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The Differential Category World: It’s all connected!
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Today’s Story: Cartesian Differential Categories

Cartesian Differential Categories:

Formalize differentiation in multivariable calculus of Euclidean spaces.

Provide the categorical semantics of the differential λ-calculus.

T. Ehrhard, L. Regnier The differential λ-calculus. (2003)

Main Reference:

R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories



Cartesian Differential Categories - Definition

A Cartesian differential category is:

(i) A Cartesian left additive category;

(ii) With a differential combinator.
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Cartesian Left Additive Category - Definition

A left additive category is a category X which is skew-enriched over commutative monoids:

Campbell, A., 2018. Skew-enriched categories.

Explicitly, every homset is a commutative monoid, so we can add maps and have zero maps:

+ : X(A,B)× X(A,B)→ X(A,B) 0 ∈ X(A,B)

such that composition preserves the addition in the following sense:

(f + g) ◦ x = f ◦ x + g ◦ x 0 ◦ x = 0

A map f is additive if f ◦ (x + y) = f ◦ x + f ◦ y and f ◦ 0 = 0.

A Cartesian left additive category (CLAC) is a left additive category with finite products such
that the projection maps π0 : A× B → A and π1 : A× B → B are additive.



Cartesian Left Additive Categories - Examples

Example

Every category with finite biproducts is a CLAC where every map is additive. For example,
VECk the category of k-vector spaces and k-linear maps is a CLAC.

VECωk the category of k-vector spaces and arbitrary set functions is a CLAC, where the sum
of set functions is defined point-wise (f + g)(x) = f (x) + g(x).

Let Polyk be the Lawvere theory of polynomials, that is, the category whose objects are
n ∈ N and where a map P : n→ m is a tuple of polynomials:

P = 〈p1(~x), . . . , pm(~x)〉 pi (~x) ∈ R[x1, . . . , xn]

Then Polyk is a CLAC (where n ×m = n + m).

Let SMOOTH be the category of smooth real functions, that is, the category whose objects
are the Euclidean vector spaces Rn and whose maps are smooth function F : Rn → Rm,
which is actually an m-tuple of smooth functions:

F = 〈f1, . . . , fm〉 fi : Rn → R

Then SMOOTH is a CLAC. Note that PolyR is a sub-CLAC of SMOOTH.



Cartesian Differential Categories - Definition

A Cartesian differential category is:

(i) A Cartesian left additive category;

(ii) With a differential combinator.



Differential Combinator - Definition

A differential combinator on a Cartesian left additive category X is a combinator D, which is a
family of functions X(A,B)→ X(A× A,B), which written as an inference rule:

f : A→ B

D[f ] : A× A→ B

Before giving the axioms, let’s look at some examples!



Differential Combinator - Main Example

Example

SMOOTH is a Cartesian differential category where the differential combinator is defined as the
directional derivative of a smooth function. A smooth function F : Rn → Rm is in fact a tuple:

F = 〈f1, . . . , fm〉

of smooth functions fi : Rn → R. Then the Jacobian matrix of F at vector ~x ∈ Rn is the matrix
J(F )(~x) of size m × n whose coordinates are the partial derivatives of the fi :

J(F )(~x) :=


∂f1
∂x1

(~x) ∂f1
∂x2

(~x) . . . ∂f1
∂xn

(~x)
∂f2
∂x1

(~x) ∂f2
∂x2

(~x) . . . ∂f2
∂xn

(~x)

...
...

...
...

∂fm
∂x1

(~x) ∂fm
∂x2

(~x) . . . ∂fm
∂xn

(~x)


So for a smooth function F : Rn → Rm, its derivative D[F ] : Rn × Rn → Rm is then defined as:

D[F ](~x , ~y) := J(F )(~x) · ~y =

〈
n∑

i=1

∂f1

∂xi
(~x)yi , . . . ,

n∑
i=1

∂fm

∂xi
(~x)yi

〉

where · is matrix multiplication and ~y is seen as a n×1 matrix. For example, Let f (x1, x2) = x3
1 x2.

D[f ] ((x1, x2), (y1, y2)) = 3x2
1 x2y1 + x3

1 y2



Cartesian Differential Categories - Other Main Examples

Example

Any category with finite biproduct ⊕ is a CDC, where for a map f : A→ B:

D[f ] := A⊕ A
π1 // A f // B

For example, VECk is a CDC where D[f ](x , y) = f (y).

Example

POLYk is a CDC where for a map P : n→ m with P = 〈p1(~x), . . . , pm(~x)〉, D[P] : n × n→ m is:

D[P] :=

〈
n∑

i=1

∂p1(~x)

∂xi
yi , . . . ,

n∑
i=1

∂pm(~x)

∂xi
yi

〉

where
n∑

i=1

∂pi (~x)
∂xi

yi ∈ R[x1, . . . , xn, y1, . . . , yn]. Note that POLYR is a sub-CDC of SMOOTH.



Differential Combinator - Definition

A differential combinator on a Cartesian left additive category X is a combinator D, which is a
family of functions X(A,B)→ X(A× A,B), which written as an inference rule:

f : A→ B

D[f ] : A× A→ B

To help us with the axioms, we will use the following notation/proto-term logic:

D[f ](a, b) :=
df (x)

dx
(a) · b

Example

The notation comes from SMOOTH: D[F ](~x , ~y) := J(F )(~x) · ~y .

Remark

There is a sound and complete term logic for Cartesian differential categories. In short: anything
we can prove using the term logic, holds in any Cartesian differential category. So doing proofs in
the term logic is super useful!



CD.1 - Additivity of Combinator & CD.2 - Additivity in Second Argument

Additivity of Combinator:

D[f + g ] = D[f ] + D[g ] D[0] = 0

df (x) + g(x)

dx
(a) · b =

df (x)

dx
(a) · b +

dg(x)

dx
(a) · b

d0

dx
(a) · b = 0

Additivity in Second Argument

D[f ] ◦ 〈a, b + c〉 = D[f ] ◦ 〈a, b〉+ D[f ] ◦ 〈a, c〉 D[f ] ◦ 〈x , 0〉 = 0

df (x)

dx
(a) · (b + c) =

df (x)

dx
(a) · b +

df (x)

dx
(a) · c

df (x)

dx
(a) · 0 = 0



CD.3 - Identities + Projections & CD.4 - Pairings

Identities + Projections

D[1] = π1 D[πi ] = πi ◦ π1

dx

dx
(a) · b = b

dxi

d(x0, x1)
(a0, a1) · (b0, b1) = bi

Pairings

D[〈f , g〉] = 〈D[f ],D[g ]〉

d〈f (x), g(x)〉
dx

(a) · b =

〈
df (x)

dx
(a) · b,

dg(x)

dx
(a) · b

〉

Example

In SMOOTH, if F = 〈f1, . . . , fn〉, then D[F ](~x , ~y) := 〈D[f1](~x , ~y), . . . ,D[fn](~x , ~y)〉.



CD.5 - Chain Rule

Chain Rule:

D[g ◦ f ] = D[g ] ◦ 〈f ◦ π0,D[f ]〉

dg(f (x))

dx
(a) · b =

dg(x)

dx
(f (a)) ·

(
df (x)

dx
(a) · b

)



CD.6 - Linearity in Second Argument & CD.7 - Symmetry

f : A→ B

D[f ] : A× A→ B

D [D[f ]] : (A× A)× (A× A)→ B

Linearity in Second Argument

D [D[f ]] ◦ 〈a, 0, 0, b〉 = D[f ] ◦ 〈a, b〉

d df (x)
dx

(y) · z
d(y , z)

(a, 0) · (0, b) =
df (x)

dx
(a) · b

Symmetry

D [D[f ]] ◦ 〈〈a, b〉, 〈c, d〉〉 = D [D[f ]] ◦ 〈〈a, c〉, 〈b, d〉〉

d df (x)
dx

(y) · z
d(y , z)

(a, b) · (c, d) =
d df (x)

dx
(y) · z

d(y , z)
(a, c) · (b, d)

More on these axioms soon!



Cartesian Differential Categories - Definition

A Cartesian differential category is:

(i) A Cartesian left additive category;

(ii) With a differential combinator.
f : A→ B

D[f ] : A× A→ B

Before we give some more examples: let’s see what we can do within a CDC!



Partial Derivatives I

Suppose we have a map f : A× B → C and we only want to differentiate with respect to A.

We can zero out in D[f ] : (A× B)× (A× B)→ C to obtain a partial derivative!

Define the partial derivative D0[f ] : (A× B)× A→ C as follows:

D0[f ] := (A× B)× A
(1A×1B )×〈1A,0〉 // (A× B)× (A× B)

D[f ] // C

D0[f ](a, b, c) :=
df (x , b)

dx
(a) · c :=

df (x , y)

d(x , y)
(a, b) · (c, 0)

Similarly, define the partial derivative D1[f ] : (A× B)× B → C as follows:

D1[f ] := (A× B)× B
(1A×1B )×〈0,1B〉 // (A× B)× (A× B)

D[f ] // C

D1[f ](a, b, d) :=
df (a, y)

dy
(b) · d :=

df (x , y)

d(x , y)
(a, b) · (0, d)

You can also do this with maps f : A0 × . . .× An → B.



Partial Derivatives II

A consequence of symmetry rule, CD.7, is that for f : A× B → C , doing the partial derivative
with respect to A then B is the same as doing the partial derivative with respect to B then A.

d df (x,y)
dy

(b) · d
dx

(a) · c =
d df (x,y)

dx
(a) · c

dy
(b) · d

Additivity in the second argument, CD.2, tells us that for f : A× B → C , D[f ] is the sum of the
partial derivatives!

df (x , y)

d(x , y)
(a, b) · (c, d) =

df (x , y)

d(x , y)
(a, b) · ((c, 0) + (0, d))

=
df (x , y)

d(x , y)
(a, b) · (c, 0) +

df (x , y)

d(x , y)
(a, b) · (0, d)

=
df (x , b)

dx
(a) · c +

df (a, y)

dy
(b) · d

Example

For a smooth map f : Rn → R, D[f ] is the sum of its partial derivatives:

D[f ] : Rn × Rn → R D[f ](~v , ~w) := J(f )(~v) · ~w =
n∑

i=1

∂f

∂xi
(~v)wi



Linear Maps I

In a Cartesian differential category, there is a natural notion of linear maps. A map f : A→ B is
said to be linear if:

D[f ] := A× A
π1 // A f // B

df (x)

dx
(a) · b = f (b)

Example

In a category with finite biproducts, every map is linear (by definition!).

In POLYk , P = 〈p1, . . . , pm〉 is linear if each pi ∈ k[x1, . . . , xn] is a polynomial of degree 1,

that is, a sum of the form pi =
n∑

j=1
ajxj .

In SMOOTHR, a smooth function F : Rn → Rm is linear in the Cartesian differential sense
precisely when it is R-linear in the classical sense:

F (s~x + t~y) = sF (~x) + tF (~y)

for all s, t ∈ R and ~x , ~y ∈ Rn.

Linear ⇒ Additive, but not necessarily the converse!

(But in the above examples: Additive ⇒ Linear)

Identity maps and projection maps are linear by CD.3



Linear Maps II

A map f : A× B → C can also be linear in its second argument if it is linear with respect to its
partial derivative:

D1[f ] := (A× B)× B
π0×1 // A× B

f // C

df (a, y)

dy
(b) · c = f (a, c)

The linearity in the second argument rule, CD.6, says that for any f : A→ B, D[f ] is linear in its
second argument:

d df (x)
dx

(a) · y
dy

(b) · c =
df (x)

dx
(a) · c

Example

For a smooth map f : Rn → R, D[f ] is linear in its second argument:

D[f ] : Rn × Rn → R D[f ](~v , ~w) := J(f )(~v) · ~w =
n∑

i=1

∂f

∂xi
(~v)wi



Cartesian Differential Categories - Other Examples

Example

Every model of the differential λ-calculus induces a Cartesian differential category. Conversly,
every Cartesian differential category which is Cartesian closed such that the evaluation maps are
linear in their second argument gives rises to a model of the differential λ-calculus.

Manzonetto, G., 2012. What is a Categorical Model of the Differential and the Resource λ-Calculi?.

Example

Bauer, Johnson, Osborne, Riehl, and Tebbe (BJORT) constructed an Abelian functor calculus
model of a Cartesian differential category.

Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., 2018. Directional derivatives and higher order chain rules

for abelian functor calculus.

Example

There is a couniversal construction of Cartesian differential categories, known as the Faa di Bruno
construction, that is, for every Cartesian left additive category X there is a cofree Cartesian
differential category over X.

Cockett, J.R.B. and Seely, R.A.G., 2011. The Faa di bruno construction.



Cartesian Differential Categories - Other Applications

Example

Study and solve differential equations, and also study exponential functions, trigonometric
functions, hyperbolic functions, etc.

Cockett, R., Cruttwel, G., Lemay, J-S. P., Differential equations in a tangent category I: Complete vector fields, flows,

and exponentials.

Cockett, R., Lemay, J-S.P., Exponential Functions for Cartesian Differential Categories.

Example

There is a notion of integration for Cartesian differential categories.

Lemay, J-S.P., Cartesian Integral Categories and Contextual Integral Categories.

Example

Machine learning algorithms and differentiable programming languages via reverse differentiation.

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories.

Wilson, P., & Zanasi, F. Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits.

Cruttwell, G., Gallagher, J., & Pronk, D. Categorical semantics of a simple differential programming language.

Cruttwell, G., Gavranovic, B., Ghani, N., Wilson, P., & Zanasi, F. Categorical Foundations of Gradient-Based Learning.
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Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.

A smooth map A→ B is a coKleisli map, that is, a map !A→ B.

Example

Let’s consider the example where !(Rn) := Sym(Rn) ∼= R[x1, . . . , xn].

p : Rn → R p is a polynomial function
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Differential Categories - Smooth Maps
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Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.

A smooth map A→ B is a coKleisli map, that is, a map !A→ B.

Example

Let’s consider the example where !(Rn) := Sym(Rn) ∼= R[x1, . . . , xn].

p : Rn → R p is a polynomial function

p ∈ Sym(Rn)

p̂ : R→ Sym(Rn) linear map in VECR where p̂(1) = p

Sym(Rn)→ R map in VECop
R

!(Rn)→ R



The coKleisli Category of a Differential Category I

Consider a differential category X with a coalgebra modality !:

!A
δ // !!A !A

ε // A

!A
∆ // !A⊗ !A !A

e // I

and deriving transformation:

!A⊗ A
d // !A

and finite products × (which are actually biproducts by the additive structure of X).

Let X! be the coKleisli category and we are going to use interpretation brackets J−K.

f : A→ B in X!

Jf K : !A→ B

J1K = !A
ε // A

Jg ◦ f K = !A
δ // !!A

!(Jf K) // !B
JgK // C

So how do we make X! into a Cartesian differential category?



The coKleisli Category of a Differential Category II

For the product structure:

On objects, A× B

Projections:

Jπi K := !(A0 × A1)
ε // A0 × A1

πi // Ai

For a comonad on a category with finite products, the coKleisli category has finite products.

For the additive structure:

The sum of maps: Jf + gK := Jf K + JgK
Zero maps: J0K := 0

For a comonad on an additive category, the coKleisli category is ONLY a left additive category,
because coKleisli composition does not preserve the additive structure. However, every coKleisli
map of the form f ◦ ε is additive.

For a comonad on an additive category with finite products, the coKleisli category is a Cartesian
left additive category.



The coKleisli Category of a Differential Category III

Recall that last time we defined the differential of Jf K : !A→ B as:

!A⊗ A
d // !A

Jf K // B

But this is not a coKleisli map!

The differential combinator JD[f ]K : !(A× A)→ B is defined as follows:

!(A× A)
∆ // !(A× A)⊗ !(A× A)

!(π0)⊗!(π1)// !A⊗ !A
1⊗ε // !A⊗ A

d // !A
Jf K // B

Theorem

For a differential category with finite products, its coKleisli category is a Cartesian differential
category.

Every coKleisli map of the form f ◦ ε is linear! (This is an if and only if when !0 ∼= I )

Example

Consider the differential category VECop
k with !(V ) = Sym(V ) from last time. Then POLYk is a

sub-CDC of the coKleisli category
(
VECop

k

)
Sym

. More explicit examples are described in:

Bucciarelli, A. and Ehrhard, T. and Manzonetto, G. Categorical models for simply typed resource calculi.

which include the relational model and the finiteness space model



The other direction: Cartesian differential storage categories

Blute, R., Cockett, J.R.B. and Seely, R.A., 2015. Cartesian differential storage categories.

“... it was not obvious how to pass from Cartesian differential categories back to monoidal
differential categories.This paper provides natural conditions under which the linear maps of a
Cartesian differential category form a monoidal differential category. ... The purpose of this paper
is to make precise the connection between the two types of differential categories. ”

Main idea: While not every Cartesian differential category is the coKleisli category of a differential
category, Cartesian differential storage categories are precisely the coKleisli categories of
differential categories.

Theorem

A differential category with finite products and the Seely isomorphisms (!(A× B) ∼= !A⊗ !B and
!0 ∼= I ), it’s coKleisli category is a Cartesian differential storage category. Conversely, for a
Cartesian differential storage category, its category of linear maps form a differential category with
finite products and the Seely isomorphisms.



The other direction: Embedding

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

Theorem

Every Cartesian differential category embeds into the coKleisli category of a differential category.
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A quick word on Differential Restriction Categories

A restriction category is a category equipped with a restriction operator

f : A→ B

f : A→ A

where you should think of f as capturing the domain of definition of f . Restriction categories
allow us to work with partially defined functions.

Lack, S., and Cockett, R. Restriction Categories (I - III).

A differential restriction category is NAIVELY a Cartesian differential category with a restriction
operator such that the differential operator and restriction operator are compatible.

Cockett, R., Cruttwell, G., and Gallagher, J. Differential Restriction Categories.

Example

The category of smooth functions defined on open subsets is a differential restriction
category.

Any Cartesian differential category is a differential restriction category where f = 1, so every
map is total.

Conversly, the subcategory of maps such that f = 1 in a differential restriction category is a
Cartesian differential category.



The Differential Category World: It’s all connected!

Differential
Categories

Blute, Cockett, Seely - 2006

Cartesian
Differential
Categories

Blute, Cockett, Seely - 2009

Differential
Restriction
Categories

Cockett, Cruttwell, Gallagher - 2011

Tangent
Categories
Rosicky - 1984

Cockett, Cruttwell - 2014

Hope you enjoyed it!
Thanks for listening!

Merci!
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