# Linear Bicategories: Quantales and Quantaloid

Susan Niefield

Union College Schenectady, NY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint work with Rick Blute

## Motivating Example: The Tropical and Arctic Semirings

These are the two semiring structures on  $\mathbb{Z}^+ = \mathbb{Z} \cup \{+\infty, -\infty\}$ 

 $(\mathbb{Z}^+, \max, +_1)$  and  $(\mathbb{Z}^+, \min, +_2)$ 

where  $-\infty +_1 \infty = -\infty$  and  $-\infty +_2 \infty = \infty$ .

The bicategory  $\mathbb{Z}^+$ - Rel of sets and  $\mathbb{Z}^+$ -valued relations  $X \xrightarrow{R} Y$  is a locally ordered linear bicategory, where  $X \times Y \xrightarrow{R} \mathbb{Z}^+$ .

Plan:

- ► Characterize quantales Q such that Q-Rel is linear, where Q-Rel is the bicategory of Q-valued relations X →> Y
- Give non-locally ordered examples via Girard bicategories

## LinearBicategories

Introduced by Cockett, Koslowski, and Seely:

A linear bicategory  ${\mathcal B}$  has two bicategory structures

 $(\otimes, \top)$  and  $(\oplus, \bot)$ 

related via

$$A \otimes (B \oplus C) \longrightarrow (A \otimes B) \oplus C$$

$$(A \oplus B) \otimes C \longrightarrow A \oplus (B \otimes C)$$

with naturality and coherence conditions.

### LD-quantales

Recall: A quantale Q is a monoid in the category Sup of complete lattices and sup-preserving maps, and Q-Rel is a quantaloid, i.e., a Sup-enriched category.

An LD-quantale is a suplattices Q with operations \*, + and elements  $\top$ ,  $\bot$  such that

- (Q,\*, op) and  $(Q^{op},+,\perp)$  are quantales
- $a * (b + c) \le (a * b) + c$  and  $(a + b) * c \le a + (b * c)$

Example:  $\mathbb{Z}^+$  with  $+_1, +_2$ 

If Q is an LD-quantale and  $X \xrightarrow{R} Y \xrightarrow{S} Z$  in Q-Rel, define

$$R \otimes S(x,z) = \sup_{y} (R(x,y) * S(y,z))$$
$$R \oplus S(x,z) = \inf_{y} (R(x,y) + S(y,z))$$

Theorem (Q, \*, +) is an LD-quantale  $\iff (Q-\operatorname{Rel}, \otimes, \oplus)$  is a linear bicategory

Proof.  $(\Rightarrow) R \otimes (S \oplus T) \leq (R \otimes S) \oplus T$ , since

 $\begin{array}{rcl} R(w,x) * \inf_{y} [S(x,y) + T(y,z)] &\leq & R(w,x) * [S(x,y) + T(y,z)] \\ &\leq & [R(w,x) * S(x,y)] + T(y,z) \\ &\leq & \sup_{x} [R(w,x) * S(x,y)] + T(y,z) \end{array}$ 

( $\Leftarrow$ ) Elements *a*, *b*, *c* of *Q* induce  $1 \stackrel{R_a}{\dashrightarrow} 1 \stackrel{R_b}{\dashrightarrow} 1 \stackrel{R_c}{\dashrightarrow} 1$  in *Q*-Rel. Since

 $R_{a} \otimes (R_{b} \oplus R_{c}) \leq (R_{a} \otimes R_{b}) \oplus R_{c}$ 

it follows that  $a * (b + c) \le (a * b) + c$ .

Note: The other inequalities are similar.

### A Non-Posetal Example

 $\mathcal{L}$ oc locales, (X, Y)-bimodules  $X \xrightarrow{A} Y$ , homomorphisms

Recall (Joyal/Tierney) If  $X \xrightarrow{A} Y \xrightarrow{B} Z$ , then  $Y \xrightarrow{A^{\circ}} X$  is a bimodule, since  $A^{\circ} \cong \operatorname{Mod} Y(A, Y^{\circ}) \cong X \operatorname{Mod}(A, X^{\circ})$ , and

$$(A \otimes B)^{\circ} \cong \operatorname{Mod} Y(A, B^{\circ}) \cong Y \operatorname{Mod}(B, A^{\circ})$$

Defining  $B \oplus C = Z Mod(B^{\circ}, C) \cong (C^{\circ} \otimes B^{\circ})^{\circ}$ , we get  $\oplus$  is associative with left and right units  $Y^{\circ}$  and  $Z^{\circ}$ .

Claim:  $\mathcal{L}oc$ ,  $\otimes$ ,  $\oplus$  is a linear bicategory

To define  $A \otimes (B \oplus C) \longrightarrow (A \otimes B) \oplus C$ , or equivalently

 $A \otimes Z \operatorname{Mod}(B^{\circ}, C) \longrightarrow Z \operatorname{Mod}(\operatorname{Mod} Y(A, B^{\circ}), C)$ 

use the transpose of

 $\operatorname{Mod} Y(A, B^{\circ}) \otimes A \otimes Z \operatorname{Mod}(B^{\circ}, C) \xrightarrow{\varepsilon \otimes \operatorname{id}} B^{\circ} \otimes Z \operatorname{Mod}(B^{\circ}, C) \xrightarrow{\varepsilon} C$ 

### **Biclosed Bicategories**

Recall  $\mathcal B$  is biclosed if it has right extensions and right liftings



Note:  $X \operatorname{Mod}(A, B) = A \multimap B$  and  $\operatorname{Mod} Y(A, C) = C \circ A$ 

Given  $X \xrightarrow{A} Y$  and a famly  $\mathcal{D} = \{ X \xrightarrow{D_X} X \mid X \in \mathcal{B} \}$ , we get

$$A \xrightarrow{\delta_{X,A}} \operatorname{Mod} X(X \operatorname{Mod} (A, D_X), D_X)$$

and

$$A \xrightarrow{\delta_{A,Y}} Y \operatorname{Mod}(\operatorname{Mod} Y(A, D_Y), D_Y)$$

Key Properties of  $A^\circ$  in  $\mathcal{L}$ oc

Used 
$$A^{\circ} \cong \operatorname{Mod} Y(A, Y^{\circ}) \cong X \operatorname{Mod}(A, X^{\circ})$$

To generalize the  $\mathcal{L}oc$  construction, consider  $\mathcal{B}$  with a family

$$\mathcal{D} = \{ X \xrightarrow{D_X} X \mid X \in \mathcal{B} \}$$

such that

- $\delta_{X,A}$  is invertible, for all  $X \xrightarrow{A} Y$  (dualizing)
- $\operatorname{Mod} Y(A, D_Y) \cong X \operatorname{Mod}(A, D_X)$  relative  $\delta_{A,Y}, \delta_{X,A}$  (cyclic)

and define

$$A^{\perp} = X \operatorname{Mod}(A, D_X)$$

# **Girard Bicategories**

A Girard bicategory  $\mathcal{B}$  is biclosed and has a cyclic dualizing family

$$\mathcal{D} = \{ X \xrightarrow{D_X} X \, | \, X \in \mathcal{B} \}$$

where  $\mathcal{D}$  is called dualizing if  $\delta_{X,A}$  is invertible, for all  $X \xrightarrow{A} Y$ ; and cyclic if there are invertible cells

$$\operatorname{Mod} Y(A, D_Y) \cong X \operatorname{Mod}(A, D_X)$$

such that the following diagram commutes



Lemma ZMod $(B^{\perp}, C) \cong (C^{\perp} \otimes B^{\perp})^{\perp}$ 

Define  $B \oplus C = Z \operatorname{Mod}(B^{\perp}, C)$ . As in  $\mathcal{L}$ oc, we get:

Theorem If  $\mathcal{B}$  is a Girard bicategory, then  $\mathcal{B}$  is a linear bicategory.

Examples:

- (1) Quant quantales, bimodules, homomorphisms
- (2) Qtld quantaloids, profunctors, transformations

Note: Quant and Qtld are bicategories of the form  $Mon(\mathcal{B})$ , i.e., monads and bimodules in a bicategory  $\mathcal{B}$ , namely, the one object bicategory Sup and the bicategory Mat of matrices in Sup, respectively. To establish these examples we show:

Theorem If  $\mathcal{B}$  is a Girard bicategory with local equalizers and coequalizers stable under composition, then so is  $\mathcal{M}on(\mathcal{B})$ .

### References

- R. Blute and S. Niefield, Linear bicategories, Girard quantales and quantaloids, in preparation.
- R. Cockett, J. Koslowski, R. Seely, Introduction to linear bicategories, Mathematical Structures in Computer Science 10, pp. 165-203, (2000).
- D. Hofmann, G. Seal, W. Tholen (eds.), *Monoidal Topology*, Cambridge University Press, (2014).
- A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Amer. Math. Soc. Memoirs 309, (1984).
- K. Rosenthal, *The Theory of Quantaloids*, Longman Scientific & Technical, (1996).
- R. Street, Pointwise extensions and sketches in bicategories, arXiv:1409.6427, (2014).