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André Joyal

UQÀM
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Abstract

I will present an application of Goodwillie’s calculus to higher
topos theory. The (higher) topos which classifies ∞-connected
objects is formally the ”dual” of the (higher) logos S[U∞] freely
generated by an ∞-connected object U∞. The logos S[U∞] is a
left exact topological localization of the logos S[U] = Fun[Fin,S]
freely generated by an object U. We show that a functor Fin→ S
belongs to S[U∞] if and only if it is crystallic if and only if it is
∞-excisive. There is a morphism of logoi from S[U∞] to the
category of (formal) Goodwillie towers of functors Fin→ S, but we
do not know if it is an equivalence of categories.

In the first part of the talk, I will explain how logos theory can be
used to prove the Klein-Rognes Chain rule.



Content

I The duality topos-logos;

I S[U] and the Klein-Rognes derivative;

I S[U∞], crystallic functors and ∞-excisive functors.



Conventions

For the sake of simplicity and clarity, we will drop the prefix ∞
when refering to ∞-topoi and (∞, 1)-categories, and speak
explicity of 1-topoi and 1-categories if the occasion arises. All
limits and colimits are homotopical.

By the word ”space” we mean an ∞-groupoid, and we denote the
category of spaces by S. We say that a map between two spaces is
an isomorphism, if it is a homotopy equivalence.



Topoi vs logoi

We are adopting the view that topos theory is better understood
by studying the opposite category of logoi.

Conventions [AJ]

1. We shall say that a topos E is a logos

2. A morphism of logoi is a functor φ : E → E ′ which preserves
colimits and finite limits (is cocontinuous and left-exact).

The category of topoi is the opposite of the category of logoi.



A logos is a ring-like object

commutative ring logos

sum:
∑

i∈I ai colimit: lim−→i∈I A(i)

product: a · b finite limits: A×C B

unit element: 1 terminal object: 1

distributive law:
a ·

∑
i∈I bi =

∑
i∈I a · bi

lim−→i∈I A×C B(i) =

A×C lim−→i∈I B(i)

A morphism of logoi φ : E → F preserves colimits (=sums) and
finite limits (= products).



Rings vs logoi

commutative ring logos

initial ring: Z initial logos: S

terminal ring: 0 terminal logos: 0

polynomial ring: Z[x ] free logos: S[U]

quotient: R → R/J
lex localization:
E → E [Σ−1]lex

extension: Z→ Z[a] extension: S → S[A]



The polynomial ring Z[x ]

Recall that the polynomial ring Z[x ] is freely generated the element
x ∈ Z[x ].

By definition, for every (commutative) ring R and every element
a ∈ R there exists a unique homomorphism of rings

eva : Z[x ]→ R

such that eva(x) = a.

By construction, for every p(x) ∈ Z[x ]

eva(p(x)) = p(a)



The ”polynomial” logos S[U]

Let Fin be the category of finite spaces and let [Fin,S] be the
category of functors Fin→ S.

Let U : Fin→ S be the forgetful functor. Then for every K ∈ Fin
we have UK = Map(K ,−) : Fin→ S.

By Yoneda, every functor F : Fin→ S is a colimit of
representables:

F =

∫ K∈Fin

F (K )× UK



The ”polynomial” logos S[U]

Theorem
The logos [Fin,S] is freely generated by the functor U : Fin→ S.
Thus, S[U] = [Fin,S].

Proof.
See [AL], [Joh]. We must show that for every object A in a logos E
there exists a unique morphism of logoi evA : [Fin,S]→ E such
that evA(U) = A.

We must have evA(UK ) = AK , since the functor evA preserves
finite limits. Thus, for every F ∈ S[U] we must have

evA(F ) = evA

∫ K∈Fin

F (K )× UK =

∫ K∈Fin

F (K )× AK

since the functor evA preserves colimits.

The rest of the proof is left to the reader!



Remarks

In algebra, a polynomial p(x) ∈ Z[x ] defines a polynomial function
p : R → R on any commutative ring R.

Similarly, every ”polynomial” F ∈ S[U] defines an endofunctor
F : E → E of any logos E .

By construction,

FA =

∫ K∈Fin

F (K )× AK (1)

for every object A ∈ E .

For example, the functor U : Fin→ S induces the identity functor
E → E of any topos E .



Warning

The Yoneda formula

F =

∫ K∈Fin

F (K )× UK (2)

for a functor F : Fin→ S shows that a ”polynomial” in S[U] is a
kind of ”linear combination” of representables UK .

However, the coefficient of UK in formula (2) is the value of F at
K , it is not F (K)(0)/K ! as one may expect in a Taylor expansion.

In other words, the formula (2) is useful for extrapolating or
extending a functor F : Fin→ S.

The category S[U] = [Fin,S] is equivalent to the category [S,S]fin

of finitary functors S → S.



Parametrised spectra

If R is a commutative ring, let us put R[ε] := R[x ]/(x2). The first
derivative p′(a) of a polynomial p(x) ∈ Z[x ] at a ∈ R can be
defined by the formula

p(a + ε) = p(a) + p′(a)ε

There are good reasons to believe that S[ε] is the category of
parametrised spectra PSp. [ABFJ2]. By definition,

PSp =

∫ B∈S
SpB

where Sp is the category of spectra. By construction, SpB is the
category of spectra in SB = S/B.

The category PSp is a logos! (Biedermann, Rezk, 2007).

The base functor β : PSp → S is a morphism of logoi.



Klein-Rognes derivative

Every ”polynomial” F ∈ S[U] induces a functor F : PSp → PSp
and the following square commutes

PSp F //

β
��

PSp
β
��

S F // S

since the functor β is a morphism of logoi.

It follows that the functor F : PSp → PSp induces a functor

F ′(B) : SpB → SpFB

for every B ∈ S. The functor F ′(B) is stable.

It defines a matrix of spectra D(F )(B) ∈ SpB×FB called the
Klein-Rognes derivative of F . See [KR]



The KR-Chain Rule for the first derivative
The composite G ◦ F of two ”polynomials” F and G ∈ S[U] is
defined by putting G ◦ F = G (F ).

If E is a logos, then the following triangle commutes.

E F //

G◦F

$$E G // E

Consider the case where E = S[ε] := PSp. The following diagram
commutes for every B ∈ S.

SpB
F ′(B) //

(G◦F )′(B)

$$
SpFB

G ′(FB) // SpGFB

This proves the KR Chain rule.

The chain rule for higher derivatives was proved by Arone and
Ching [AC].



The Goodwillie tower of a functor

It was proved by [GIII] that the subcategory of n-excisive functors
[Fin,S](n) ⊂ [Fin,S] is reflective and the reflector

Pn : [Fin,S]→ [Fin,S](n)

is left exact.

It follows that [Fin,S](n) is a logos ! (Biedermann, Rezk).

The sequence of localizations (Pn) is decreasing.

To every F ∈ [Fin,S] is associated a Goodwillie (Taylor) towers

· · · // P3F // P2F // P1F // P0F



The category of formal towers

[Fin,S]

P2

��

P1

!!

P0

##

(4)

· · · // [Fin,S](2) P1 // [Fin,S](1) P0 // [Fin,S](0) = S

Let us put
[Fin,S](ω) := lim←−

n

[Fin,S](n)

An object of the category [Fin,S](ω) is a formal (Goodwillie) tower.

It is a decreasing sequence of functors Xn ∈ [Fin,S], such that
Pn(Xn+1) = Xn for every n ≥ 0.



Formal towers

The functor
Pω : [Fin,S]→ [Fin,S](ω)

takes a functor F to its Goodwillie tower Pω(F ) := (Pn(F )).

[Fin,S]

Pω

��

P2

!!

P1

##

P0

$$

(4)

[Fin,S](ω) · · · // [Fin,S](2) P1 // [Fin,S](1) P0 // [Fin,S](0) = S

The functor Pω has a right adjoint which takes a formal tower (X?)
to its limit lim←−n

Xn.



The category [Fin,S](∞)

Lemma
A monomorphism u : F → G in [Fin,S] is inverted by P0 if and
only it is inverted by Pω.

If Λ is the class of monomorphisms inverted by P0, let us put

[Fin,S](∞) := [Fin,S][Λ−1]lex

and let R∞ : [Fin,S]→ [Fin,S](∞) be the localisation functor.

The functor Pω factors through the localization R∞.

[Fin,S]

R∞ %%

Pω // [Fin,S](ω)

[Fin,S](∞)

Pω

88



The category [Fin,S](∞)

[Fin,S]

R∞
��

[Fin,S](∞)

Pω

��

P2

!!

P1

##

P0

$$
[Fin,S](ω) · · · // [Fin,S](2) // [Fin,S](1) // [Fin,S](0) = S

Is Pω an equivalence ? (Probably not).

For the rest of the talk, we will study the category [Fin,S](∞).



Surjective maps

We shall see that the logos [Fin,S](∞) is freely generated by an
∞-connected object. We need the notion of surjective map.

Let E be a logos.

A map f : X → Y is surjective if the base change functor
f ? : E/Y → E/X is conservative.

Every map f : X → Y admits a unique factorisation
f = up : X → E → Y with p : X → E a surjective map and
u : E → Y a monomorphism [HTT].

X
f //

p
��

Y

E

u

??

The pair (E , u) is the image Im(f ) of the map f .



Connected objects

Let A be an object in a logos E .

An object A is said to be (−1)-connected if the map A→ 1 is
surjective.

An object A is said to be 0-connected if the maps A→ 1 and
A→ A× A are surjective.

In general, an object A is said to be n-connected if the diagonal
map A→ AS i

is surjective for every −1 ≤ i ≤ n.

An object A is said to be ∞-connected if it is n-connected for all
integer n.

An ∞-connected space is contractible (Whitehead theorem).

An ∞-connected object in a logos may not be contractible. For
example, in the logos of parametrised spectra PSp, every spectrum
is ∞-connected.



Crystallic functors

Let Cn ⊂ Fin be the category of finite n-connected spaces.

Consider the decreasing chain of sub-categories

Fin ⊃ C−1 ⊃ C0 ⊃ C1 ⊃ · · ·

Definition
We say that a functor F : Fin→ S is crystallic if it is the right Kan
extension of its restriction F |Cn for every n ≥ −1.

A crystallic functor F : Fin→ S is determined by its values on the
subcategory Cn ⊂ Fin for any n.



Remarks on crystallic functors

Let us say that a functor F defined on Cn ⊂ Fin is crystallic if it is
the right Kan extension of its restriction F |Cm for every m > n.

If [Cn,S](∞) denotes the category of crystallic functors Cn → S,
then the restriction functor

[Fin,S](∞) → [Cn,S](∞)

is an equivalence of categories for every n ≥ −1.



S[U∞]

We shall denote the logos freely generated by a ∞-connected
object U∞ by S[U∞].

The logos S[U∞] is a left exact localisation of the logos S[U].
Hence the category S[U∞] is a reflective sub-category of the
category S[U] = [Fin,S].

Theorem
A functor F : Fin→ S belongs to S[U∞] if and only if it is
crystallic. Moreover, S[U∞] = [Fin,S](∞).

It follows that the limit lim←−n
Xn of any formal Goodwillie tower

(X?) is crystallic.

In particular, the limit P∞F of the Goodwillie tower (PnF ) of any
functor F : Fin→ S is crystallic.



Analytic functors are crystallic

Theorem
Every n-analytic functor Cn → S is crystallic. In particular, the
functor U1 : C1 → S is crystallic.

Proof.
The limit P∞F of the Goodwillie tower (PnF ) of any functor
F : Fin→ S is crystallic. But if F is n-analytic, then
P∞F (X ) = F (X ) for X ∈ Cn by [GII]. Hence the functor
F : Cn → S is crystallic. In particular, the functor U1 : C1 → S is
cristallic, since U1 is 1-analytic by [AK].

It follows that the functor U∞ : Fin→ S is the right Kan extension
of the functor U1 : C1 → S along the inclusion C1 ⊂ Fin.



Cech groupoid of a map

Recall that the Cech groupoid of a map u : A→ B in a logos is
the simplicial object C•(u) defined by putting

Cn(u) = A×B A×B · · · ×B A

(factors indexed by i ∈ [n]) for every n ≥ 0.

The simplicial object C•(u) is naturally augmented by the map
u : A→ B.

B A
uoo A×B Aoo

oo
A×B A×B A · · ·oooo

oo

Recall that the realisation |X•| of a simplicial object X• in a logos
is defined to be its colimit. From the augmentation C•(u)→ B we
obtain a factorisation A→ |C•(u)| → B of the map u : A→ B.

The map A→ |C•(u)| is surjective and the map |C•(u)| → B is a
monomorphism.



Cech cogroupoid of a map

The Cech cogroupoid of a map u : A→ B in a logos is the
cosimplicial object C •(u) defined by putting

Cn(u) = B tA B tA · · · tA B

(factors indexed by i ∈ [n]) for every n ≥ 0.

The cosimplicial object C •(u) is coaugmented by the map
u : A→ B = C 0(u).

A
u // B

//
// B tA B

////// B tA B tA B · · ·

Recall that the homotopy limit of a cosimplicial object X • is said
to be its totalisation and is denoted Tot(X •).



n-excisive functors revisited

The partial n-totalisation Totn(X •) of a cosimplicial object X • is
defined to be its limit over the subcategory of ∆ spanned by the
posets [k] with k ≤ n.

Recall that a functor F : Fin→ S is said to be n-excisive if it takes
every strongly cocartesian (n + 1)-cube to a cartesian cube.

Lemma
A functor F : Fin→ S is n-excisive if and only the canonical map

FA→ Totn(C •(u))

is an isomorphism for every map u : A→ B in Fin.

Proof.
By [Sin], the partial totalisation Totn(X •) is the limit of the cubical
diagram S 7→ X |S| indexed by non-empty subsets S ⊆ [n].



∞-excisive functors

Definition
We say that a functor F : Fin→ S is a ∞-excisive if the canonical
map

FA→ Tot(C •(u))

is an isomorphism for every map u : A→ B in Fin.

Theorem
A functor F : Fin→ S is ∞-excisive if and only if it is crystallic.

Sketch of proof: For every map u : A→ B in Fin, let us denote the
image of the map Uu : UB → UA by J(u) ⊆ UA. By definition, a
functor F : Fin→ S is ∞-excisive if an only if it is local with
respect to the set Σ of inclusions J(u) ⊆ UA. On the other hand F
is crystallic if and only of it is local with respect to the class Λ of
maps inverted by the functor P0. It suffices to show that Σ and Λ
generates the same lex-localisation....



Thank you for your attention!
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