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Overview

Differential linear logic (DLL), due to Ehrhard & Regnier, is
an extension of linear logic (J.Y. Girard) via the addition of an
inference rule modelling differentiation.

It was inspired by models of linear logic discovered by
Ehrhard, where morphisms have a natural smooth structure.

The corresponding categorical structures are differential
categories, due to RB, Cockett and Seely.

Given this new syntactic/semantic way of thinking about
differentiation, we should find models and apply ideas from
(categorical) logic to fields where differentiation is
fundamental, such as manifolds and tangent structures.
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Monoidal categories

Definition

A monoidal category is a category C with a binary (operation)
functor ⊗ : C × C → C which is associative and has a unit object I .
We’ll also assume symmetry. Thus we have the following
isomorphisms:
(A⊗B)⊗C ∼= A⊗ (B⊗C ) A⊗ I ∼= A ∼= I ⊗A A⊗B ∼= B⊗A

Two classes of examples we’ll be interested in:

Linear monoidal categories like Veck , the category of k-vector
spaces and linear maps. The monoidal structure is the usual
tensor product and the unit is the base field.

Cartesian monoidal categories like the category Set of sets
and functions or Top, the category of topological spaces and
continuous functions.. The monoidal structure is the cartesian
product of sets, × and the tensor unit is the one point set, 1.
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Monoidal categories II

A crucial difference is that Set has canonical maps:
A→ A× A A× B → A A× B → B A→ 1
while Vec and Hilb don’t.

A monoidal category is closed if the functor A⊗ (−) : C → C
has a right adjoint A −◦ (−):

Hom(A⊗ B,C ) ∼= Hom(B,A −◦ C )

.

The categories Set, Vec and Hilbfd are closed and in each
case A −◦ B is the appropriate function space. For Set, it’s
the set of functions and for Vec and Hilbfd , it’s the set of
linear functions.
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Monoidal closed categories

The category of finite-dimensional Hilbert spaces is closed,
but the larger category of Hilbert spaces is not.

The category of topological spaces is not closed, but the
category of compactly generated Hausdorff spaces is.

The category of smooth manifolds and smooth maps is not
closed.

Closed categories are quite desirable. On the one hand, we can
work with function spaces, and on the other hand, closed structure
will allow us to model implication in various logics.
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Categorical Proof Theory I

Categorical proof theory (Lambek) begins with the idea of
forming a category whose objects are formulas in a given logic
and whose arrows are (equivalence classes of) proofs.

Then we study the resulting category to determine its
structure. Typically the category will be free in a certain sense.

As a simple example, in intuitionistic logic, the logic of ∧,∨
and ⇒, conjunction takes on the form of a categorical
product and disjunction takes on the form of a coproduct.

Thus for example, the projection A× B → A is interpreted to
mean that A ∧ B logically entails A. The diagonal map
∆: A→ A× A means that A logically entails A ∧ A, etc.
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Categorical Proof Theory II

Closed structure provides a model of logical implication.

The counit of the adjunction

Hom(A ∧ B,C ) ∼= Hom(B,A −◦ C )

is a map η : A ∧ (A −◦ C )→ C . This is the familiar modus
ponens rule, that A and A −◦ C logically entail C .

In general, logical connectives become functors and inference
rules will become natural transformations.

Categories with the same structure can then be considered as
models of that logical system.
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Categorical Proof Theory III: Classical Logic

To go from intuitionistic logic to classical logic, you might try
the following. For any two objects, A and B, in a cartesian
closed category, there is a canonical map A→ (A⇒ B)⇒ B.

Suppose we have an initial object, which we denote as F.
Then define ¬A = A⇒ F . The above map then becomes
A→ ¬¬A. To model classical logic, I could assume this map
is an isomorphism.

Theorem (Joyal)

Any such category is a boolean algebra.

The proof doesn’t apply in linear logic, so we can have
involutive negation and nontrivial categorical semantics.
These are the ∗-autonomous categories of Barr.
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Categorical Proof Theory IV

We use sequent calculus as our basic proof system. A sequent
is something of the following form with the ` representing
logical entailment:

Γ ` A

Here Γ is a finite list of formulas (the premises) in our logic
and A is a single formula (the conclusion).

Sequents are constructed and manipulated using inference
rules. Here are two examples:

Γ ` A ∆ ` B
Γ,∆ ` A ∧ B

∧R

Γ,A ` B

Γ ` A⇒ B
⇒ R
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Categorical Proof Theory V-Structural Rules

These rules are basically bookkeeping rules and allow us to manage
premises:

Exchange says we can rearrange the order of our premises as
we like (σ is a permutation):

Γ ` A
σ(Γ) ` A

Ex

Contraction says that it is pointless to have duplicate
premises:

Γ,A,A ` B

Γ,A ` B
Con

Weakening says that you can add additional premises.

Γ ` B
Γ,A ` B

Weak
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Categorical Proof Theory VI-Categorical interpretation

So the proof of a sequent Γ ` A is a morphism in an appropriate
category of the form ∧

Γ −→ A

In traditional logics, the ∧ is the cartesian product. The
interpretation is built inductively. As one example, consider:

Γ,A,A ` B

Γ,A ` B
Con

We suppose we have an arrow
∧

Γ ∧ A ∧ A→ B interpreting the
proof above the line. We build a map

∧
Γ ∧ A→ B by

precomposing with ∆: A→ A ∧ A.
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Categorical Proof Theory VII-Structural Rules Again

Similarly for weakening:

Γ ` B
Γ,A ` B

Weak

I assume I have an arrow: ∧
Γ −→ B

and I precompose with the projection∧
Γ ∧ A −→

∧
Γ −→ B
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Categorical Proof Theory VIII-The Cut Rule

We also have a way of stringing proofs together:

∆ ` B Γ,B ` A

Γ,∆ ` A
Cut

This is completely analogous to the composition of processes. We
also have the crucial cut-elimination theorem:

Theorem (Gentzen)

Any sequent that can be proved can be proved without the CUT
rule.

The proof is typically algorithmic and the algorithm is of great
interest. When talking about categorical proof theory, we want
that each proof is equivalent to a cut-free proof.
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Linear Logic: A Resource-Sensitive Logic (Girard)

The starting point for linear logic is the reinterpretation of
sequents.

The sequent Γ ` A is traditionally interpreted as
From premises Γ, we can conclude A.

Think instead that formulas represent resources and Γ ` A
means that inputting the resources Γ into the system, it will
output A.

From this point of view, the rules contraction and weakening
are wrong.

Linear logic begins with the removal of these rules.
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(Categorical) Linear Logic I

The categorical product × becomes a tensor product ⊗, i.e
we have no projection or diagonals. So we are talking about
monoidal (not cartesian) categories.

Instead of cartesian closed categories, we have symmetric
monoidal closed categories as the basic structure. An excellent
non-cartesian example is the category of vector spaces and
linear maps. In this category, there are no canonical maps:

V ⊗W −→ V V ⊗W −→W V −→ V ⊗ V

We can also remove the Exchange rule to get noncommutative
logic. Or you can modify the exchange rule to only allow
certain exchanges, as in cyclic linear logic (Yetter).
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(Categorical) Linear Logic II-Contraction And Weakening

Contraction and weakening are still available for formulas of
the form !X , called bang X . So we have the following sequent
rules:

Γ ` Y
Γ, !X ` Y

Γ, !X , !X ` Y

Γ, !X ` Y

The operator ! : C → C is a comonad, i.e. we have natural
transformations:

!
δ−→!! !

ε−→ id

satisfying associativity, and unit constraints.
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(Categorical) Linear Logic III: Coalgebra Structure

We also typically assume the category has products and that
we have the isomorphisms:

!(A× B) ∼=!A⊗!B !1 ∼= I

where I is the tensor unit and 1 is the terminal object. (But
note this isn’t necessary to model the fragment of the logic we
have seen so far. But it does hold in most models.)

Given this isomorphism, it is straightforward to endow the
objects !A with a coalgebra structure:

!A
∆−→!A⊗!A !A

∆−→ I
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(Categorical) Linear Logic IV: Coalgebra Structure

For example, to construct ∆, proceed as follows:

!(A→ A× A)

!A→!(A× A) ∼=!A⊗!A

!A→!A⊗!A

These maps satisfy the obvious (co)associative,
(co)commutative and (co)unit axioms, making !A a
cocommutative counital coalgebra.

They are used to model contraction and weakening with
respect to formulas of the form !A,
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CoKleisli Categories

Given a comonad ! : C → C, one can form the coKleisli category
CoK (!).

Objects are the same as for C.

Arrows X → Y in CoK (!) are arrows of the form !X → Y in
C. (How to compose?)

Linear logic began with Girard’s realization that his category
of coherence spaces and stable maps (a model of simply-typed
λ-calculus) was actually the coKleisli category of a more basic
linear structure.

So there was a decomposition:

HomStab(A,B) ∼= HomLin(!A,B)
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Differential Linear Logic I

Again, this idea arose from semantic considerations. Ehrhard
constructed two models of linear logic where there is just such
a decomposition. These were the categories of Köthe spaces
and finiteness spaces. Morphisms had a representation as
power series, which could be differentiated.

Differential linear logic (Ehrhard, Regnier) begins with the idea
that there is a similar decomposition of a category of smooth
maps into the coKleisli category of a category of linear maps.

Categorically, we would like a category where the base
category had linear maps and the coKleisli category had
smooth maps.
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Differential Linear Logic II

The important point is that differentiation is represented as
an inference rule.

To see what the inference rule would be, consider the
following situation. I have two Euclidean spaces, X and Y ,
and a smooth map between them. In our model, it would be a
map f : !X → Y .

At a point of X , its Jacobian matrix would be a linear map
from X to Y . So the process of taking the Jacobian is a
smooth map from X to linear maps from X to Y . This
suggests an inference rule of the following form:

!X ` Y
!X ` X −◦ Y
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Differential Linear Logic III

Or, equivalently:

!X ` Y
X⊗!X ` Y

The logic continues to satisfy cut-elimination.

Proof nets are a graph-theoretic syntax for specifying proofs
for various fragments of linear logic (Girard, Danos-Regnier).
They satisfy remarkable properties. Cut-elimination becomes
a graph-rewriting system satisfying good normalization
properties. There is a good theory of proof-nets for DLL
(Ehrhard & Regnier).

The corresponding coKleisli category is cartesian closed, hence
a model of λ-calculus, but with an additional operation of
differentiation of terms. This leads to the Differential
λ-Calculus (Ehrhard & Regnier).
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Differential Categories I

Categorically, I need an operator:

f : !X → Y
D(f ) : X⊗!X → Y

It suffices to differentiate the identity map on !X . So we
require a map

D(id!X ) = d : X⊗!X
d

−−−−→!X

.

Then an arbitrary smooth map f : !X → Y is differentiated by
precomposition with d . So

D(f ) = X⊗!X
d

−−−−→!X
f

−−−−→ Y

To state axioms, we must have additive structure on the
Hom-sets. We need to be able to add maps.
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Differential Categories II

So a differential category (RB, Cockett, Seely) is a model of linear
logic with a map of the above form satisfying basic differential
identities, expressed coalgebraically. The necessary rules are:

The derivative of a constant is 0.

The derivative of a linear function is constant.

Leibniz rule (Product rule).

Chain rule.

Here’s an example (product rule). The composite

X⊗!X
d−→!X

∆−→!X⊗!X

must equal:

X⊗!X
id⊗∆
−−−−→ X⊗!X⊗!X

d⊗id
−−−−→!X⊗!X+

X⊗!X
id⊗∆
−−−−→ X⊗!X⊗!X ∼=!X ⊗ X⊗!X

id⊗d
−−−−→!X⊗!X
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Differential Categories III

There are many, many subtleties to this definition.

There are some equations beyond the basic ones listed above
which can be considered. We could assume the modality is
monoidal or not, etc. In some cases, there is redundancy in
the rules, etc.

There are differing presentations which under some
restrictions become equivalent.

For example, one way to ensure that we have additive
structure on the hom-sets is to assume our category has
biproducts. In this case, each object !X has the structure of a
bialgebra. This leads to some new inference rules such as
cocontraction:
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Differential Categories IV

Cocontraction:

Γ, !X ` Y

Γ, !X , !X ` Y

There is also a coweakening. In this case, to define a differential
category, one can instead assume a map called coderelection,
which is of the form

coder : X →!X

satisfying similar equations to the above. Under certain
hypotheses, this presentation becomes equivalent.

See J.S. Lemay’s talk and Differential categories revisited, by RB,
Cockett, Lemay and Seely, which cleans up these various issues.
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Differential Categories V: Models

There is a simple relational model, demonstrating that our
axioms are consistent. In the category Rel whose objects are
sets and whose arrows are binary relations, composition is the
composition of relations, and the !-comonad is the finitary
multiset functor and the tensor is the cartesian product of sets.
Then the differentiation map dX : X⊗!X →!X is given by

(x ,V ) ↔ x ] V

where x ∈ X , V is a finitary multiset of X and ] is the
multiset union.

But we want models where the differential inference rule is
actual differentiation.
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Differential Categories VI

A more interesting example is obtained by considering the category
of (discrete) vector spaces. The free symmetric algebra on a vector
space V is defined by

S(V ) = k ⊕ V ⊕ V ⊗s V ⊕ . . .

where V ⊗s V is the symmetrized tensor product. An explicit
representation of V ⊗s V is the coequalizer of:

V ⊗ V
c

−−−−→ V ⊗ V and V ⊗ V
id
−−−−→V ⊗ V

An explicit representation of S(V ) is given by choosing a basis for
V , {xi}i∈I . Then S(V ) is the space of polynomials in {xi}i∈I .
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Differential Categories VII

It is standard that S is a monad on Vec, the category of vector
spaces, and hence a comonad on Vecop.

We need a differential on Vecop, i.e. a map:

d : S(V )−−−−→ V ⊗ S(V )

It is easiest to describe using a basis:

f (x1, x2, x3, . . . , xn) 7→
n∑

j=1

xj ⊗
∂f

∂xj

This is a finite sum, even if V is infinite-dimensional. It is
straightforward to see all the equations are satisfied.
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Differential Categories VIII

Daniel Murfet and James Clift show that Sweedler’s construction
of the cofree cocommutative coalgebra, which induces a comonad
on Vec makes Vec a differential category.

Daniel Murfet’s paper Logic and linear algebra: an introduction is
highly recommended as an introduction to how linear logic proofs
can be interpreted as linear maps between vector spaces. This
paper is again using the cofree cocommutative coalgebra of
Sweedler.
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Looking for topological examples

Ehrhard’s two primary models are both differential categories.
But we’d like models with a closer connection to analysis.

While we don’t require our categories to be closed, it is a
desirable property. None of the standard examples of
categories of spaces and smooth maps are closed, and there
are no evident comonads.

Convenient vector spaces provide an example which has all of
the properties we are looking for, as shown by RB, Ehrhard
and Tasson.

For details, see the talk of Marie Kerjean. She and Yoann
Dabrowski substantially expanded our initial work. In
particular, they have a ∗-autonomous example.
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Convenient vector spaces (Frölicher,Kriegl)

See their book Linear Spaces and Differentiation Theory.

Convenient vector spaces are a special class of locally convex
spaces.

The category Con of convenient vector spaces and continuous
linear maps forms a symmetric monoidal closed category. The
tensor is a completion of the algebraic tensor. There is a
convenient structure on the space of linear, continuous maps.
There is a nice notion of smoothness in this category:

Definition

A function f : E → F with E ,F being convenient vector spaces is
smooth if it takes smooth curves in E to smooth curves in F .

This is inspired by Boman’s Theorem.
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Convenient vector spaces II (Boman’s theorem)

This definition of smooth map is inspired by a theorem of Boman:

Theorem

A function f : Rm −→ Rn is smooth if and only if its composite
with every smooth curve u : R −→ Rm is smooth.

In the framework of convenient vector spaces, Boman’s theorem
becomes our definition.
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Convenient vector spaces III: More key points

Theorem (Frölicher,Kriegl)

The category of convenient vector spaces and smooth maps is
cartesian closed.

There is a comonad ! for which the smooth category is the
coKleisli category.

! (E ⊕ F ) ∼= ! E ⊗ ! F .

Each object ! E has canonical bialgebra structure.

Theorem (RB, Ehrhard, Tasson)

Con is a differential category.
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A convenient differential category

The above results show that Con really is an optimal differential
category.

The differential inference rule is really modelled by a
directional derivative.

The coKleisli category really is a category of smooth maps.

Both the base category and the coKleisli category are closed,
so we can consider function spaces.

There is a well-established theory of convenient manifolds:

Kriegl, Michor-The convenient setting for global analysis
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Cartesian Differential Categories (RB, Cockett, Seely)

The idea here is to work directly in the category of smooth maps,
rather than consider it as a coKleisli category. This will provide
more direct structure, and allow for more examples.

Definition

A category is a cartesian differential category if it has finite
products, has a differential operator:

X
f

−−−−→ Y

X × X
D[f ]
−−−−→ Y

The operator must satisfy analogous axioms, i.e. it must be
linear in the first variable (so in particular, I have to be able to
define this), and then satisfy the same differentiation axioms,
rewritten for this setting.
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Cartesian Differential Categories II:Examples

The coKleisli category of a differential category is a cartesian
differential category.

The category whose objects are Euclidean spaces and arrows
are smooth maps is a cartesian differential category, which
does not arise as the coKleisli category of a differential
category.

For details and many examples, see the talk of J.S. Lemay.

Cartesian differential categories are also simple examples of
tangent categories (Rosicky, Cockett & Cruttwell). For more
information on tangent categories:
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Cartesian Differential Categories III

ENJOY THE REST OF THE CONFERENCE

but especially the talk of Geoff Cruttwell.
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