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Exponential modalities

Linear logic treats logical statements as resources which cannot be
duplicated or destroyed

Linear logic accommodates non-linear types using exponential modalities

Two exponential modalities in linear logic:
| read as the ‘bang’ / ‘of course’ and ? read as the ‘why not' / ‘whimper’

For any resource A,

IA refers to an infinite supply
of the resource A

?A represents the notion of
infinite demand.

IA can be duplicated and destroyed.

l'is used a de facto structure to model arbitrary dimensional spaces such
as Bosonic Fock spaces in Physics.

arXiv:1809.00275 arXiv:2103

Exponential modalities and complimentarity



Complimentarity in quantum mechanics

A quantum observable refers to a measurable property of quantum
system.

A pair of quantum obsevables are complimentary if measuring one
observable increases uncertanity regarding the value of the other.

Example: position and momentum of an electron
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Is there a connection between exponential modalities of
linear logic and complimentary observables of quantum
mechanics?
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Is there a connection between exponential modalities of
linear logic and complimentary observables of quantum
mechanics?

YES!!!
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Mathematical framework
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Categorical semantics of linear logic

Linearly distributive categories (LDC)!:
(X7®’Taa®vué_§aug) (Xv@aJ—aaEBquLBaug)
linked by linear distributors: 9, : A® (B& C) - (A B) @ C

Monoidal categories: LDCs in which @ = &

Mix category Compact LDC
m: 1l —T

mx
mx:A®B — A® B ARB—>A®B

@ O OO

LDC Isomix category Monoidal category
(X7®7T7®7J~) LLT m:1, mx =1

'Robin Cockett and Robert Seely (1997). Weakly distributive categories.
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Categorical semantics of ! and ?

Ina (!,?)-LDC?
- I'is a monoidal coalgebra comodality
o (1,0 :! =!I eI = 1) is a monoidal comonad

o For each A, (!A, A4, ea) is a cocommutative comonoid

- l'is a comonoidal algebra modality
o (?,u:7?7=7n:1="7)is a comonoidal monad

o For each A, (?A,V a, ua) is a commutative monoid
- (1,7) is a linear functor
- The pairs (9, ), (€,71), (A, V) are linear transformations

Examples: Category of finiteness relations, category of finiteness matrices
over a commutative rig

?Richard Blute, Robin Cockett, and Robert Seely (1996). “! and ? - Storage as
tensorial strength.”
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Compact f-linear logic: T-monoidal categories

t-monoidal categories: Monoidal categories with T : X°? — X such that
o Al=A
o fit = F
o (fog)=flogl

. . . . . T
o All basic natural isomorphisms are unitary (i.e., ay = ag")

Examples: Category of Hilbert spaces and linear maps, category of sets
and relations

Non-compact f-linear logic ...
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Non-compact f-linear logic: Mixed unitary categories

Mixed Unitary Category:

Unitary

t-isomix
category

functor
A LA At

Unitary category ~ { monoidal category

Examples:

t-isomix
category

b

Core @ ~ @

e Complex finite dimensional matrices embedded into finiteness matrices
e Finite relations embedded into finiteness relations

e A‘canonical’ MUC can be constructed from any f-isomix category: the
category of pre-unitary objects embed into the f-isomix category

Exponential modalities and complimentarity
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I'and 7 in f-linear logic

Ina (!,7)-dagger-LDC
- I'is a monoidal coalgebra comodality

o (o= e:1=1)is a comonad

o For each A, (!, Aa, ea) is a cocommutative comonoid

- l'is a comonoidal algebra modality
o (PA, 7?7 =7,n7:1="7)is a monad
o For each A, (?A,Va, ua) is a commutative monoid
- (1,7) is a dagger linear functor
- The pairs (9, ), (€,7m), (A, V) are dagger linear transformations

Examples: Category of finiteness relations, category of finiteness matrices
over a commutative rig
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A very rough plan

Step 1: Formulate measurements in MUCs
Step 2: Formulate complimentary systems in MUCs

Step 3: Prove the connection between exponential modalities and
complimentary observables
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Step 1: Mesurement in MUCs
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olition measure

In a t-monoidal category, a demolition measurement? on an object A is
retract from A to a special commutative t-Frobenius algebra, E.

Aé E such that rfr = 1
A

E represents a quantum observable.

t-isomix
category

Core ® >~ @
Unitary

e f-isomix N
functor
A4, At

Unitary category ~
1 monoidal category

*Bob Coecke and Dusko Pavlovic (2006). “Quantum measurements without sums”
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Compaction

T-isomix
category

Core ® ~ @

Unitary

isomi
category f-isomix

B
functor

A4 Al

Unitary category ~
T monoidal category
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Compaction

Unit. N
nitary t-isomix

category

functor

A AL At

Unitary category ~
1 monoidal category

1809.00275

-isomix
category

Core ® ~ @

r:B— M(U)
s:M(U) — B
Sr = ]'M(U)
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-isomix

category
Core ® ~ @ r:B—)M(U)
Unitary t-isomix
category S M(U) — B
functor
A4 At
Sr = ]'M(U)

Unitary category ~
1 monoidal category

A Compaction in a MUC, M : U — C, is a retraction to an object in the
unitary core r : B — M(U).
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-isomix
category

Core ® ~ @ r:B—)M(U)
Unitary t-isomix -
category S M(U) — B
functor
A4 At
Sr = ]'M(U)

Unitary category ~
1 monoidal category

A Compaction in a MUC, M : U — C, is a retraction to an object in the
unitary core r : B — M(U).

MUC measurement = Compaction and Demolition measurement
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Binary idempotents

A Af A Af
N
M(U)T ——= M(U)T MUY —== M(U)f
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Binary idempotents

A Af A Af
N
M(U)" ——~ M(U)T M(U)F —2= M(U)!

Binary idempotent (any category): Aé B such that:
v

u v
v u Vv,
uvu = u :/5\ :m vuv = u
A B A B

splitting ea := uv and eg := wu gives isémorphic objects
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Binary idempotents

A Af A Af
N
M(U)" ——~ M(U)T M(U)F —2= M(U)!

Binary idempotent (any category): Aé B such that:
v

u v
v u Vv,
uvu = u :/5\ :m vuv = u
A B A B

splitting ea := uv and eg := wu gives isémorphic objects

T-binary idempotent: (1-LDC) A i A" such that iut =u  vi=vI

Observation: (ea)’ = viul = = viul = vu = ey
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Compaction = splitting coring {-binary idempotents

Theorem:

In a f-isomix category, U is the canonical compaction of an object A,

)

U is given by splitting a coring® f-binary idempotent on A.

* coring if and only if the idempotent split through the core
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Step 2: Formulate complimentary systems in
MUCs
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Complimentary systems in {-monoidal categories

In a T-monoidal category, a quantum observable is given by a special
commutative f-Frobenius algebra (A,',?) also known as a classical
structure*.

Y [0 Ay 010 A-Tao-

Two f-Frobenius algebras (A,',1), (A,'%’,7), on an object are
complimentary® if they interact to produce two Hopf algebras.

Y ot

*Bob Coecke, Dusko Pavlovic and Jamie Vicary (2013). " A new description of
orthonormal basis”
®Bob Coecke and Ross Duncan (2008). " Interacting quantum observables”

arXiv:1809.00275 arXiv: 3. Exponential modalities and complimentarity



Linear monoids

Linear monoids generalize Frobenius algebras to LDCs.

In a symmetric LDC, a linear monoid, A =+ B, contains a:
-amonoid (A, tARA— A 7: T — A)
- a dual for A, (n,¢): AHB
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Linear monoids

Linear monoids generalize Frobenius algebras to LDCs.

In a symmetric LDC, a linear monoid, A 4 B, contains a:
-amonoid (A, :ARA— A, 7: T — A)

- a dual for A, (n,¢) : AHB

together producing a comonoid (B, 4 :B—B®B,|: B — 1)

A |

A self linear monoid is a linear monoid, A =4 B, with A~ B
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Linear monoids generalize Frobenius algebras

An object which is a Frobenius algebra is always a self-dual whereas a
linear monoid has a monoid and a comonoid on distinct dual objects

A morphism of a Frobenius algebra is an isomorphism where as a
morphism of linear monoid is more general.

Proposition:

In a monoidal category, a Frobenius algebra is precisely a self linear
monoid A 4 B, (a: A - B) satisfying the equation:
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Alternate characterization of linear monoids

A linear monoid, A 4 B, consists of a ®-monoid, (A,¢,?), and a
@-comonoid, (B, A, ) and:

- monoid actions: \4: A®B—>B;V: BRA—A

- comonoid coactions: /#: B—A®B; F\ :B— A3 B

satisfying certain equations. The Frobenius equation is given as follows:

A A A A A A
B A B A B A
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Linear bialgebras

Linear monoid Linear comonoid
a ®-monoid and a dual: a ®-comonoid and a dual:
(ALY T ARA—=A 7T —=A) (A AA—=ARA L:A—= L)
(n,e) : AHB (n,e) : AHB

Linear bialgebras
- a linear monoid (A,%,7); (n,¢) : AHB
- a linear comonoid (A, A, L); (0/,¢') : AHB
such that (A,%/,7, A,1) is a ®-bialgebra; (B,Y, 7, A, ) is a ®-bialgebra

A self-linear bialgebra is a linear bialgebra where A~ B
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Complimentary systems

A complimentary system in an isomix category a self-linear bialagebra,
A, such that:

[comp.1] K{ = i [comp.2] & _ T [comp.3] ﬁ _ TT

Lemma: If A is a complimentary system, then A is a ®-Hopf and ®-Hopf.
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Step 3: Proving the connection between
exponential modalities and complimentary systems
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Main result

Theorem:

In a (!,7?)-isomix category with free exponential modalities, every
complimentary system arises as a splitting of a binary idempotent on the
linear bialgebra induced on the exponential modalities.

(The proof uses a series of results)

The structures and results discussed extend directly to {-linear bilagebras
in T-LDCs with free exponential modalities due to the {-linearity of (!,7?),
(n,€), (A, V), and (L,7).
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Examples in physics...
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