The (higher) topos classifying ∞ -connected objects

André Joyal

UQÀM

Workshop on Tangent Categories and their Applications (16/05/2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Joint work with Mathieu Anel, Georg Biedermann and Eric Finster

Abstract

I will present an application of Goodwillie's calculus to higher topos theory. The (higher) topos which classifies ∞ -connected objects is formally the "dual" of the (higher) logos $\mathcal{S}[U_{\infty}]$ freely generated by an ∞ -connected object U_{∞} . The logos $\mathcal{S}[U_{\infty}]$ is a left exact *topological localization* of the logos $\mathcal{S}[U] = Fun[Fin, \mathcal{S}]$ freely generated by an object U. We show that a functor $Fin \rightarrow \mathcal{S}$ belongs to $\mathcal{S}[U_{\infty}]$ if and only if it is *crystallic* if and only if it is ∞ -excisive. There is a morphism of logoi from $\mathcal{S}[U_{\infty}]$ to the category of (formal) Goodwillie towers of functors $Fin \rightarrow \mathcal{S}$, but we do not know if it is an equivalence of categories.

In the first part of the talk, I will explain how logos theory can be used to prove the Klein-Rognes Chain rule.

Content

- The duality topos-logos;
- S[U] and the Klein-Rognes derivative;
- $S[U_{\infty}]$, crystallic functors and ∞ -excisive functors.

・ロト・日本・モト・モート ヨー うへで

Conventions

For the sake of simplicity and clarity, we will drop the prefix ∞ when refering to ∞ -topoi and $(\infty, 1)$ -categories, and speak explicitly of 1-topoi and 1-categories if the occasion arises. All limits and colimits are homotopical.

By the word "space" we mean an ∞ -groupoid, and we denote the category of spaces by S. We say that a map between two spaces is an *isomorphism*, if it is a homotopy equivalence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We are adopting the view that topos theory is better understood by studying the opposite category of *logoi*.

Conventions [AJ]

- 1. We shall say that a topos ${\mathcal E}$ is a logos
- 2. A morphism of logoi is a functor $\phi : \mathcal{E} \to \mathcal{E}'$ which preserves colimits and finite limits (is cocontinuous and left-exact).

The category of topoi is the opposite of the category of logoi.

A logos is a ring-like object

commutative ring	logos
sum: $\sum_{i\in I} a_i$	colimit: $\lim_{i \in I} A(i)$
product: a · b	finite limits: A × _C B
unit element: 1	terminal object: 1
distributive law: $a \cdot \sum_{i \in I} b_i = \sum_{i \in I} a \cdot b_i$	$ \underbrace{\lim_{i \in I} A \times_{C} B(i)}_{A \times_{C} \lim_{i \in I} B(i)} = $

A morphism of logoi $\phi : \mathcal{E} \to \mathcal{F}$ preserves colimits (=sums) and finite limits (= products).

Rings vs logoi

commutative ring	logos
initial ring: $\mathbb Z$	initial logos: S
terminal ring: 0	terminal logos: 0
polynomial ring: $\mathbb{Z}[x]$	free logos: S[U]
quotient: $R \rightarrow R/J$	lex localization: $\mathcal{E} ightarrow \mathcal{E}[\Sigma^{-1}]_{\mathit{lex}}$
extension: $\mathbb{Z} o \mathbb{Z}[a]$	extension: $\mathcal{S} ightarrow \mathcal{S}[A]$

The polynomial ring $\mathbb{Z}[x]$

Recall that the polynomial ring $\mathbb{Z}[x]$ is freely generated the element $x \in \mathbb{Z}[x]$.

By definition, for every (commutative) ring R and every element $a \in R$ there exists a unique homomorphism of rings

$$ev_a:\mathbb{Z}[x] o R$$

such that $ev_a(x) = a$.

By construction, for every $p(x) \in \mathbb{Z}[x]$

 $ev_a(p(x)) = p(a)$

The "polynomial" logos $\mathcal{S}[U]$

Let Fin be the category of finite spaces and let [Fin, S] be the category of functors Fin $\rightarrow S$.

Let $U : Fin \to S$ be the forgetful functor. Then for every $K \in Fin$ we have $U^K = Map(K, -) : Fin \to S$.

By Yoneda, every functor $F : Fin \rightarrow S$ is a colimit of representables:

$$F = \int^{K \in \mathsf{Fin}} F(K) \times U^K$$

The "polynomial" logos $\mathcal{S}[U]$

Theorem

The logos [Fin, S] is freely generated by the functor U: Fin $\rightarrow S$. Thus, S[U] = [Fin, S].

Proof.

See [AL], [Joh]. We must show that for every object A in a logos \mathcal{E} there exists a unique morphism of logoi $ev_A : [Fin, \mathcal{S}] \to \mathcal{E}$ such that $ev_A(U) = A$.

We must have $ev_A(U^K) = A^K$, since the functor ev_A preserves finite limits. Thus, for every $F \in S[U]$ we must have

$$ev_A(F) = ev_A \int^{K \in \mathsf{Fin}} F(K) imes U^K = \int^{K \in \mathsf{Fin}} F(K) imes A^K$$

since the functor ev_A preserves colimits.

The rest of the proof is left to the reader!

Remarks

In algebra, a polynomial $p(x) \in \mathbb{Z}[x]$ defines a polynomial function $p: R \to R$ on any commutative ring R.

Similarly, every "polynomial" $F \in S[U]$ defines an endofunctor $F : \mathcal{E} \to \mathcal{E}$ of any logos \mathcal{E} .

By construction,

$$FA = \int^{K \in \mathsf{Fin}} F(K) \times A^K \tag{1}$$

for every object $A \in \mathcal{E}$.

For example, the functor $U : Fin \to S$ induces the *identity functor* $\mathcal{E} \to \mathcal{E}$ of any topos \mathcal{E} .

Warning

The Yoneda formula

$$F = \int^{K \in \mathsf{Fin}} F(K) \times U^K$$
(2)

for a functor $F : Fin \to S$ shows that a "polynomial" in S[U] is a kind of "linear combination" of representables U^{K} .

However, the coefficient of U^{K} in formula (2) is the value of F at K, it is not $F^{(K)}(0)/K!$ as one may expect in a Taylor expansion.

In other words, the formula (2) is useful for *extrapolating* or *extending* a functor $F : Fin \rightarrow S$.

The category S[U] = [Fin, S] is equivalent to the category $[S, S]^{fin}$ of *finitary* functors $S \to S$.

Parametrised spectra

If *R* is a commutative ring, let us put $R[\epsilon] := R[x]/(x^2)$. The *first derivative* p'(a) of a polynomial $p(x) \in \mathbb{Z}[x]$ at $a \in R$ can be defined by the formula

$$p(a+\epsilon) = p(a) + p'(a)\epsilon$$

There are good reasons to believe that $S[\epsilon]$ is the category of *parametrised spectra* PSp. [ABFJ2]. By definition,

$$PSp = \int^{B \in S} Sp^B$$

where Sp is the category of spectra. By construction, Sp^B is the category of spectra in $S^B = S/B$.

The category PSp is a logos! (Biedermann, Rezk, 2007).

The base functor $\beta : PSp \rightarrow S$ is a morphism of logoi.

Klein-Rognes derivative

Every "polynomial" $F \in S[U]$ induces a functor $F : PSp \rightarrow PSp$ and the following square commutes

since the functor β is a morphism of logoi.

It follows that the functor $F : PSp \rightarrow PSp$ induces a functor

$$F'(B): Sp^B \to Sp^{FB}$$

for every $B \in S$. The functor F'(B) is stable.

It defines a matrix of spectra $D(F)(B) \in Sp^{B \times FB}$ called the *Klein-Rognes derivative* of *F*. See [KR]

The $\operatorname{KR}\xspace$ -Chain Rule for the first derivative

The composite $G \circ F$ of two "polynomials" F and $G \in S[U]$ is defined by putting $G \circ F = G(F)$.

If \mathcal{E} is a logos, then the following triangle commutes.

Consider the case where $\mathcal{E} = \mathcal{S}[\epsilon] := P\mathcal{S}p$. The following diagram commutes for every $B \in \mathcal{S}$.

This proves the KR Chain rule.

The chain rule for higher derivatives was proved by Arone and Ching [AC].

The Goodwillie tower of a functor

It was proved by [GIII] that the subcategory of *n*-excisive functors $[Fin, S]^{(n)} \subset [Fin, S]$ is reflective and the reflector

$$P_n: [\operatorname{Fin}, \mathcal{S}] \to [\operatorname{Fin}, \mathcal{S}]^{(n)}$$

is left exact.

It follows that $[Fin, S]^{(n)}$ is a logos ! (Biedermann, Rezk).

The sequence of localizations (P_n) is decreasing.

To every $F \in [Fin, S]$ is associated a Goodwillie (Taylor) towers

$$\cdots \longrightarrow P_3F \longrightarrow P_2F \longrightarrow P_1F \longrightarrow P_0F$$

The category of formal towers

Let us put

$$[\mathsf{Fin},\mathcal{S}]^{(\omega)} := \varprojlim_{n} [\mathsf{Fin},\mathcal{S}]^{(n)}$$

An object of the category $[Fin, S]^{(\omega)}$ is a *formal (Goodwillie) tower*.

It is a decreasing sequence of functors $X_n \in [Fin, S]$, such that $P_n(X_{n+1}) = X_n$ for every $n \ge 0$.

Formal towers

The functor

$$P_{\omega}: [\mathsf{Fin}, \mathcal{S}] \to [\mathsf{Fin}, \mathcal{S}]^{(\omega)}$$

takes a functor F to its Goodwillie tower $P_{\omega}(F) := (P_n(F))$.

The functor P_{ω} has a right adjoint which takes a formal tower (X_{\star}) to its limit $\lim_{n \to \infty} X_n$.

The category $[Fin, \mathcal{S}]^{(\infty)}$

Lemma

A monomorphism $u : F \to G$ in [Fin, S] is inverted by P_0 if and only it is inverted by P_{ω} .

If Λ is the class of monomorphisms inverted by $P_0,$ let us put

$$[\mathsf{Fin},\mathcal{S}]^{(\infty)}:=[\mathsf{Fin},\mathcal{S}][\Lambda^{-1}]_{\mathit{lex}}$$

and let R_{∞} : [Fin, S] \rightarrow [Fin, S]^(∞) be the localisation functor. The functor P_{ω} factors through the localization R_{∞} .

The category $[Fin, \mathcal{S}]^{(\infty)}$

Is P_{ω} an equivalence ? (Probably not).

For the rest of the talk, we will study the category $[Fin, S]^{(\infty)}$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Surjective maps

We shall see that the logos $[Fin, S]^{(\infty)}$ is freely generated by an ∞ -connected object. We need the notion of surjective map.

Let $\mathcal E$ be a logos.

A map $f : X \to Y$ is *surjective* if the base change functor $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$ is conservative.

Every map $f : X \to Y$ admits a unique factorisation $f = up : X \to E \to Y$ with $p : X \to E$ a surjective map and $u : E \to Y$ a monomorphism [HTT].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The pair (E, u) is the *image* Im(f) of the map f.

Connected objects

Let A be an object in a logos \mathcal{E} .

An object A is said to be (-1)-connected if the map $A \rightarrow 1$ is surjective.

An object A is said to be 0-connected if the maps $A \to 1$ and $A \to A \times A$ are surjective.

In general, an object A is said to be *n*-connected if the diagonal map $A \rightarrow A^{S^i}$ is surjective for every $-1 \le i \le n$.

An object A is said to be ∞ -connected if it is n-connected for all integer n.

An ∞ -connected space is contractible (Whitehead theorem).

An ∞ -connected object in a logos may not be contractible. For example, in the logos of parametrised spectra PSp, every spectrum is ∞ -connected.

Crystallic functors

Let $C_n \subset$ Fin be the category of finite *n*-connected spaces. Consider the decreasing chain of sub-categories

$$\mathsf{Fin} \supset \mathsf{C}_{-1} \supset \mathsf{C}_0 \supset \mathsf{C}_1 \supset \cdots$$

Definition

We say that a functor $F : Fin \to S$ is *crystallic* if it is the right Kan extension of its restriction $F|C_n$ for **every** $n \ge -1$.

A crystallic functor $F : Fin \to S$ is determined by its values on the subcategory $C_n \subset Fin$ for any n.

Let us say that a functor F defined on $C_n \subset$ Fin is *crystallic* if it is the right Kan extension of its restriction $F|C_m$ for **every** m > n. If $[C_n, S]^{(\infty)}$ denotes the category of crystallic functors $C_n \to S$, then the restriction functor

$$[\mathsf{Fin},\mathcal{S}]^{(\infty)} \to [\mathsf{C}_n,\mathcal{S}]^{(\infty)}$$

is an equivalence of categories for every $n \ge -1$.

$\mathcal{S}[U_\infty]$

We shall denote the logos freely generated by a ∞ -connected object U_{∞} by $\mathcal{S}[U_{\infty}]$.

The logos $S[U_{\infty}]$ is a left exact localisation of the logos S[U]. Hence the category $S[U_{\infty}]$ is a reflective sub-category of the category S[U] = [Fin, S].

Theorem

A functor $F : Fin \to S$ belongs to $S[U_{\infty}]$ if and only if it is crystallic. Moreover, $S[U_{\infty}] = [Fin, S]^{(\infty)}$.

It follows that the limit $\varprojlim_n X_n$ of any formal Goodwillie tower (X_{\star}) is crystallic.

In particular, the limit $P_{\infty}F$ of the Goodwillie tower (P_nF) of any functor F: Fin $\rightarrow S$ is crystallic.

Analytic functors are crystallic

Theorem

Every n-analytic functor $C_n \to S$ is crystallic. In particular, the functor $U_1 : C_1 \to S$ is crystallic.

Proof.

The limit $P_{\infty}F$ of the Goodwillie tower (P_nF) of any functor $F : \operatorname{Fin} \to S$ is crystallic. But if F is *n*-analytic, then $P_{\infty}F(X) = F(X)$ for $X \in C_n$ by [GII]. Hence the functor $F : C_n \to S$ is crystallic. In particular, the functor $U_1 : C_1 \to S$ is cristallic, since U_1 is 1-analytic by [AK].

It follows that the functor U_{∞} : Fin $\rightarrow S$ is the right Kan extension of the functor $U_1 : C_1 \rightarrow S$ along the inclusion $C_1 \subset$ Fin.

Cech groupoid of a map

Recall that the *Cech groupoid* of a map $u : A \to B$ in a logos is the simplicial object $C_{\bullet}(u)$ defined by putting

$$C_n(u) = A \times_B A \times_B \cdots \times_B A$$

(factors indexed by $i \in [n]$) for every $n \ge 0$.

The simplicial object $C_{\bullet}(u)$ is naturally augmented by the map $u: A \to B$.

$$B \stackrel{u}{\longleftarrow} A \stackrel{}{\underset{\longleftarrow}{\longleftarrow}} A \times_B A \stackrel{\underbrace{\leftarrow}{\underset{\longleftarrow}{\longleftarrow}}}{\underset{\longleftarrow}{\longleftarrow}} A \times_B A \times_B A \cdots$$

Recall that the realisation $|X_{\bullet}|$ of a simplicial object X_{\bullet} in a logos is defined to be its colimit. From the augmentation $C_{\bullet}(u) \rightarrow B$ we obtain a factorisation $A \rightarrow |C_{\bullet}(u)| \rightarrow B$ of the map $u : A \rightarrow B$.

The map $A \to |C_{\bullet}(u)|$ is surjective and the map $|C_{\bullet}(u)| \to B$ is a monomorphism.

Cech cogroupoid of a map

The Cech cogroupoid of a map $u : A \to B$ in a logos is the cosimplicial object $C^{\bullet}(u)$ defined by putting

$$C^n(u) = B \sqcup_A B \sqcup_A \cdots \sqcup_A B$$

(factors indexed by $i \in [n]$) for every $n \ge 0$.

The cosimplicial object $C^{\bullet}(u)$ is coaugmented by the map $u: A \rightarrow B = C^{0}(u)$.

$$A \xrightarrow{u} B \xrightarrow{\longrightarrow} B \sqcup_A B \xrightarrow{\longrightarrow} B \sqcup_A B \sqcup_A B \cdots$$

Recall that the homotopy limit of a cosimplicial object X^{\bullet} is said to be its *totalisation* and is denoted $Tot(X^{\bullet})$.

n-excisive functors revisited

The partial n-totalisation $Tot_n(X^{\bullet})$ of a cosimplicial object X^{\bullet} is defined to be its limit over the subcategory of Δ spanned by the posets [k] with $k \leq n$.

Recall that a functor $F : Fin \to S$ is said to be *n*-excisive if it takes every strongly cocartesian (n + 1)-cube to a cartesian cube.

Lemma

A functor $F : Fin \rightarrow S$ is n-excisive if and only the canonical map

$$FA \rightarrow Tot_n(C^{\bullet}(u))$$

is an isomorphism for every map $u : A \rightarrow B$ in Fin.

Proof.

By [Sin], the partial totalisation $Tot_n(X^{\bullet})$ is the limit of the cubical diagram $S \mapsto X^{|S|}$ indexed by non-empty subsets $S \subseteq [n]$. \Box

∞ -excisive functors

Definition

We say that a functor $F: \mathsf{Fin} \to \mathcal{S}$ is a ∞ -excisive if the canonical map

$$FA \rightarrow Tot(C^{\bullet}(u))$$

is an isomorphism for every map $u: A \rightarrow B$ in Fin.

Theorem

A functor $F : Fin \rightarrow S$ is ∞ -excisive if and only if it is crystallic.

Sketch of proof: For every map $u : A \to B$ in Fin, let us denote the image of the map $U^u : U^B \to U^A$ by $J(u) \subseteq U^A$. By definition, a functor $F : \text{Fin} \to S$ is ∞ -excisive if an only if it is local with respect to the set Σ of inclusions $J(u) \subseteq U^A$. On the other hand F is crystallic if and only of it is local with respect to the class Λ of maps inverted by the functor P_0 . It suffices to show that Σ and Λ generates the same lex-localisation....

Thank you for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Bibliography (1)

- [AK] G. Arone and M. Kankaanrinta, A functorial model for iterated Snaith Splitting with applications to calculus of functors (1997).
- ▶ [AL] M. Anel and D. Lejay, *Exponentiable* ∞ -topoi.
- ► [ABFJ1] M. Anel, G. Biedermann, E. Finster and A. Joyal, Higher sheaves and left exact localisation of ∞-topoi. (2020)
- [ABFJ2] M. Anel, G. Biedermann, E. Finster and A. Joyal, Nilpotence towers for Goodwillie calculus. (2021?).
- [AJ] M. Anel and A. Joyal, *Topo-logie*, New Spaces in Mathematics. (2021)
- ► [AC] G. Arone and M. Ching, *Operads and Chain rules for the calculus of functors*. (2009)
- ▶ [BBC] K. Bauer, M. Burke and M. Ching, Tangent ∞-categories and Goodwillie calculus. (2021)
- ▶ [Ch] M. Ching, Dual tangent structures for ∞ -toposes. (2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bibliography (2)

- [E1] R. Eldred, Cosimplicial models for the limit of the Goodwillie tower. (2013)
- [GII] T.G. Goodwillie, Calculus II: Analytic functors. (1991/1992)
- [GIII] T.G. Goodwillie, Calculus III: Taylor Series. (2002/2003)
- ▶ [Joh] P. T. Johnstone, Sketches of an elephant. (2002)
- [KR] J. Klein and J. Rognes, A chain rule in the calculus of homotopy functors. (2003)
- ▶ [HTT] J. Lurie, *Higher topos theory*. (2009)
- ▶ [HA] J. Lurie, *Higher algebra*. (2017)
- [Re] C. Rezk, A streamline proof of Goodwillie's n-excisive approximation. (2013)
- [Sin] D. Sinha, The topology of spaces of knots: cosimplicial models. (2009).