded comonod
- Double category
- Actegorical Para

PARAMETERIZED OPTICS

- Objects - object of Outre (e)-pains $\binom{x}{x}$ in e
$\left.\cdot \operatorname{Mormlimss}\binom{x}{x^{\prime}} \xrightarrow{(p), f}\right)\binom{y}{y^{\prime}}$ where $f:\left(\begin{array}{l}p_{0 x} x\end{array}\right) \longrightarrow\binom{y}{y^{\prime}}$
(M, f, b)

-WE CAN COMPOSE PARAMETERIZED OPTICS

- We automatically get two parameter ports
(a_{a}, e)
- A 2-cell $\binom{x}{S} \underbrace{\|_{0}^{2}}_{(w, g)}\binom{y}{R}$ is an optic $\binom{z}{w} \xrightarrow{r}\binom{p}{Q}$
THEOREM.
GRADIENT DESCENT IS A 2-cell IN Para (Optic (e)). (Since it is a lems)

THEOREM.
APPLYING Pans TO THE CRDC FUNCTOR

$$
e \xrightarrow{F} O O_{p} t_{i}(e)
$$

RESULTS in a FUNCTOR

$$
P_{\text {ara }}(e) \xrightarrow{P_{\text {ana }}(F)} P_{\text {ara }}\left(O_{\text {otic }}(e)\right)
$$

-FUNCTORIALITY IS IMPORTANT!
EXAMPLE. A NEURAL NETWORK + A LOSS FUNCTION

\downarrow COMPOSE

WE CAN PUT THE PIECES TOGETHER.
SUPERVISED LEARNING

Categorical Foundations of Gradient-Based Learning

Recap

So $f a^{1}$:

- Para and Lens
- Optimizers, loss functions, models all (parametrised) lenses
$>$ Putting them together, we get this:

Now: make these boxes more transparent...

[^0]
Next up

Theme: How to Build a Neural Network out of Lenses
\rightarrow Choosing the model is a creative process

- For an example problem, we'll look at the structure of one choice of model

Two goals:
Show how to build a simple neural network out of lenses

- How to replace "classical" picture of neural networks with string diagrams

To String Diagrams

Three Levels of Detail 1: Learning

Three Levels of Detail 2: Model Architecture

- The high-level structure of the model as a composition of "layers"
- Think of layers ${ }^{2}$ as subroutines
$>$ DL literature already starting to look string-diagrammatic ${ }^{3}$

Decoder Encoded Encoded

[^1]
Three Levels of Detail 3: Layer

Finally: what are the pair of maps in our base category that make up a layer?

This Section of the Talk

- Supervised Learning \& Reverse derivatives ${ }^{4}$
- End-To-End Example of a Neural Network
- Other Layer Examples
- Weight Tying
- Convolutional Layers
$>$ Other settings (Circuits and $\mathrm{POLY}_{\mathrm{Z}_{2}}$)

[^2]
Supervised Learning

In supervised learning, we want to learn a map

$$
f: A \rightarrow B
$$

from a dataset of examples

$$
(a, b) \in A \times B
$$

Now, based on our beliefs about the structure of A and B, we design a parametrised map:

$$
\text { model : } P \times A \rightarrow B
$$

and we search for some $\theta \in P$ such that $\operatorname{model}(\theta,-)$ best represents the data.

Gradient-Based Learning

We want to use a datapoint $(a, b) \in A \times B$ to improve θ, so we need a map

$$
\text { ???: } P \times A \times B \rightarrow P
$$

The reverse derivative is almost what we want. For a map $f: A \rightarrow B$,

$$
R[f]: A \times B^{\prime} \rightarrow A^{\prime}
$$

(while in an RDC $A^{\prime}=A$ and $B^{\prime}=B$, it's useful think of the "primed" objects as representing changes)

So the reverse derivative of our model morphism has the following type:

$$
R[\text { model }]: P \times A \times B^{\prime} \rightarrow P^{\prime} \times A^{\prime}
$$

Updates, "Displacement" and Reverse Derivatives

This is not quite enough: we have two problems:

1. We have a "true" value $b \in B$ and a "predicted" value $\operatorname{model}(\theta, a) \in B$ but we need a B^{\prime}
2. The reverse derivative gives us a P^{\prime} and we want a P

This is exactly what the update and loss lenses are for:

$$
\begin{gathered}
\text { update }_{\text {put }}: P \times P^{\prime} \rightarrow P \\
\text { loss }_{\text {put }}: B \times B \rightarrow B^{\prime} \times B^{\prime}
\end{gathered}
$$

$$
R[\text { model }]: P \times A \times B^{\prime} \rightarrow P^{\prime} \times A^{\prime}
$$

Reverse Derivatives, Graphically

Cartesian structure
Copy discard

$x \mapsto\langle x, x\rangle$

LEFT-AOOITIVE StruCTURE
add
zero

-
$x_{1} x_{2} \mapsto\left\langle x_{1}+x_{2}\right\rangle \quad \because \mapsto\langle 0\rangle$

Addition \& zero maps

Reverse Derivatives, Graphically

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \Longrightarrow \quad A \times B^{\prime} \xrightarrow{R[f]} A^{\prime} \\
& \left.R\left[\mathcal{R}_{A}^{A}\right]={ }_{A}^{A} \longrightarrow-A \quad \longrightarrow \quad \longrightarrow \quad \begin{array}{l}
A \\
A \\
A^{A}
\end{array}\right]=A \\
& R\left[\begin{array}{ll}
A & I
\end{array}\right]=\longrightarrow \cdots \\
& R[0]=\longrightarrow \\
& \text { No input, so } \\
& \begin{array}{l}
\text { no CHANGE in } \\
\text { input }
\end{array}
\end{aligned}
$$

Reverse Derivatives, Graphically

$$
\begin{aligned}
& A \xrightarrow{f} B \quad \Longrightarrow \quad A \times B^{\prime} \xrightarrow{R[f]} A^{\prime} \\
& R\left[A\left[f[g]={ }^{A}\right] R[f]=A^{\prime}\right. \\
& R\left[\begin{array}{lll}
A_{1} & G & B_{1} \\
A_{2} & g & B_{2}
\end{array}\right] \\
& A^{\prime}
\end{aligned}
$$

Neural Networks 1: Dense Layers

Now let's unpack a dense layer...

Neural Networks 2: Bias "Layer"

Neural Networks 3: ‘Linear’ Layer

Parameters $P=\mathbb{R}^{b \cdot a}$ are the coefficients of a matrix
\Rightarrow Input $A=\mathbb{R}^{a}$ is an a-dimensional vector
F Forward pass multiplies the matrix by the vector:

$$
\operatorname{get}(M, x) \mapsto M x
$$

- Reverse pass does the "obvious" thing that typechecks: if we think of the get map as having the type

$$
\text { get : } \operatorname{Mat}(A, B) \times \operatorname{Vec}(A) \rightarrow \operatorname{Vec}(B)
$$

Then the codomain of the put map should be $\operatorname{Mat}(A, B) \times \operatorname{Vec}(A)$:

$$
\operatorname{put}(M, x, y) \mapsto\left\langle y \otimes x, M^{T} y\right\rangle
$$

Neural Networks 4: Activation Layer

Neural Networks 5: Dense Layers (again)

Neural Networks 6: Hidden Layer Neural Network

Returning to the "standard" picture of a neural network:

Expanding out "dense":

Update \& Loss

Now let's substitute all parts into the full picture

Full Picture (Again)

Code

- Code implementing these ideas can be found here: https://github.com/statusfailed/numeric-optics-python/ Includes this hidden layer neural network model Also includes a convolutional model for the MNIST dataset (more on this shortly...)

More

- Other Layer Examples
- Weight Tying
- Convolutional Layers
- Other settings (Circuits and $\mathrm{POLY}_{\mathrm{Z}_{2}}$)

"Weight Tying"

Image Processing

Example problem: image processing, e.g. digit recognition

- Convolution layer: features with spatial locality

Convolutional Layers

Other Settings: $\mathrm{POLY}_{\mathrm{Z}_{2}}$

$\rightarrow \mathrm{POLY}_{\mathrm{Z}_{2}}$ is an RDC

- We can still think of morphisms as functions

Gradient-based learning still works ${ }^{5}$

- Strange possibilities for layers: the LUT

References

Cockett, Robin, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon Plotkin, and Dorette Pronk. "Reverse Derivative Categories," 2019. http://arxiv.org/abs/1910.07065.

Cruttwell, G. S. H., Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. "Categorical Foundations of Gradient-Based Learning," 2021. http://arxiv.org/abs/2103.01931.

Kaiser, Lukasz, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and Jakob Uszkoreit. "One Model to Learn Them All," 2017. http://arxiv.org/abs/1706.05137.

Wilson, Paul, and Fabio Zanasi. "Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits." Electronic Proceedings in Theoretical Computer Science 333 (February 2021): 247-60. https://doi.org/10.4204/eptcs.333.17.

[^0]: ${ }^{1}$ Cruttwell et al., "Categorical Foundations of Gradient-Based Learning."

[^1]: ${ }^{2}$ Ambiguous terminology warning: "Layer" conflates objects and morphisms
 ${ }^{3}$ Kaiser et al., "One Model to Learn Them All."

[^2]: ${ }^{4}$ Cockett et al., "Reverse Derivative Categories."

