Exponential modalities and complimentarity

Robin Cockett, and Priyaa V. Srinivasan

Tangent Categories and their Applications, June 2021

Exponential modalities

Linear logic treats logical statements as resources which cannot be duplicated or destroyed

Exponential modalities

Linear logic treats logical statements as resources which cannot be duplicated or destroyed

Linear logic accommodates non-linear types using exponential modalities

Exponential modalities

Linear logic treats logical statements as resources which cannot be duplicated or destroyed

Linear logic accommodates non-linear types using exponential modalities
Two exponential modalities in linear logic:
! read as the 'bang' / 'of course' and ? read as the 'why not' / 'whimper'

Exponential modalities

Linear logic treats logical statements as resources which cannot be duplicated or destroyed

Linear logic accommodates non-linear types using exponential modalities
Two exponential modalities in linear logic:
! read as the 'bang' / 'of course' and ? read as the 'why not' / 'whimper'
For any resource A,
!A refers to an infinite supply of the resource A
?A represents the notion of infinite demand.

Exponential modalities

Linear logic treats logical statements as resources which cannot be duplicated or destroyed

Linear logic accommodates non-linear types using exponential modalities
Two exponential modalities in linear logic:
! read as the 'bang' / 'of course' and ? read as the 'why not' / 'whimper'
For any resource A,
!A refers to an infinite supply of the resource A
?A represents the notion of infinite demand.

! A can be duplicated and destroyed.

Exponential modalities

Linear logic treats logical statements as resources which cannot be duplicated or destroyed

Linear logic accommodates non-linear types using exponential modalities
Two exponential modalities in linear logic:
! read as the 'bang' / 'of course' and ? read as the 'why not' / 'whimper'
For any resource A,
!A refers to an infinite supply of the resource A
?A represents the notion of infinite demand.

! A can be duplicated and destroyed.
! is used a de facto structure to model arbitrary dimensional spaces such as Bosonic Fock spaces in Physics.

Complimentarity in quantum mechanics

A quantum observable refers to a measurable property of quantum system.

A pair of quantum obsevables are complimentary if measuring one observable increases uncertanity regarding the value of the other.

Example: position and momentum of an electron

Question

Is there a connection between exponential modalities of linear logic and complimentary observables of quantum mechanics?

Question

Is there a connection between exponential modalities of linear logic and complimentary observables of quantum mechanics?

YES!!!

Mathematical framework

Categorical semantics of linear logic

Linearly distributive categories (LDC) ${ }^{1}$:

$$
\left(\mathbb{X}, \otimes, \top, a_{\otimes}, u_{\otimes}^{L}, u_{\otimes}^{R}\right) \quad\left(\mathbb{X}, \oplus, \perp, a_{\oplus}, u_{\oplus}^{L}, u_{\oplus}^{R}\right)
$$

linked by linear distributors: $\partial_{L}: A \otimes(B \oplus C) \rightarrow(A \otimes B) \oplus C$
Monoidal categories: LDCs in which $\otimes=\oplus$

[^0]
Categorical semantics of! and ?

In a (!, ?)-LDC ${ }^{2}$
-! is a monoidal coalgebra comodality

- $(!, \delta:!\Rightarrow!!, \varepsilon:!\Rightarrow \mathbb{I})$ is a monoidal comonad
- For each $A,\left(!A, \Delta_{A}, e_{A}\right)$ is a cocommutative comonoid
- ! is a comonoidal algebra modality
- (?, $\mu: ? ? \Rightarrow$?, $\eta: \mathbb{I} \Rightarrow$?) is a comonoidal monad
- For each $A,\left(? A, \nabla_{A}, u_{A}\right)$ is a commutative monoid
- (!, ?) is a linear functor
- The pairs $(\delta, \mu),(\varepsilon, \eta),(\Delta, \nabla)$ are linear transformations

Examples: Category of finiteness relations, category of finiteness matrices over a commutative rig

[^1]
Compact \dagger-linear logic: \dagger-monoidal categories

\dagger-monoidal categories: Monoidal categories with $\dagger: \mathbb{X}$ op $\rightarrow \mathbb{X}$ such that

- $A^{\dagger}=A$
- $f^{\dagger \dagger}=f$
- $(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}$
- All basic natural isomorphisms are unitary (i.e., $a_{\otimes}^{\dagger}=a_{\otimes}^{-1}$)

Examples: Category of Hilbert spaces and linear maps, category of sets and relations

Non-compact \dagger-linear logic ...

Non-compact \dagger-linear logic: Mixed unitary categories

Mixed Unitary Category:

Examples:

- Complex finite dimensional matrices embedded into finiteness matrices
- Finite relations embedded into finiteness relations
- A'canonical' MUC can be constructed from any \dagger-isomix category: the category of pre-unitary objects embed into the \dagger-isomix category

! and ? in \dagger-linear logic

In a (!, ?)-dagger-LDC
-! is a monoidal coalgebra comodality

- $(!, \delta:!\Rightarrow!!, \varepsilon:!\Rightarrow \mathbb{I})$ is a comonad
- For each $A,\left(!, \Delta_{A}, e_{A}\right)$ is a cocommutative comonoid
- ! is a comonoidal algebra modality
- (? $A, \mu: ? ? \Rightarrow ?, \eta: \mathbb{I} \Rightarrow$?) is a monad
- For each $A,\left(? A, \nabla_{A}, u_{A}\right)$ is a commutative monoid
- (!, ?) is a dagger linear functor
- The pairs $(\delta, \mu),(\varepsilon, \eta),(\Delta, \nabla)$ are dagger linear transformations

Examples: Category of finiteness relations, category of finiteness matrices over a commutative rig

A very rough plan

Step 1: Formulate measurements in MUCs
Step 2: Formulate complimentary systems in MUCs
Step 3: Prove the connection between exponential modalities and complimentary observables

Step 1: Mesurement in MUCs

Demolition measurement

In a \dagger-monoidal category, a demolition measurement ${ }^{3}$ on an object A is retract from A to a special commutative \dagger-Frobenius algebra, E.

$$
A \underset{r^{\dagger}}{\stackrel{r}{\rightleftarrows}} E \text { such that } r^{\dagger} r=1_{E}
$$

E represents a quantum observable.

[^2]
Compaction

Compaction

Compaction

A Compaction in a MUC, $M: \mathbb{U} \rightarrow \mathbb{C}$, is a retraction to an object in the unitary core $r: B \rightarrow M(U)$.

Compaction

A Compaction in a MUC, $M: \mathbb{U} \rightarrow \mathbb{C}$, is a retraction to an object in the unitary core $r: B \rightarrow M(U)$.

MUC measurement $=$ Compaction and Demolition measurement

Binary idempotents

Binary idempotents

Binary idempotent (any category): $A \underset{{ }_{v}}{\stackrel{u}{\rightleftarrows}} B$ such that:

splitting $e_{A}:=u \stackrel{u}{v}$ and $e_{B}:=v u$ gives isǒmorphic objects

Binary idempotents

Binary idempotent (any category): $A \underset{{ }_{v}}{\stackrel{u}{\longleftrightarrow}} B$ such that:

splitting $e_{A}:=u \stackrel{u}{v}$ and $e_{B}:=v u$ gives isǒmorphic objects
\dagger-binary idempotent: (\dagger-LDC) $A \underset{v}{\stackrel{u}{\rightleftarrows}} A^{\dagger}$ such that $i u^{\dagger}=u \quad v i=v^{\dagger}$
Observation: $\left(e_{A}\right)^{\dagger}=v^{\dagger} u^{\dagger}==v i u^{\dagger}=v u=e_{A^{\dagger}}$

Compaction $=$ splitting coring \dagger-binary idempotents

Theorem:

In a \dagger-isomix category, U is the canonical compaction of an object A,

$$
\Uparrow
$$

U is given by splitting a coring* \dagger-binary idempotent on A.

* coring if and only if the idempotent split through the core

Step 2: Formulate complimentary systems in MUCs

Complimentary systems in \dagger-monoidal categories

In a \dagger-monoidal category, a quantum observable is given by a special commutative \dagger-Frobenius algebra $(A, \zeta,, \uparrow)$ also known as a classical structure ${ }^{4}$.

(a)

(b) $\mathrm{o}_{0}=9^{\dagger}$

Two \dagger-Frobenius algebras $(A, \not, \uparrow, \uparrow),(A, \not, \uparrow, \uparrow)$, on an object are complimentary ${ }^{5}$ if they interact to produce two Hopf algebras.

[^3]
Linear monoids

Linear monoids generalize Frobenius algebras to LDCs.
In a symmetric LDC, a linear monoid, $A \stackrel{\circ}{\circ} B$, contains a:

- a monoid $(A, \zeta: A \otimes A \rightarrow A, \circ: \top \rightarrow A)$
- a dual for $A,(\eta, \varepsilon): A+B$

Linear monoids

Linear monoids generalize Frobenius algebras to LDCs.
In a symmetric LDC, a linear monoid, $A \stackrel{\circ}{-} B$, contains a:

- a monoid $(A, Y: A \otimes A \rightarrow A, \uparrow: \top \rightarrow A)$
- a dual for $A,(\eta, \varepsilon): A+B$
together producing a comonoid $(B$, 人 : $B \rightarrow B \oplus B, \downarrow: B \rightarrow \perp)$

A self linear monoid is a linear monoid, $A \stackrel{ }{\circ}^{\circ} B$, with $A \simeq B$

Linear monoids generalize Frobenius algebras

An object which is a Frobenius algebra is always a self-dual whereas a linear monoid has a monoid and a comonoid on distinct dual objects

A morphism of a Frobenius algebra is an isomorphism where as a morphism of linear monoid is more general.

Proposition:

In a monoidal category, a Frobenius algebra is precisely a self linear monoid $A \stackrel{\circ}{+} B,(\alpha: A \xrightarrow{\alpha} B)$ satisfying the equation:

Alternate characterization of linear monoids

A linear monoid, $A \stackrel{\circ}{+} B$, consists of a \otimes-monoid, (A, Y, ρ), and a \oplus-comonoid, $(B, \stackrel{\alpha}{\infty}, \downarrow)$ and:

- monoid actions:

$$
A \otimes B \rightarrow B ; p: B \otimes A \rightarrow A
$$

- comonoid coactions:

satisfying certain equations. The Frobenius equation is given as follows:

Linear bialgebras

Linear monoid

a \otimes-monoid and a dual:
$(A, \zeta: A \otimes A \rightarrow A, \circ: \top \rightarrow A)$
$(\eta, \varepsilon): A+B$

Linear comonoid

$(A, A: A \rightarrow A \otimes A, d: A \rightarrow \perp)$
$(\eta, \varepsilon): A+B$

Linear bialgebras

- a linear monoid $(A, \zeta, \uparrow) ;(\eta, \varepsilon): A+B$
- a linear comonoid $(A, A, \delta) ;\left(\eta^{\prime}, \varepsilon^{\prime}\right): A+B$
such that $(A, Y, \uparrow, A, \downarrow)$ is a \otimes-bialgebra; $(B, Y, Y, \underset{,}{\propto}, \downarrow)$ is a \oplus-bialgebra
A self-linear bialgebra is a linear bialgebra where $A \simeq B$

Complimentary systems

A complimentary system in an isomix category a self-linear bialagebra, A, such that:

$$
\text { [comp.1] } \bigcup_{0}=\underbrace{}_{0}=i \quad \text { [comp.2] } \sum_{0}=Y Y
$$

Lemma: If A is a complimentary system, then A is a \otimes-Hopf and \oplus-Hopf.

Step 3: Proving the connection between exponential modalities and complimentary systems

Main result

Theorem:

In a (!, ?)-isomix category with free exponential modalities, every complimentary system arises as a splitting of a binary idempotent on the linear bialgebra induced on the exponential modalities.
(The proof uses a series of results)
The structures and results discussed extend directly to \dagger-linear bilagebras in \dagger-LDCs with free exponential modalities due to the \dagger-linearity of (!, ?), $(\eta, \varepsilon),(\Delta, \nabla)$, and (\llcorner,\lceil).

Future work

Examples in physics...

Acknowledgement:

Thank you JS for many useful discussions on the exponential modalities and examples!

Article available in arXiV

Cockett, Robin, and Priyaa Srinivasan. "Exponential modalities and complementarity." arXiv preprint arXiv:2103.05191 (2021).

[^0]: ${ }^{1}$ Robin Cockett and Robert Seely (1997). Weakly distributive categories.

[^1]: ${ }^{2}$ Richard Blute, Robin Cockett, and Robert Seely (1996). "! and ? - Storage as tensorial strength."

[^2]: ${ }^{3}$ Bob Coecke and Dusko Pavlovic (2006). "Quantum measurements without sums" $12 / 24$

[^3]: ${ }^{4}$ Bob Coecke, Dusko Pavlovic and Jamie VIcary (2013). "A new description of orthonormal basis"
 ${ }^{5}$ Bob Coecke and Ross Duncan (2008). "Interacting quantum observables"

