# The World of Differential Categories: A Tutorial on Cartesian Differential Categories 

JS Pacaud Lemay<br>Montreal Canadiens Fan

Tutorial Talk for BIRS2021
Thanks Kristine, Geoff, and Robin for organizing the conference and the invitation.

## The Differential Category World: The Four Tomes

| Differential |
| :---: |
| Categories |
| Blute, Cockett, Seely - 2006 |

Cartesian Differential Categories
Blute, Cockett, Seely - 2009

Tangent
Categories
Rosicky - 1984
Cockett, Cruttwell - 2014


## The Differential Category World: It's all connected!



## Today's Story: Cartesian Differential Categories

Cartesian Differential Categories:

- Formalize differentiation in multivariable calculus of Euclidean spaces.
- Provide the categorical semantics of the differential $\lambda$-calculus.
$\square$ T. Ehrhard, L. Regnier The differential $\lambda$-calculus. (2003)

Main Reference:

R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories

## Cartesian Differential Categories - Definition

A Cartesian differential category is:
(2) A Cartesian left additive category;
(e) With a differential combinator.

## Cartesian Differential Categories - Definition

A Cartesian differential category is:
(2) A Cartesian left additive category;
(e) With a differential combinator.

## Cartesian Left Additive Category - Definition

A left additive category is a category $\mathbb{X}$ which is skew-enriched over commutative monoids:
$\square$ Campbell, A., 2018. Skew-enriched categories.
Explicitly, every homset is a commutative monoid, so we can add maps and have zero maps:

$$
+: \mathbb{X}(A, B) \times \mathbb{X}(A, B) \rightarrow \mathbb{X}(A, B) \quad 0 \in \mathbb{X}(A, B)
$$

such that composition preserves the addition in the following sense:

$$
(f+g) \circ x=f \circ x+g \circ x \quad 0 \circ x=0
$$

A map $f$ is additive if $f \circ(x+y)=f \circ x+f \circ y$ and $f \circ 0=0$.
A Cartesian left additive category (CLAC) is a left additive category with finite products such that the projection maps $\pi_{0}: A \times B \rightarrow A$ and $\pi_{1}: A \times B \rightarrow B$ are additive.

## Cartesian Left Additive Categories - Examples

## Example

- Every category with finite biproducts is a CLAC where every map is additive. For example, $\mathrm{VEC}_{k}$ the category of $k$-vector spaces and $k$-linear maps is a CLAC.
- $\mathrm{VEC}_{k}^{\omega}$ the category of $k$-vector spaces and arbitrary set functions is a CLAC, where the sum of set functions is defined point-wise $(f+g)(x)=f(x)+g(x)$.
- Let Poly ${ }_{k}$ be the Lawvere theory of polynomials, that is, the category whose objects are $n \in \mathbb{N}$ and where a map $P: n \rightarrow m$ is a tuple of polynomials:

$$
P=\left\langle p_{1}(\vec{x}), \ldots, p_{m}(\vec{x})\right\rangle \quad p_{i}(\vec{x}) \in R\left[x_{1}, \ldots, x_{n}\right]
$$

Then Poly ${ }_{k}$ is a CLAC (where $n \times m=n+m$ ).

- Let SMOOTH be the category of smooth real functions, that is, the category whose objects are the Euclidean vector spaces $\mathbb{R}^{n}$ and whose maps are smooth function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, which is actually an m-tuple of smooth functions:

$$
F=\left\langle f_{1}, \ldots, f_{m}\right\rangle \quad f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Then SMOOTH is a CLAC. Note that Poly $\mathbb{R}_{\mathbb{R}}$ is a sub-CLAC of SMOOTH.

## Cartesian Differential Categories - Definition

A Cartesian differential category is:
(2) A Cartesian left additive category;
(1) With a differential combinator.

## Differential Combinator - Definition

A differential combinator on a Cartesian left additive category $\mathbb{X}$ is a combinator D , which is a family of functions $\mathbb{X}(A, B) \rightarrow \mathbb{X}(A \times A, B)$, which written as an inference rule:

$$
\frac{f: A \rightarrow B}{\mathrm{D}[f]: A \times A \rightarrow B}
$$

Before giving the axioms, let's look at some examples!

## Differential Combinator - Main Example

## Example

SMOOTH is a Cartesian differential category where the differential combinator is defined as the directional derivative of a smooth function. A smooth function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is in fact a tuple:

$$
F=\left\langle f_{1}, \ldots, f_{m}\right\rangle
$$

of smooth functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then the Jacobian matrix of $F$ at vector $\vec{x} \in \mathbb{R}^{n}$ is the matrix $J(F)(\vec{x})$ of size $m \times n$ whose coordinates are the partial derivatives of the $f_{i}$ :

$$
\mathbf{J}(F)(\vec{x}):=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\vec{x}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\vec{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\vec{x}) & \ldots & \frac{\partial f_{2}}{\partial x_{n}}(\vec{x}) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{x}) & \frac{\partial f_{m}}{\partial x_{2}}(\vec{x}) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{x})
\end{array}\right]
$$

So for a smooth function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, its derivative $D[F]: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is then defined as:

$$
\mathrm{D}[F](\vec{x}, \vec{y}):=\mathbf{J}(F)(\vec{x}) \cdot \vec{y}=\left\langle\sum_{i=1}^{n} \frac{\partial f_{1}}{\partial x_{i}}(\vec{x}) y_{i}, \ldots, \sum_{i=1}^{n} \frac{\partial f_{m}}{\partial x_{i}}(\vec{x}) y_{i}\right\rangle
$$

where - is matrix multiplication and $\vec{y}$ is seen as a $n \times 1$ matrix. For example, Let $f\left(x_{1}, x_{2}\right)=x_{1}^{3} x_{2}$.

$$
\mathrm{D}[f]\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=3 x_{1}^{2} x_{2} y_{1}+x_{1}^{3} y_{2}
$$

## Cartesian Differential Categories - Other Main Examples

## Example

Any category with finite biproduct $\oplus$ is a CDC, where for a map $f: A \rightarrow B$ :

$$
\mathrm{D}[f]:=A \oplus A \longrightarrow A \xrightarrow{\pi_{1}} B
$$

For example, $\mathrm{VEC}_{k}$ is a CDC where $\mathrm{D}[f](x, y)=f(y)$.

## Example

$\mathrm{POLY}_{k}$ is a CDC where for a map $P: n \rightarrow m$ with $P=\left\langle p_{1}(\vec{x}), \ldots, p_{m}(\vec{x})\right\rangle, \mathrm{D}[P]: n \times n \rightarrow m$ is:

$$
\mathrm{D}[P]:=\left\langle\sum_{i=1}^{n} \frac{\partial p_{1}(\vec{x})}{\partial x_{i}} y_{i}, \ldots, \sum_{i=1}^{n} \frac{\partial p_{m}(\vec{x})}{\partial x_{i}} y_{i}\right\rangle
$$

where $\sum_{i=1}^{n} \frac{\partial p_{i}(\vec{x})}{\partial x_{i}} y_{i} \in R\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$. Note that $\operatorname{POLY}_{\mathbb{R}}$ is a sub-CDC of SMOOTH.

## Differential Combinator - Definition

A differential combinator on a Cartesian left additive category $\mathbb{X}$ is a combinator D , which is a family of functions $\mathbb{X}(A, B) \rightarrow \mathbb{X}(A \times A, B)$, which written as an inference rule:

$$
\frac{f: A \rightarrow B}{\mathrm{D}[f]: A \times A \rightarrow B}
$$

To help us with the axioms, we will use the following notation/proto-term logic:

$$
\mathrm{D}[f](a, b):=\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b
$$

## Example

The notation comes from SMOOTH: $\mathrm{D}[F](\vec{x}, \vec{y}):=\mathbf{J}(F)(\vec{x}) \cdot \vec{y}$.

## Remark

There is a sound and complete term logic for Cartesian differential categories. In short: anything we can prove using the term logic, holds in any Cartesian differential category. So doing proofs in the term logic is super useful!

- Additivity of Combinator:

$$
\begin{array}{cl}
\mathrm{D}[f+g]=\mathrm{D}[f]+\mathrm{D}[g] & \mathrm{D}[0]=0 \\
\frac{\mathrm{~d} f(x)+g(x)}{\mathrm{d} x}(a) \cdot b=\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b+\frac{\mathrm{d} g(x)}{\mathrm{d} x}(a) \cdot b & \frac{\mathrm{~d} 0}{\mathrm{~d} x}(a) \cdot b=0
\end{array}
$$

- Additivity in Second Argument

$$
\begin{array}{rlrl}
\mathrm{D}[f] \circ\langle a, b+c\rangle & =\mathrm{D}[f] \circ\langle a, b\rangle+\mathrm{D}[f] \circ\langle a, c\rangle & \mathrm{D}[f] \circ\langle x, 0\rangle=0 \\
\frac{\mathrm{~d} f(x)}{\mathrm{d} x}(a) \cdot(b+c)=\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b+\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot c & \frac{\mathrm{~d} f(x)}{\mathrm{d} x}(a) \cdot 0=0
\end{array}
$$

## CD. 3 - Identities + Projections \& CD. 4 - Pairings

- Identities + Projections

$$
\begin{array}{rl}
\mathrm{D}[1]=\pi_{1} & \mathrm{D}\left[\pi_{i}\right]=\pi_{i} \circ \pi_{1} \\
\frac{\mathrm{~d} x}{\mathrm{~d} x}(a) \cdot b=b & \frac{\mathrm{~d} x_{i}}{\mathrm{~d}\left(x_{0}, x_{1}\right)}\left(a_{0}, a_{1}\right) \cdot\left(b_{0}, b_{1}\right)=b_{i}
\end{array}
$$

- Pairings

$$
\begin{aligned}
\mathrm{D}[\langle f, g\rangle] & =\langle\mathrm{D}[f], \mathrm{D}[g]\rangle \\
\frac{\mathrm{d}\langle f(x), g(x)\rangle}{\mathrm{d} x}(a) \cdot b & =\left\langle\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b, \frac{\mathrm{~d} g(x)}{\mathrm{d} x}(a) \cdot b\right\rangle
\end{aligned}
$$

## Example

In SMOOTH, if $F=\left\langle f_{1}, \ldots, f_{n}\right\rangle$, then $\mathrm{D}[F](\vec{x}, \vec{y}):=\left\langle\mathrm{D}\left[f_{1}\right](\vec{x}, \vec{y}), \ldots, \mathrm{D}\left[f_{n}\right](\vec{x}, \vec{y})\right\rangle$.

## CD. 5 - Chain Rule

Chain Rule:

$$
\begin{gathered}
\mathrm{D}[g \circ f]=\mathrm{D}[g] \circ\left\langle f \circ \pi_{0}, \mathrm{D}[f]\right\rangle \\
\frac{\mathrm{dg}(f(x))}{\mathrm{d} x}(a) \cdot b=\frac{\mathrm{d} g(x)}{\mathrm{d} x}(f(a)) \cdot\left(\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b\right)
\end{gathered}
$$

## CD. 6 - Linearity in Second Argument \& CD. 7 - Symmetry

$$
\frac{\frac{f: A \rightarrow B}{\mathrm{D}[f]: A \times A \rightarrow B}}{\mathrm{D}[\mathrm{D}[f]]:(A \times A) \times(A \times A) \rightarrow B}
$$

- Linearity in Second Argument

$$
\begin{array}{r}
\mathrm{D}[\mathrm{D}[f]] \circ\langle a, 0,0, b\rangle=\mathrm{D}[f] \circ\langle a, b\rangle \\
\frac{\mathrm{d} \frac{\mathrm{~d} f(x)}{\mathrm{d} x}(y) \cdot z}{\mathrm{~d}(y, z)}(a, 0) \cdot(0, b)=\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b
\end{array}
$$

- Symmetry

$$
\begin{gathered}
\mathrm{D}[\mathrm{D}[f]] \circ\langle\langle a, b\rangle,\langle c, d\rangle\rangle=\mathrm{D}[\mathrm{D}[f]] \circ\langle\langle a, c\rangle,\langle b, d\rangle\rangle \\
\frac{\mathrm{d} \frac{\mathrm{~d} f(x)}{\mathrm{d} x}(y) \cdot z}{\mathrm{~d}(y, z)}(a, b) \cdot(c, d)=\frac{\mathrm{d} \frac{\mathrm{~d} f(x)}{\mathrm{d} x}(y) \cdot z}{\mathrm{~d}(y, z)}(a, c) \cdot(b, d)
\end{gathered}
$$

More on these axioms soon!

## Cartesian Differential Categories - Definition

## A Cartesian differential category is:

(4) A Cartesian left additive category;
(1) With a differential combinator.

$$
\frac{f: A \rightarrow B}{\mathrm{D}[f]: A \times A \rightarrow B}
$$

Before we give some more examples: let's see what we can do within a CDC!

## Partial Derivatives I

Suppose we have a map $f: A \times B \rightarrow C$ and we only want to differentiate with respect to $A$.
We can zero out in $\mathrm{D}[f]:(A \times B) \times(A \times B) \rightarrow C$ to obtain a partial derivative!

Define the partial derivative $\mathrm{D}_{0}[f]:(A \times B) \times A \rightarrow C$ as follows:

$$
\begin{aligned}
\mathrm{D}_{0}[f] & :=(A \times B) \times A \xrightarrow{\left(1_{A} \times 1_{B}\right) \times\left\langle 1_{A}, 0\right\rangle}(A \times B) \times(A \times B) \xrightarrow{\mathrm{D}[f]} \\
\mathrm{D}_{0}[f](a, b, c) & :=\frac{\mathrm{d} f(x, b)}{\mathrm{d} x}(a) \cdot c:=\frac{\mathrm{d} f(x, y)}{\mathrm{d}(x, y)}(a, b) \cdot(c, 0)
\end{aligned}
$$

Similarly, define the partial derivative $\mathrm{D}_{1}[f]:(A \times B) \times B \rightarrow C$ as follows:

$$
\begin{aligned}
\mathrm{D}_{1}[f] & :=(A \times B) \times B \xrightarrow{\left(1_{A} \times 1_{B}\right) \times\left\langle 0,1_{B}\right\rangle}(A \times B) \times(A \times B) \xrightarrow{\mathrm{D}[f]} \longrightarrow C \\
\mathrm{D}_{1}[f](a, b, d) & :=\frac{\mathrm{d} f(a, y)}{\mathrm{d} y}(b) \cdot d:=\frac{\mathrm{d} f(x, y)}{\mathrm{d}(x, y)}(a, b) \cdot(0, d)
\end{aligned}
$$

You can also do this with maps $f: A_{0} \times \ldots \times A_{n} \rightarrow B$.

## Partial Derivatives II

A consequence of symmetry rule, CD.7, is that for $f: A \times B \rightarrow C$, doing the partial derivative with respect to $A$ then $B$ is the same as doing the partial derivative with respect to $B$ then $A$.

$$
\frac{\mathrm{d} \frac{\mathrm{~d} f(x, y)}{\mathrm{d} y}(b) \cdot d}{\mathrm{~d} x}(a) \cdot c=\frac{\mathrm{d} \frac{\mathrm{~d} f(x, y)}{\mathrm{d} x}(a) \cdot c}{\mathrm{~d} y}(b) \cdot d
$$

Additivity in the second argument, CD.2, tells us that for $f: A \times B \rightarrow C, \mathrm{D}[f]$ is the sum of the partial derivatives!

$$
\begin{aligned}
\frac{\mathrm{d} f(x, y)}{\mathrm{d}(x, y)}(a, b) \cdot(c, d) & =\frac{\mathrm{d} f(x, y)}{\mathrm{d}(x, y)}(a, b) \cdot((c, 0)+(0, d)) \\
& =\frac{\mathrm{d} f(x, y)}{\mathrm{d}(x, y)}(a, b) \cdot(c, 0)+\frac{\mathrm{d} f(x, y)}{\mathrm{d}(x, y)}(a, b) \cdot(0, d) \\
& =\frac{\mathrm{d} f(x, b)}{\mathrm{d} x}(a) \cdot c+\frac{\mathrm{d} f(a, y)}{\mathrm{d} y}(b) \cdot d
\end{aligned}
$$

## Example

For a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathrm{D}[f]$ is the sum of its partial derivatives:

$$
\mathrm{D}[f]: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \mathrm{D}[f](\vec{v}, \vec{w}):=\mathbf{J}(f)(\vec{v}) \cdot \vec{w}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{v}) w_{i}
$$

## Linear Maps I

In a Cartesian differential category, there is a natural notion of linear maps. A map $f: A \rightarrow B$ is said to be linear if:

$$
\mathrm{D}[f]:=A \times A \longrightarrow A \longrightarrow B
$$

$$
\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot b=f(b)
$$

## Example

- In a category with finite biproducts, every map is linear (by definition!).
- In $\mathrm{POLY}_{k}, P=\left\langle p_{1}, \ldots, p_{m}\right\rangle$ is linear if each $p_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial of degree 1 , that is, a sum of the form $p_{i}=\sum_{j=1}^{n} a_{j} x_{j}$.
- In SMOOTH $\mathbb{R}$, a smooth function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear in the Cartesian differential sense precisely when it is $\mathbb{R}$-linear in the classical sense:

$$
F(s \vec{x}+t \vec{y})=s F(\vec{x})+t F(\vec{y})
$$

for all $s, t \in \mathbb{R}$ and $\vec{x}, \vec{y} \in \mathbb{R}^{n}$.

- Linear $\Rightarrow$ Additive, but not necessarily the converse!
(But in the above examples: Additive $\Rightarrow$ Linear)
- Identity maps and projection maps are linear by CD. 3


## Linear Maps II

A map $f: A \times B \rightarrow C$ can also be linear in its second argument if it is linear with respect to its partial derivative:

$$
\mathrm{D}_{1}[f]:=(A \times B) \times B \xrightarrow{\pi_{0} \times 1} C A \times B \xrightarrow{ } C
$$

$$
\frac{\mathrm{d} f(a, y)}{\mathrm{d} y}(b) \cdot c=f(a, c)
$$

The linearity in the second argument rule, CD.6, says that for any $f: A \rightarrow B, \mathrm{D}[f]$ is linear in its second argument:

$$
\frac{\mathrm{d} \frac{\mathrm{~d} f(x)}{\mathrm{d} x}(a) \cdot y}{\mathrm{~d} y}(b) \cdot c=\frac{\mathrm{d} f(x)}{\mathrm{d} x}(a) \cdot c
$$

## Example

For a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathrm{D}[f]$ is linear in its second argument:

$$
\mathrm{D}[f]: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \mathrm{D}[f](\vec{v}, \vec{w}):=\mathbf{J}(f)(\vec{v}) \cdot \vec{w}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{v}) w_{i}
$$

## Cartesian Differential Categories - Other Examples

## Example

Every model of the differential $\lambda$-calculus induces a Cartesian differential category. Conversly, every Cartesian differential category which is Cartesian closed such that the evaluation maps are linear in their second argument gives rises to a model of the differential $\lambda$-calculus.

Manzonetto, G., 2012. What is a Categorical Model of the Differential and the Resource $\lambda$-Calculi?.

## Example

Bauer, Johnson, Osborne, Riehl, and Tebbe (BJORT) constructed an Abelian functor calculus model of a Cartesian differential category.
$\square$ Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., 2018. Directional derivatives and higher order chain rules for abelian functor calculus.

## Example

There is a couniversal construction of Cartesian differential categories, known as the Faa di Bruno construction, that is, for every Cartesian left additive category $\mathbb{X}$ there is a cofree Cartesian differential category over $\mathbb{X}$.

Cockett, J.R.B. and Seely, R.A.G., 2011. The Faa di bruno construction.

## Cartesian Differential Categories - Other Applications

## Example

Study and solve differential equations, and also study exponential functions, trigonometric functions, hyperbolic functions, etc.

Cockett, R., Cruttwel, G., Lemay, J-S. P., Differential equations in a tangent category I: Complete vector fields, flows, and exponentials.

Cockett, R., Lemay, J-S.P., Exponential Functions for Cartesian Differential Categories.

## Example

There is a notion of integration for Cartesian differential categories.
$\square$ Lemay, J-S.P., Cartesian Integral Categories and Contextual Integral Categories.

## Example

Machine learning algorithms and differentiable programming languages via reverse differentiation.
Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., \& Pronk, D. (2020). Reverse derivative categories.

Wilson, P., \& Zanasi, F. Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits.

Cruttwell, G., Gallagher, J., \& Pronk, D. Categorical semantics of a simple differential programming language.
Cruttwell, G., Gavranovic, B., Ghani, N., Wilson, P., \& Zanasi, F. Categorical Foundations of Gradient-Based Learning.

## The Differential Category World: It's all connected!



## Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.
A smooth map $A \rightarrow B$ is a coKleisli map, that is, a map $!A \rightarrow B$.

## Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.
A smooth map $A \rightarrow B$ is a coKleisli map, that is, a map $!A \rightarrow B$.

## Example

Let's consider the example where $!\left(\mathbb{R}^{n}\right):=\operatorname{Sym}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

$$
p: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p \text { is a polynomial function }
$$

## Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.
A smooth map $A \rightarrow B$ is a coKleisli map, that is, a map $!A \rightarrow B$.

## Example

Let's consider the example where $!\left(\mathbb{R}^{n}\right):=\operatorname{Sym}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\xlongequal[p: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p \text { is a polynomial function }]{p \in \operatorname{Sym}\left(\mathbb{R}^{n}\right)}
$$

## Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.
A smooth map $A \rightarrow B$ is a coKleisli map, that is, a map $!A \rightarrow B$.

## Example

Let's consider the example where $!\left(\mathbb{R}^{n}\right):=\operatorname{Sym}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\begin{array}{cl}
\underline{p: \mathbb{R}^{n} \rightarrow \mathbb{R}} & p \text { is a polynomial function } \\
\hline \hline \hat{p}: \mathbb{R} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{n}\right) & \text { linear map in } \operatorname{VEC}_{\mathbb{R}} \text { where } \hat{p}(1)=p
\end{array}
$$

## Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.
A smooth map $A \rightarrow B$ is a coKleisli map, that is, a map $!A \rightarrow B$.

## Example

Let's consider the example where $!\left(\mathbb{R}^{n}\right):=\operatorname{Sym}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

$\underline{\underline{p: \mathbb{R}^{n} \rightarrow \mathbb{R}}}$| $p$ is a polynomial function |  |  |  |
| :---: | :---: | :---: | :---: |
| $\overline{\hat{p}: \mathbb{R} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{n}\right)}$ |  |  |  |
| $\left(\mathbb{R}^{n}\right)$ |  |  | linear map in $\mathrm{VEC}_{\mathbb{R}}$ where $\hat{p}(1)=p$ |
| $\operatorname{Sym}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R} \quad$ map in $\mathrm{VEC}_{\mathbb{R}}^{o p}$ |  |  |  |

## Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.
A smooth map $A \rightarrow B$ is a coKleisli map, that is, a map $!A \rightarrow B$.

## Example

Let's consider the example where $!\left(\mathbb{R}^{n}\right):=\operatorname{Sym}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\begin{aligned}
& p: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p \text { is a polynomial function } \\
& p \in \operatorname{Sym}\left(\mathbb{R}^{n}\right) \\
& \begin{aligned}
\overline{\hat{p}: \mathbb{R} \rightarrow} \operatorname{Sym}\left(\mathbb{R}^{n}\right) \quad \text { linear map in } \mathrm{VEC}_{\mathbb{R}} \text { where } \hat{p}(1)=p \\
\xlongequal{\underline{\operatorname{Sym}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R} \quad \operatorname{map} \text { in } \mathrm{VEC}_{\mathbb{R}}^{o p}}}
\end{aligned}
\end{aligned}
$$

## The coKleisli Category of a Differential Category I

Consider a differential category $\mathbb{X}$ with a coalgebra modality !:

$!A \longrightarrow!A \otimes!A$

and deriving transformation:

$$
!A \otimes A \longrightarrow!A
$$

and finite products $\times$ (which are actually biproducts by the additive structure of $\mathbb{X}$ ).

Let $\mathbb{X}_{!}$be the coKleisli category and we are going to use interpretation brackets $\llbracket-\rrbracket$.

$$
\begin{gathered}
\frac{f: A \rightarrow B \text { in } \mathbb{X}!}{\llbracket f \rrbracket:!A \rightarrow B} \\
\llbracket 1 \rrbracket=!A \xrightarrow{\bullet} A \\
\llbracket g \circ f \rrbracket=!A \xrightarrow{\delta} C!!A \xrightarrow{!(\llbracket f \rrbracket)}!B \xrightarrow{\llbracket g \rrbracket} C
\end{gathered}
$$

So how do we make $\mathbb{X}$ ! into a Cartesian differential category?

## The coKleisli Category of a Differential Category II

For the product structure:

- On objects, $A \times B$
- Projections:

$$
\llbracket \pi_{i} \rrbracket:=!\left(A_{0} \times A_{1}\right) \longrightarrow A_{0} \times A_{1} \longrightarrow \pi_{i} A_{i}
$$

For a comonad on a category with finite products, the coKleisli category has finite products.
For the additive structure:

- The sum of maps: $\llbracket f+g \rrbracket:=\llbracket f \rrbracket+\llbracket g \rrbracket$
- Zero maps: 【0】 := 0

For a comonad on an additive category, the coKleisli category is ONLY a left additive category, because coKleisli composition does not preserve the additive structure. However, every coKleisli map of the form $f \circ \varepsilon$ is additive.

For a comonad on an additive category with finite products, the coKleisli category is a Cartesian left additive category.

## The coKleisli Category of a Differential Category III

Recall that last time we defined the differential of $\llbracket f \rrbracket:!A \rightarrow B$ as:


But this is not a coKleisli map!
The differential combinator $\llbracket \mathrm{D}[f] \rrbracket:!(A \times A) \rightarrow B$ is defined as follows:

$$
!(A \times A) \xrightarrow{\Delta}!(A \times A) \otimes!(A \times A) \xrightarrow{!\left(\pi_{0}\right) \otimes!\left(\pi_{1}\right)}!A \otimes!A \xrightarrow{1 \otimes \varepsilon}!A \otimes A \xrightarrow{\mathrm{~d}}!A \xrightarrow{\llbracket f \rrbracket} B
$$

## Theorem

For a differential category with finite products, its coKleisli category is a Cartesian differential category.

Every coKleisli map of the form $f \circ \varepsilon$ is linear! (This is an if and only if when $!0 \cong I$ )

## Example

Consider the differential category $\mathrm{VEC}_{k}^{o p}$ with $!(V)=\operatorname{Sym}(V)$ from last time. Then $\mathrm{POLY}_{k}$ is a sub-CDC of the coKleisli category $\left(\mathrm{VEC}_{k}^{o p}\right)_{\text {Sym }}$. More explicit examples are described in:

Bucciarelli, A. and Ehrhard, T. and Manzonetto, G. Categorical models for simply typed resource calculi. which include the relational model and the finiteness space model

## The other direction: Cartesian differential storage categories

$\square$ Blute, R., Cockett, J.R.B. and Seely, R.A., 2015. Cartesian differential storage categories.
"... it was not obvious how to pass from Cartesian differential categories back to monoidal differential categories. This paper provides natural conditions under which the linear maps of a Cartesian differential category form a monoidal differential category. ... The purpose of this paper is to make precise the connection between the two types of differential categories. "

Main idea: While not every Cartesian differential category is the coKleisli category of a differential category, Cartesian differential storage categories are precisely the coKleisli categories of differential categories.

## Theorem

A differential category with finite products and the Seely isomorphisms $(!(A \times B) \cong!A \otimes!B$ and $!0 \cong I$ ), it's coKleisli category is a Cartesian differential storage category. Conversely, for a Cartesian differential storage category, its category of linear maps form a differential category with finite products and the Seely isomorphisms.

## The other direction: Embedding

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

## Theorem

Every Cartesian differential category embeds into the coKleisli category of a differential category.

## The Differential Category World: It's all connected!



## A quick word on Differential Restriction Categories

A restriction category is a category equipped with a restriction operator

$$
\frac{f: A \rightarrow B}{\bar{f}: A \rightarrow A}
$$

where you should think of $\bar{f}$ as capturing the domain of definition of $f$. Restriction categories allow us to work with partially defined functions.


Lack, S., and Cockett, R. Restriction Categories (I - III).

A differential restriction category is NAIVELY a Cartesian differential category with a restriction operator such that the differential operator and restriction operator are compatible.

Cockett, R., Cruttwell, G., and Gallagher, J. Differential Restriction Categories.

## Example

- The category of smooth functions defined on open subsets is a differential restriction category.
- Any Cartesian differential category is a differential restriction category where $\bar{f}=1$, so every map is total.
- Conversly, the subcategory of maps such that $\bar{f}=1$ in a differential restriction category is a Cartesian differential category.


## The Differential Category World: It's all connected!




