

Divided power algebras with derivations

Sacha Ikonicoff

PIMS/CNRS postdoctoral associate, Univeristy of Calgary

June 18th, 2021

(Classical) Divided power algebras

Let A be a commutative associative algebra over \mathbb{F} of characteristic 0. The family of operations $\gamma_n : x \in A \to \frac{x^n}{n!}$ satisfy, for $x, y \in A$, $\lambda \in \mathbb{F}$:

1) Symmetry : Commutativity of the multiplication
2) Monomiality :
$$\gamma_k(\lambda x) = \lambda^k \gamma_k(x)$$
.
3) Homogeneity : $\gamma_0(x) = 1$
4) Reduction Repetition : $\gamma_k(x)\gamma_h(x) = \binom{k+h}{k}\gamma_{k+h}(x)$,
5) Leibniz Rule : $\gamma_k(x+y) = \sum_{i+j=k} \gamma_i(x)\gamma_j(y)$,
6) Unitality : $\gamma_1(x) = x$,
7a) Composition 1 : $\gamma_k(xy) = k!\gamma_k(x)\gamma_k(y) = x^k\gamma_k(y) = \gamma_k(x)y^k$,
7b) Composition 2 : $\gamma_k(\gamma_h(x)) = \frac{(kh)!}{k!(h!)^k}\gamma_{kh}(x)$

Definition : A divided power algebra over any field is a commutative associative algebra with operations γ_n satisfying 1) to 6). (Modulo some way to handle the unit)

The free divided power algebra over a vector space V is the algebra of symmetric tensors :

$$\Gamma(V) = \bigoplus_n \left(V^{\otimes n} \right)^{\mathfrak{S}_n},$$

with shuffle product.

Explicitly, if $V = \langle x_1, \ldots, x_n \rangle$,

• As a vector space, $\Gamma(V) = \langle x_1^{[k_1]} \dots x_n^{[k_n]}, k_1, \dots, k_n \in \mathbb{N} \rangle.$

• The product is given by : $x_i^{[k]}x_i^{[h]} = \binom{k+h}{k}x_i^{k+h}$ and $x_i^{[k]}x_j^{[h]} = x_j^{[h]}x_i^{[k]}$, and extended by bilinearity. • The divided powers are given by : $\gamma_k(x^{[h]}) = \frac{(kh)!}{k!(h!)^k}x^{[k+h]}$ and extended by Monomiality, Homogneity, Leibniz Rule, Unitality and Composition rule.

We think of $x^{[n]}$ as $\frac{x^n}{n!}$.

Let A be a commutative associative algebra over \mathbb{F} . We can form the ring of formal divided power series over A :

$$HA=\prod_nA\otimes (\langle x\rangle^{\otimes n})^{\mathfrak{S}_n},$$

Whose elements are sequences $\sum_{n} a_n x^{[n]}$, with $(a_n)_n \in A^{\mathbb{N}}$. This has an assoc. comm. product inherited from A and $\Gamma(\langle x \rangle)$.

In char. 0, classical derivation of polynomials yields : $\partial \left(\frac{x^n}{n!}\right) = n \frac{x^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!}$ So, we set $\partial (a_0, a_1, a_2, ...) = (a_1, a_2, ...)$. We also have 'integration' : $i_0(a_0, a_1, a_2, ...) = i_0(0, a_0, a_1, ...)$. Proposition (Keigher–Pritchard, '00) : The operations γ_n , inductively defined by $\gamma_0(f) = (1_A, 0, ...)$ and $\gamma_{n+1}(f) = i_0(\gamma_n(f)\partial(f))$, endow HA with a structure of divided power algebra.

Question : How should I define a derivation on a divided power algebra ? If d(ab) = d(a)b + ad(b), what is $d(\gamma_n(a))$?

On HA, one has the "Power Rule" :

$$\partial(\gamma_n(f)) = \gamma_{n-1}(f)\partial(f).$$

 $\mathscr C$ is a symmetric monoidal category with countable coproducts. Here, $\mathscr C=\mathbb F_{vect}.$

Symmetric sequence in \mathscr{C} : $\mathscr{M} = \{\mathfrak{S}_n \curvearrowright \mathscr{M}(n)\}_{n \in \mathbb{N}}$, $\mathscr{M}(n) \in ob(\mathscr{C})$.

$$\mathscr{M} \underset{\Sigma}{\otimes} \mathscr{N} : (\mathscr{M} \underset{\Sigma}{\otimes} \mathscr{N})(n) = \bigoplus_{i+j=n} \operatorname{Ind}_{\mathfrak{S}_i \times \mathfrak{S}_j}^{\mathfrak{S}_n} \mathscr{M}(i) \otimes \mathscr{N}(j).$$

$$\mathscr{M} \circ \mathscr{N} : (\mathscr{M} \circ \mathscr{N})(n) = \bigoplus_{k \in \mathbb{N}} \mathscr{M}(k) \otimes_{\mathfrak{S}_k} \mathscr{N}^{\bigotimes k}_{\Sigma}(n)$$

An operad is a monoid in the category (Symmetric sequences, \circ , I).

Operads

+ compatibility relations.

A B M A B M

Free algebra functor

 $S(\mathscr{P},-)$: "free \mathscr{P} -algebra" functor.

$$S(\mathscr{P},V) = \mathscr{P} \circ V = \bigoplus_{n \geq 0} \mathscr{P}(n) \otimes_{\mathfrak{S}_n} V^{\otimes n}.$$

 $S(\mathscr{P},-):\mathbb{F}_{\mathsf{vect}}\to\mathbb{F}_{\mathsf{vect}}\text{ is a monad }\rightsquigarrow\mathscr{P}_{\mathsf{alg}}:(A\in\mathbb{F}_{\mathsf{vect}},ev)\text{,}$

$$ev: \quad S(\mathscr{P}, A) \longrightarrow A$$
$$(\lambda; a_1, \dots, a_n) \mapsto \lambda(a_1, \dots, a_n) + \text{compatibilities.}$$
$$a_1 \dots \dots a_n$$
$$\lambda$$

A is a left module over the monoid \mathcal{P} .

∃ 900

Define :

$$(\mathscr{M} \widetilde{\circ} \mathscr{N})(n) = \bigoplus_{k \in \mathbb{N}} \left(\mathscr{M}(k) \otimes \mathscr{N}^{\otimes_{\mathfrak{S}} k}(n) \right)^{\mathfrak{S}_{k}},$$

 $\Gamma(\mathscr{P}, -)$: "free divided power \mathscr{P} -algebra" functor,

$$\Gamma(\mathscr{P},V) = \mathscr{P} \tilde{\circ} V = \bigoplus_{n \geq 0} \left(\mathscr{P}(n) \otimes V^{\otimes n} \right)^{\mathfrak{S}_k}$$

 $\Gamma(\mathscr{P}, -) : \mathbb{F}_{\text{vect}} \to \mathbb{F}_{\text{vect}} \text{ is a monad } \rightsquigarrow \text{ "divided } \mathscr{P}\text{-alg."} = \Gamma(\mathscr{P})_{\text{alg.}}.$ Motivating example : $\Gamma(\text{Com}, V) = \Gamma(V)$.

Theorem (I.)

A $\Gamma(\mathscr{P})$ -algebra is a vector space A equipped with operations $\beta_{x,\underline{r}}: A^{\times p} \to A$, linear in x, satisfying relations of the type : Symmetry, Homogeneity, Monomiality, Reduction/Repetition, Leibniz Rule, Unitality, Composition.

In other words, $\Gamma(\mathscr{P})$ -algebras are indeed vector spaces with monomial operations (and relations).

Distributive laws, Divided powers, Derivations

Definition : For \mathscr{P}, \mathscr{Q} two operads, a distributive law is a map $\lambda : \mathscr{Q} \circ \mathscr{P} \to \mathscr{P} \circ \mathscr{Q}$ that endows $\mathscr{P} \circ \mathscr{Q}$ with an operad structure.

Proposition (I.)

If \mathscr{P}, \mathscr{Q} are two operads with a distributive law $\Lambda : \mathscr{Q} \circ \mathscr{P} \to \mathscr{P} \circ \mathscr{Q}$, then $\Gamma(\mathscr{P} \circ \mathscr{Q})$ can be obtained from $\Gamma(\mathscr{P}, -) \circ \Gamma(\mathscr{Q}, -)$ by a distributive law

$$\tilde{\Lambda}: \Gamma(\mathcal{Q},-) \circ \Gamma(\mathscr{P},-) \to \Gamma(\mathscr{P},-) \circ \Gamma(\mathcal{Q},-).$$

The expression of $\tilde{\Lambda}$ from that of Λ can be a bit tricky.

Let $\mathsf{D} = \mathbb{F}[d]$ in arity 1. For all \mathscr{P} , $\mu \in \mathscr{P}(m)$,

$$(d;\mu)\mapsto \sum_{\underline{q}\in \mathsf{Comp}_m(j)} \binom{j}{q_1,\ldots,q_m}(\mu;d^{q_1},\ldots,d^{q_m})$$

The algebras over $\mathscr{P} \circ D$ are \mathscr{P} -algebra with derivations, ex, $Der_{Com} = Com \circ D$.

Theorem (I.)

A divided power $\text{Com} \circ \text{D}$ -algebra (with the preceding distributive law) is a divided power algebra A endowed with a linear map $d : A \rightarrow A$ satisfying :

- a) d is a derivation (d(ab) = d(a)b + ad(b)),
- b) $d(\gamma_n(a)) = d(a)\gamma_{n-1}(a)$.

For any $f \in HA$ and $n \in \mathbb{N}$, we define $f^{[n]} \in HA$, called the *n*th *divided power of f*, inductively by $f^{[0]} = 1_{HA}$, and if $n \ge 1$, $f^{[n]} = i_0(f^{[n-1]}\partial_A(f))$. It is immediate from the definition that the following "power rule" holds, i.e., for any $n \ge 1$, $\partial_A(f^{[n]}) = f^{[n-1]}\partial_A(f)$.

Keigher Pritchard, Hurwitz Series (1998)

同 ト イヨ ト イヨ ト 二 ヨ

Thank you for your attention, and thanks to the organisers for a wonderful conference.